
Advancements and Challenges in Multiloop
Scattering Amplitudes for the LHC

Amplitudes – Edinburgh,	11	July	2017

In	collaboration	with	
A.	Primo,	A.	von	Manteuffel,	E.	Remiddi,	J.	Lindert,	K.	Melnikov,	C.	Wever

Lorenzo	Tancredi	
TTP	KIT	Karlsruhe



What are we interested in? 
(Or what are we looking for?)

The	LHC has	discovered	the	Higgs	Boson	and	has	opened	a	window	on	the	Electro	
Weak	Symmetry	Breaking	mechanism,		about	which	we	admittedly	don’t	know	much

Beyond	any	doubts,	there	is	still	a	lot	we	don’t	understand	about		fundamental	particle	
physics and	our	best	chance	is	the	LHC

• Higgs	width
• Higgs	couplings	to	fermions
• Higgs	self-couplings
• The	Higgs	potential	
• … (not	only	Higgs	!)

• Higgs	𝒑𝑻 distribution	can	
be	used	to	constrain	
couplings	to	light	quarks

• 𝝈𝒈𝒈	→	𝒁𝒁 at	high	energy	to	
constrain	the	Higgs	width	

• New	observables	will	be	
crucial



The fascination of precision calculations
Precision	is	cool	because	it	allows	us	to	pinpoint	even	small	hints	to	new	physics,	
but	(for	many	of	us)	this	is	not	the	only	reason!

As	theorists,	precision	requires	
higher	order	calculations	and	
deep	understanding	of	the	physics	
that	we	are	searching	for

• Going	higher	in	perturbation	
theory	allows	us	to	expose	
fascinating	mathematical	
structures	of	QFT

• And	it	can	point	us	to	the	
limitations	of	our	current	
approach
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We still need to compute Feynman Diagrams!
(is a “revolution” finally due?)

Modulo	revolutions,	we	still	need	to	put	together	our	physical	quantities	
starting	from	not	very	well	behaving	building	blocks…
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+

+



LHC	energies	give	us	the	
opportunity	to	study	
processes	at	very	high	energy	
and	transverse	momentum

In	these	regimes,	we	probe	high	mass	
resonances and	in	particular	the	top-
quark,	whose	interactions	are	crucial	to	
study	the	Higgs	mechanism

For	realistic	description,	
we	cannot	neglect	
heavy	virtual	particles	
in	the	loops!

We	need	a	way	to	handle	(multi-)loop	scattering	amplitudes	which	
depend	on	many	scales	and,	crucially,	allowmassive	internal	states!



How do we proceed (and can we do better?)

Any	scattering	amplitude	is	a	collection	of	scalar	Feynman	Integrals

Cuts and Feynman Integrals beyond multiple polylogarithms
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Integrals	are	not	all	independent	– there	are	Integration-by-parts	identities	(IBPs)

Cuts and Feynman Integrals beyond multiple polylogarithms
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N	Master	Integrals

[Chetyrkin,	Tkachov	‘81]



MIs	are	all	known!
Space	of	functions	is	understood													at	every	order	in	𝜀 we	only	need	MPLs!

Cuts and Feynman Integrals beyond multiple polylogarithms

A revolution in multi-loop calculations has started when physicists have

re-discovered the so-called multiple polylogarithms

[E.Remiddi, J.Vermaseren ’99; T. Gehrmann, E.Remiddi ’00; ....]
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For	finite	piece	in	𝑑 = 4
only	𝑳𝒊𝟐 functions!

@ 1 loop everything is clear now

Reduction	is	understood,	we	are	actually	able	to	write	amplitudes	as	
combination	of	4	Master	Integrals in	terms	of on-shell	quantities

one-loop N-point amplitude:

+R

most complicated functions are dilogarithms

“master integrals”: boxes, triangles, bubbles, tadpoles
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@ 2 loops and beyond
it is an entirely different story

We	need	realistic	processes	with	masses and	many	scales

Classic	examples	of	processes	we	need

• H+jet production	with	a	top	quark

• VV	production	above	top	threshold

4	scales,	3	ratios

5 scales,	4	ratios

No	idea	in	general	what	Mis are,	and	what	is	the	space	of	functions	needed,	
we	only	know	that	MPLs	are	surely	not	enough



We made a lot of progress in the last years

Most	important	development	is	probably	the	differential	equations	method
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From	the	IBPs

