The S-matrix Bootstrap

Miguel F. Paulos CERN Based on: arXiv:1607.06109, 1607.06110, 17xx... w/ J. Penedones, J. Toledo, B. van Rees and P. Vieira.

Amplitudes 2017

Why do this?

R.F. Streater

Lost Causes in and beyond Physics

Deringer

7	Stapp's Theory of the Brain 7.1 The Speed at Which Concepts are Formed 7.2 The Claimed Absence of Correlations in Classical Fiel 7.3 Supposed nonlocalities of Quantum Theory 7.4 Conclusion
8	Hidden Variables 8.1 Bell's Theorem
9	Bohmian Mechanics
10	The Analytic S-matrix Bootstrap 10.1 Scattering 10.2 Dispersion Relations 10.3 Mandelstam's Formula 10.4 Bootstrap
11	Nelson and Wiener
	11.1 Wiener
12	Other Lost Causes 12.1 Bondi's Solution to the Twin Paradox 12.2 Quantum Logic 12.3 Trivalent Logic 12.4 Jordan Algebras 12.5 Non-self-adjoint Observables 12.6 Critique of Geometro-Stochastic Theory 12.7 Dirac's Programme of Quantisation 12.8 Diff M as a Gauge Group 12.9 Dirac Notation
13	Some Good Ideas 13.1 Euclidean Quantum Field Theory 13.2 The Most General Quantum Theory 13.3 Cohomology
References	
Index	

"It may be flogging a dead horse, but I will mention this subject, and why it failed."

Quantum Field Theory is hard!

Quantum Field Theory is hard!

Quantum Field Theory is hard!

The bootstrap manifesto:

To constrain and determine quantum field theories from basic principles

The Analytic S-matrix

Lehmann, Symanzik, Zimmerman Froissart, Gribov, Martin, Chew, Frautschi, Mandelstam...

Conformal Bootstrap

Ferrara, Gatto, Grillo, Parisi, Belavin, Polyakov, Al. Zamolodchikov, Rattazzi, Rychkov, Tonni, Vichi...

Bethe, Yang, Baxter, Faddeev, Onsager, Zamolodchikov²,...

QFT in a box

- Put a D-dimensional QFT in anti-de Sitter space.
- AdS acts as a nice box preserving as many symmetries as flat space.
- On the boundary of AdS lives a CFT in D-1 dimensions which should capture all the bulk physics.
- ((Somewhat) boring) example of holography.

CFT to S-matrix

• Large AdS radius recovers flat space scattering.

 $\Delta_{\mathcal{O}} = mR_{\rm AdS}$

 CFT operators with large scaling dimension!

• Rest of the dictionary: $\langle \mathcal{O}(x_4)\mathcal{O}(x_3)\mathcal{O}(x_2)\mathcal{O}(x_1)\rangle$ \downarrow $\langle k_3, k_4|1 + i\mathcal{T}|k_1, k_2\rangle$

The S-matrix bootstrap

- We will parametrize the S-matrix directly.
- Using known analyticity and crossing properties, write down dispersion relation.
- Use unitarity to place constraints on parameters.
- Later, parametrize directly without using dispersion relation.

Bootstrapping the S-matrix

The S-matrix in 1+1 QFT

- Real analytic.
- Crossing symmetric:

 $S(s) = S(4m^2 - s)$

- Poles at position of stable particles.
- Cuts corresponding to multiparticle exchange.
- Polynomially bounded.

 $s \equiv (k_1 + k_2)^2$ $t \equiv (k_2 - k_3)^2 = 4m^2 - s$ $u \equiv (k_3 - k_1)^2 = 0$

s-channel pole

Dispersion relation

$$S(s) = S_{\infty} - \sum_{j} \mathcal{J}_{j} \left(\frac{g_{j}^{2}}{s - m_{j}^{2}} + \frac{g_{j}^{2}}{4m^{2} - s - m_{j}^{2}} \right) + \int_{4m^{2}}^{\infty} dx \,\rho(x) \left(\frac{1}{x - s} + \frac{1}{x - 4m^{2} + s} \right)$$
imple Jacobian from working with S not T.

Simple Jacobian from working with S not 1.

Discontinuity across cut

Unitarity constraints

• For a physical scattering process, unitarity has to be obeyed.

 This implies constraints on couplings and discontinuity. We parametrize discontinuity in a simple way.

$$S(s) \sim S_{\infty} - \sum_{j} \mathcal{J}_{j} \left(\frac{g_{j}^{2}}{s - m_{j}^{2}} + \frac{g_{j}^{2}}{4m^{2} - s - m_{j}^{2}} \right) + \sum_{a=1}^{M} \rho_{a} K_{a}(s)$$

• We maximize coupling subject to unitarity constraints to obtain a bound.