[Kotikov ’91;	Remiddi ’97;	Gehrmann,	Remiddi ’00]

We	want	to	compute	the	MIs	as	Laurent	series in	𝜀 = (4 − 𝑑)/2



We made a lot of progress in the last years

Most	important	development	is	probably	the	differential	equations	method

Cuts and Feynman Integrals beyond multiple polylogarithms

Z lY

j=1

d

d
kj

(2⇡)d
S

�
1

1

... S�s
s

D

↵
1

1

...D↵n
n

, Sr = ki · pj

+

Z lY

j=1

d

d
kj

(2⇡)d

 
@

@kµ
j

vµ
S

�
1

1

... S�s
s

D

↵
1

1

...D↵n
n

!
= 0 v

µ = k

µ
j , p

µ
k

+

@
@ xk

Ii (d ; xk) =
NX

j=1

cij(d ; xk) Ij(d ; xk)

1 / 1

From	the	IBPs

[Kotikov ’91;	Remiddi ’97;	Gehrmann,	Remiddi ’00]

We	want	to	compute	the	MIs	as	Laurent	series in	𝜀 = (4 − 𝑑)/2

The	reason	why	DEQs	are	so	useful	is	because	very	they	often	become	triangular
In	the	limit	𝑑 → 4 (by	choosing	wisely basis	of	MIs)

Coefficients	of	Laurent	series	effectively	satisfy	First	order	linear	DEQs!

They	can	expressed	as	well	in	terms	of	MPLs

Cuts and Feynman Integrals beyond multiple polylogarithms

A revolution in multi-loop calculations has started when physicists have

re-discovered the so-called multiple polylogarithms
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We discovered canonical bases
[Henn	’13]

Beautiful	systematization	of	the	proceedure	above,	i.e.	integrals	expressed	as	MPLs
or	iterated	integrals	over	dlogs																				choose	MIs	with	unit	leading	singularities

The	concept	of	unit	leading	singularity is	understood	(?)
for	integrals	that	fulfil	this	requirement	 [Arkani-Hamed	et	al	’10]

Cuts and Feynman Integrals beyond multiple polylogarithms
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Differential	equations
take	very	simple	form

A(x)	is	in	d-log	form

Results	are	trivially
Multiple	Polylogarithms

The	symbol can	be	read	
off	directly	from	A(x)	!

If	such	a	basis	exists,	it	
must	be	possible	to	find	
it	by	transformations	on	
DEQs	only [Lee	’14]



We	also	have	almost	full	
control	on	analytical and	
algebraic properties	of	
Multiple	Polylogarithms

We	have	numerical	
routines to	evaluate	
Multiple	Polylogarithms	
with	arbitrary	precison	

Two other developments are at least as important…

[Goncharov,	Spradlin,	Volovich	‘10]
[Duhr,	Gangle,	Rodes	’11]
[Duhr	‘12]

[Vollinga,	Weinzierl	‘05]

As	long	as	we	consider	cases	in	this	subset,	
we	can	do	a	lot!	

We	can	compute	scattering	amplitudes	
efficiently,	and	get	them	in	a	form	that	is	
useful	to	do	real	physics	with	them!
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Two other developments are at least as important…

[Goncharov,	Spradlin,	Volovich	‘10]
[Duhr,	Gangle,	Rodes	’11]
[Duhr	‘12]

[Vollinga,	Weinzierl	‘05]

As	long	as	we	consider	cases	in	this	subset,	
we	can	do	a	lot!	

We	can	compute	scattering	amplitudes	
efficiently,	and	get	them	in	a	form	that	is	
useful	to	do	real	physics	with	them!

Beautiful	Example	(a	bit	biased):

𝑞𝑞	 → 𝑉6𝑉7 @	2	loop	in	QCD

without	top-mass	effects
but	full	V	off-shellness	effects

[Caola,	Henn,	Melnikov,	Smirnov,	Smirnov	‘14,	‘15]
[Gehrmann,	von	Manteuffel,	Tancredi		‘15]

Use	all	techniques	above	to	put	
amplitude	in	a	usable	form	for	pheno!