Single particle exchange

• Universal bounds in 1+1d QFTs

Single particle exchange

• Red dashed curves: S-matrix of Sin-Gordon model, scattering of two lightest breathers. Integrable model, explains absence of particle production.

S-matrix with two bound states

- We can generalize analysis to more complicated scenarios.
- In all cases, S-matrix that saturates bounds is given by a product of Castillejo-Dalitz-Dyson (CDD) factors, i.e. it can be written down explicitly.

Analytic bootstrap

$$g^2 \propto \left| \oint \frac{dz}{2\pi i} S(z) \right| \le \frac{1}{2\pi} \oint \frac{dz}{iz} |S(z)| \le 1$$

A better ansatz

 Map again to the disk, but separating out the s- and tchannel cuts.

 Make the new ansatz, independent of discretizations:

$$S(s,t) = \left[-\frac{\hat{g}^2}{s - m_b^2} - \frac{\hat{g}^2}{t - m_b^2} + \sum_{a,b=0}^{+\infty} c_{ab} \rho_s^a \rho_t^b \right]_{s+t=4m^2}$$

• Recover previous results but more efficiently.

A better ansatz

Map again to the disk, but • separating out the s- and tchannel cuts.

$$M(s,t,u) = \left[-\frac{g^2}{s - m_b^2} - \frac{g^2}{t - m_b^2} - \frac{g^2}{u - m_b^2} + \sum_{a,b,c=0} \alpha_{abc} \rho_s^a \rho_t^b \rho_u^c \right]_{s+t+u=4m^2}$$

This ansatz is consistent, i.e. analytic extension is well defined ۲ because maths. (cf. Cartan's theorem B for Stein manifolds).

$$\rho(s) = \frac{\rho(s)}{\rho(m^2)} \rho(4m^2)$$

$$s \to \rho_s = \frac{\sqrt{4m^2 - s_0} - \sqrt{4m^2 - s_0}}{\sqrt{4m^2 - s_0} + \sqrt{4m^2 - s_0}}$$

$$s \to \rho_s = \frac{\sqrt{4m^2 - s_0} - \sqrt{4m^2 - s}}{\sqrt{4m^2 - s_0} + \sqrt{4m^2 - s}}$$

$$M(s,t,u) = -\frac{g^2}{s-m_b^2} - \frac{g^2}{t-m_b^2} - \frac{g^2}{u-m_b^2} + \sum_{a,b,c=0}^{Nmax} \alpha_{abc} \rho_s^a \rho_t^b \rho_u^c$$

- Given this parametrization, we proceed as before: maximize coupling subject to unitarity.
- The latter is imposed by decomposing the amplitude in terms of partial waves,

$$S_l(s) = 1 + i \frac{(s-4)^{\frac{d-2}{2}}}{\sqrt{s}} \int_{-1}^1 dx (1-x^2)^{\frac{d-3}{2}} P_l^{(d)}(x) M(s,t)|_{t \to \frac{1}{2}(s-4)(x-1)}$$

 and imposing |S_L|<=1 in the physical region up to some fixed maximum spin which we can vary.

Results: one bound state

• Universal bound on D=3+1 Quantum Field Theories

• Puzzle: as numerics improve, bounds seem to be saturated by S-matrices with almost no particle production.

Maximizing the pion coupling

Figure 6: Maximal value of the quartic coupling $\lambda \equiv \frac{1}{32\pi}M(\frac{4}{3},\frac{4}{3},\frac{4}{3})$ achieved with the ansatz (13) (with g = 0) plus the term (18). With this improved ansatz, the maximal quartic coupling effectively saturates for $N_{max} \gtrsim 6$.

$$M(s,t,u) \to M(s,t,u) + c_0 \left(\frac{1}{\sqrt{4m^2 - s}} + \frac{1}{\sqrt{4m^2 - t}} + \frac{1}{\sqrt{4m^2 - u}}\right) + \dots$$

Explicitly constructed $\rightarrow 2.62 < 2.661 < 2.75 \leftarrow Exact (old)$ analytic result amplitude

Minimizing the pion coupling

Figure 7: Minimal value of the quartic coupling $\lambda \equiv \frac{1}{32\pi}M(\frac{4}{3},\frac{4}{3},\frac{4}{3})$ achieved with the ansatz (13) (with g = 0). With this ansatz, the minimal quartic coupling continues to decrease significantly with N_{max} even for $N_{max} = 20$.

Summary and Outlook

- The S-matrix can be bootstrapped directly. Clever choice of parametrization + computer power (<<< M.C.).
- In 1+1, bounds saturated by integrable or integrable-like solutions which can be written down explicitly. In higher dimensions no exact results, but low/trivial particle production?
- Once multiple scattering processes are included, expect particle production to appear not all S-matrices obtained corresponded to consistent theories.
- Other generalizations: global symmetries (isospin,...), vector particles, fermions, SUSY...
- What can we say analytically in higher dimensions? Take inspiration from CFT bootstrap..