All this works so nicely without masses in the loops…

What	changes	otherwise?		Multiple	Polylogs	are	NOT	enough	to	span	all	space	of	
functions	needed	@	2	loops!	Elliptic	Functions	and	possibly	more…

In	terms	of DEQs,	they	cannot	be	decoupled	anymore	in	𝑑 = 4
Laurent	coefficients	of	MIs	fulfill	irreducible higher	order	differential	equations	

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s look more in detail - we should recall that equations are in block form
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Homogeneous	part	of	the	equation	remains	coupled
Concept	of	unit	leading	singularity	unclear
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Cuts and Feynman Integrals beyond multiple polylogarithms

We know a more and more examples now
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DEQs for 2-loop sunrise as an example

Has	two	master	integrals	𝑆6 and		𝑆7 plus	one	subtopology.			𝑢 = 𝑝7/𝑚7

Cuts and Feynman Integrals beyond multiple polylogarithms
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We need to find a matrix of 2 ⇥ 2 independent homogeneous solutions!
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Dispersion relations and di↵erential equations for Feynman Integrals

The di↵erential equations can be put in the form above

d

du
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where the two matrices B(u),D(u) are defined as
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Four regular singular points: u = 0, 1, 9,±1
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Analytic solutions reloaded

In	general,	given	a	coupled	system	of	equations,	no	general	method	to	determine	all	
homogeneous	solutions.	BUT we	can	use	additional	information	from	Maximal	Cut

A	complete	solution	in	series	expansion	in	𝜀 requires	solving	homogeneous	
equations	in	 𝜀 = 0,	i.e.	finding	a	matrix	2x2	such	that

Cuts and Feynman Integrals beyond multiple polylogarithms

Other two solutions by di↵erentiation [or cutting the second master integral]
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◆

15 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

Matrix of solutions can be therefore written as the matrix of the maximal cuts

G(u) =

✓
I1(u) J1(u)
I2(u) J2(u)

◆
=

✓
Cut

C1 (S1(u)) Cut
C2 (S1(u))
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C1 (S2(u)) Cut
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◆

and recall that

G
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1
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✓
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◆
! W (u) = det (G(u)) = I1(u)J2(u)�I2(u)J1(u)

where W (u) is the Wronskian of the solutions!
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Cuts and Feynman Integrals beyond multiple polylogarithms

Other two solutions by di↵erentiation [or cutting the second master integral]

J1(u) /
I

C1

dbp
R4(b, u)

I1(u) /
I

C2

dbp
�R4(b, u)

J2(u) /
I

C1

db b

2

p
R4(b, u)

I2(u) /
I

C2

db b

2

p
�R4(b, u)

And by construction we find

d

du

✓
I1(u) J1(u)
I2(u) J2(u)

◆
= B(u)

✓
I1(u) J1(u)
I2(u) J2(u)

◆
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Matrix of solutions can be therefore written as the matrix of the maximal cuts

G(u) =

✓
I1(u) J1(u)
I2(u) J2(u)

◆
=

✓
Cut

C1 (S1(u)) Cut
C2 (S1(u))

Cut
C1 (S2(u)) Cut

C2 (S2(u))

◆

and recall that

G

�1(u) =
1

W (u)

✓
J2(u) �J1(u)
�I2(u) I1(u)

◆
! W (u) = det (G(u)) = I1(u)J2(u)�I2(u)J1(u)

where W (u) is the Wronskian of the solutions!
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Cuts and Feynman Integrals beyond multiple polylogarithms

The Maximal Cut provides us with ONE solution of the homogeneous system!
[A. Primo, L. T. ’16]
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NX
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ij

(d ; x
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)Cut (m
j

(d ; x
k
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Maximal	Cut	provides	solution	of	homogeneous	equation	 [A.	Primo,	L.Tancredi	‘16]

In	general,	given	a	coupled	system	of	equations,	no	general	method	to	determine	all	
homogeneous	solutions.	BUT we	can	use	additional	information	from	Maximal	Cut

Computed	efficiently	using	Baikov	representation	[C.	Papadopoulos,	H.	Frellesvig	‘17]



How to get all independent solutions

Cuts and Feynman Integrals beyond multiple polylogarithms

But cutting the graph maximally we find

m

p
=

I

C

dbq
±b (b � 4)

�
b � (

p
u � 1)2

� �
b � (

p
u + 1)2

�

=

I

C

dbp
±R4(b, u)

We want to get independent homogeneous solutions

by integrating along di↵erent contours

The problem of how many independent contours exist is a
cohomology problem, recent renewed interest from physics community

[... ; Abreu, Britto, Duhr, Gardi ’17 ]
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Compute	max	cut	along	all	
independent	contours

[Bosma,	Sogaard,	Zhang	‘17]
[A.	Primo,	L.	Tancredi	‘17]
[Harley,	Moriello,	Schabinger	‘17]
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We obtain at once all solutions from the two master integrals
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Cutting	the	second	MI	

Cuts and Feynman Integrals beyond multiple polylogarithms

Matrix of solutions can be therefore written as the matrix of the maximal cuts

G(u) =

✓
I1(u) J1(u)
I2(u) J2(u)

◆
=

✓
Cut

C1 (S1(u)) Cut
C2 (S1(u))

Cut
C1 (S2(u)) Cut

C2 (S2(u))

◆

and recall that

G

�1(u) =
1

W (u)
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J2(u) �J1(u)
�I2(u) I1(u)

◆
! W (u) = det (G(u)) = I1(u)J2(u)�I2(u)J1(u)

where W (u) is the Wronskian of the solutions!
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It	is	the	matrix	of
Maximal	Cuts	!



Basis of unit leading singularity?

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s rotate the system to a more convenient form

G(u) =

✓
I1(u) J1(u)
I2(u) J2(u)

◆
!

✓
S1(u)
S2(u)

◆
= G(u)

✓
m1(u)
m2(u)

◆

Such that

d

du

✓
m1(u)
m2(u)

◆
= ✏ G

�1(u)D(u)G(u)
| {z }

✓
m1(u)
m2(u)

◆
+ G

�1(u)

✓
N1(u)
N2(u)

◆

+

Iterated integrals over products of two elliptic integrals and rational functions!
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Rotate	original	basis
Using	matrix	G(u)
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You see what is happening here...

Remember, given a system of di↵erential equations, the matrix of the maximal
cuts is the matrix of the homogeneous solutions!

What about our new basis? For ✏ = 0 it’s homogeneous equations is

d

du

✓
m1(u)
m2(u)

◆
= 0

And indeed

✓
Cut

C1 (m1(u)) Cut
C2 (m1(u))

Cut
C1 (m2(u)) Cut

C2 (m2(u))

◆
=

✓
1 0
0 1

◆
! The identity !!!!

Unit leading singularity!!! Generalization (?) of [Henn ’13]
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Physical intepretation of this rotation

0

@
m1(u)

m2(u)

1

A = G

�1(u)

0

@
S1(u)

S2(u)

1

A =
1

W (u)

0

@
J2(u)S1(u) � J1(u)S2(u)

�I2(u)S1(u) + I1(u)S2(u)

1

A

Let maximal-cut it along the two independent contours that we found earlier

CutC1

2

4

0

@
m1(u)

m2(u)

1

A

3

5 =
1

W (u)

0

@
J2(u)I1(u) � J1(u)I2(u)

�I2(u)I1(u) + I1(u)I2(u)

1

A =

0

@
1

0

1

A

CutC2

2

4

0

@
m1(u)

m2(u)

1

A

3

5 =
1

W (u)

0

@
J2(u)J1(u) � J1(u)J2(u)

�I2(u)J1(u) + J1(u)I2(u)

1

A =

0

@
0

1

1

A
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New	basis’	max	cuts
along	two	contours	
give	identity	matrix

Rotate	original	basis
Using	matrix	G(u)



Basis of unit leading singularity?

For	Sunrise,	entries	of	matrix	G(u)	are	proportional	to	complete elliptic	integrals

Cuts and Feynman Integrals beyond multiple polylogarithms
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Iterated integrals over new kernels

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s rotate the system to a more convenient form
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Iterated integrals over products of two elliptic integrals and rational functions!
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The	new	basis	fulfils	simple	differential	equations	– homogeneous	part	factorized	in	𝜀

What	are	these	functions	(in	the	Sunrise	case)?

§ Elliptic	Polylogarithms	[Bloch,	Vanhove	‘13]
§ ELi	functions	[Adams,	Bogner,	Weinzierl	‘14,’15]
§ Iterated	integrals	over	modular	forms	[Adams,	Weinzierl	‘17]
§ …

Unclear	how	to	extend	
them	to	other	
topologies	with	more	
complicated	kinematics



The method is much more general!
We	know	a	few	examples	at	2	loops	(the	number	is	increasing…)

Different	kinematics	(2,3,4-point	functions),	all	reduced	to	2x2	coupled	system	
whose	solutions	given	by	complete	elliptic	integrals
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Different	kinematics	(2,3,4-point	functions),	all	reduced	to	2x2	coupled	system	
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First	3x3	case	known	happens	at	3	loops

Banana	graph	– 3	MIs,	3	coupled	DEQs	 p
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d

dx

0
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I1(✏; x)
I2(✏; x)
I3(✏; x)
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A =B(x)
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0
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� 1
2(4x�1)

1

A

where B(x) and D(x) are 3 ⇥ 3 matrices, with x = 4m2/p2
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A
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[A.	Primo,	L.	Tancredi	‘17]
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3x3	coupled	homogeneous	system
Need	a	matrix	of	3x3	independent	solutions!

[A.	Primo,	L.	Tancredi	‘17]



Same idea applied here
We	study	the	max	cut	of	the	three	loop	banana	graph	along	all	independent	
contours	bounded	by	branch	cuts	and	find	all	independent	solutions!

Cuts and Feynman Integrals beyond multiple polylogarithms

We choose as three independent functions

H1(x) =x K
⇣
k2

+

⌘
K
⇣
k2
�

⌘
,

J1(x) =x K
⇣
k2

+

⌘
K
⇣
1 � k2

�

⌘
,

I1(x) =x K
⇣
1 � k2

+

⌘
K
⇣
k2
�

⌘
,

where the remaining rows of the matrix G(x) can be obtained by
di↵erentiation. With this choice we have

W (x) = � ⇡3x3

512
p

(1 � 4x)3(1 � x)
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Interestingly enough, with some e↵ort, and following:
[Bailey, Borwein, Broadhurst ’08]

f V
1 (x) = 2x K(k2

�) K(k2
+)

f V
2 (x) = 4x

⇣
K(k2

�) K(1 � k2
+) + K(k2

+) K(1 � k2
�)

⌘
,

k± =

p
(� + ↵)2 � �2 ±p

(� � ↵)2 � �2

2�
with k� =

✓
↵
�

◆
1
k+

=
2↵
k+

↵ =

p
x +

p
x(1 � x)

2
, � =

p
x �p

x(1 � x)

2
, � =

1
2

Result expected from studies of Joyce ’73 on cubic lattice Green functions!
Elliptic Tri-Log by [Bloch, Kerr, Vanhove ’14]
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Generalization	of	complete	elliptic	integrals	in	2x2	case

Homogeneous	solutions	are	
products	of	complete	elliptic	
integrals!

Bessel	moments
[Bailey,	Borwein,	Broadhurst	‘08]

Already	J.	Joyce	could	solve	this	equation	in	1973 in	context	of	cubic	lattice	Green	functions

More	recently	Bloch	and	Vanhove	wrote	the	graph	in	d=2	as	an	Elliptic	Trilog!



Is this the only approach worth trying?

Very	promising	developments:	we	have	now	a	way	to	tackle	complicated	MIs	by	
solving	differential	equations	even	if	they	are	coupled!	

We	are	making	fast	progress	on	the	classifications	of	the	special	functions	involved!

Still,	a	major	issue	remains.	Calculations	with	many	scales	and	internal	masses	
generate	typically	huge	algebraic	complexity.

Complexity	of	amplitudes	for	realistic	processes,	even	when	written	in	terms	of	
independent	structures,	increases	factorially.	

They	become	a	problem	already	for	𝟐 → 𝟐 even	for	largest	computers. All	our	
machinery	breaks	down!
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They	become	a	problem	already	for	𝟐 → 𝟐 even	for	largest	computers. All	our	
machinery	breaks	down!

Very	promising	numerical	approaches:
• ttbar	@	NNLO	[Czakon	et	al.	‘13]
• HH		@	NLO						[Borowka	et	al.	‘16]

Maybe	we	need	to	rethink	
entirely	what	we	are	doing?



We should remember that we are physicists (mainly!) and that most of our 
calculations are performed in some sort of approximation…

Take	for	example	H+jet	production with	a	massive	bottom	quark

Important	source	of	uncertainty :

Interference	top-bottom	@NLO	in	QCD
For	large	𝑝= of	Higgs,	large	log

AB
CD

, log AF
AB



We should remember that we are physicists (mainly!) and that most of our 
calculations are performed in some sort of approximation…

Take	for	example	H+jet	production with	a	massive	bottom	quark

Important	source	of	uncertainty :

Interference	top-bottom	@NLO	in	QCD
For	large	𝑝= of	Higgs,	large	log

AB
CD

, log AF
AB

Progress	towards	analytic	computation	of	planar	MIs
[Bonciani,	Del	Duca,	Frellesvig,	Henn,	Moriello,	Smirnov	‘16]

Impressive	calculation,	but	results	are	not	really	in	a	nice	shape,	not	even	the	MPLs	part!

• Up	to	two-fold	integral	representations
• No	analytic	continuation
• ~	200	MB	large	files	and	NPL	integrals	are	still	missing



MI with DE method for small 𝑚𝑏 (1/2)
DE method

8

• System of partial differential 
equations (DE) in 𝒎𝒃, 𝒔, 𝒕,𝒎𝒉

𝟐

with IBP relations

• Solve 𝑚𝑏 DE with following ansatz

• Plug into 𝑚𝑏 DE and get constraints on coefficients 𝑐𝑖𝑗𝑘𝑛

• 𝑐𝑖000 is 𝑚𝑏 = 0 solution (hard region) and has been computed before

Step 1: solve DE in 𝒎𝒃

• Interested in 𝑚𝑏 expansion of Master integrals 𝐼𝑀𝐼

expand homogeneous matrix 𝑀𝑘 in small 𝑚𝑏

[Gehrmann & Remiddi ’00]

In	order	to	capture	this	effect,	no	need	of	computing	exact	mass	dependence!
We	can	expand	all	MIs	(and	the	whole	amplitude)	for	small	bottom	mass!	

Derive	DEQs	for	coefficients
One	less	scale,	no	mass,	much	simpler!

[J.	Lindert,	K.	Melnikov,	L.	Tancredi,	C.	Wever	‘16,’17]



MI with DE method for small 𝑚𝑏 (1/2)
DE method
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• System of partial differential 
equations (DE) in 𝒎𝒃, 𝒔, 𝒕,𝒎𝒉

𝟐

with IBP relations

• Solve 𝑚𝑏 DE with following ansatz

• Plug into 𝑚𝑏 DE and get constraints on coefficients 𝑐𝑖𝑗𝑘𝑛

• 𝑐𝑖000 is 𝑚𝑏 = 0 solution (hard region) and has been computed before

Step 1: solve DE in 𝒎𝒃

• Interested in 𝑚𝑏 expansion of Master integrals 𝐼𝑀𝐼

expand homogeneous matrix 𝑀𝑘 in small 𝑚𝑏

[Gehrmann & Remiddi ’00]

In	order	to	capture	this	effect,	no	need	of	computing	exact	mass	dependence!
We	can	expand	all	MIs	(and	the	whole	amplitude)	for	small	bottom	mass!	

Derive	DEQs	for	coefficients
One	less	scale,	no	mass,	much	simpler!

Message	is:

Sometimes	doing	everything	
analytically	can	be	overkill

If	we	find	the	right	approximation,	
DEQs	are	very	powerful	also	to	get	
approximate	results

Used	already	in	similar	context

[J.	Lindert,	K.	Melnikov,	L.	Tancredi,	C.	Wever	‘16,’17]

[R.	Mueller,	G.	Öztürk	‘16]



Conclusions
§ Scattering	amplitudes	needed	for	realistic	physical	processes	@	LHC	are	

(appear	to	be?)	immensely	complicated

§ Thanks	to	progress	in	theoretical	understanding,	a	limited	subset	of	these	
amplitudes	is	now	under	much	better	control	(MPLs!)

§ Also	in	more	general	cases,	we	start	having	an	idea	of	how	to	proceed	to	
tackle	the	problem	(Max	cut,	EPLs and	Modular	Forms)

§ Still,	remains	problem	of	enormous	algebraic	complexity	(it’s	just	simple	
combinatorics!)

§ Given	this	complexity,	it	is	unclear	whether	a	purely	analytical	approach	
will	be	feasible	in	the	near	future.

§ Hybrid	Numerical/Analytical	(series	expansions?)	might	be	the	way	to	
go…?



THANKS!


