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Scattering amplitudes are essential tools to understand a variety of
physical phenomena from gauge theory to classical and quantum
gravity
A convenient approach is to use modern unitarity methods for
expanding the amplitude on a basis of integral functions

AL−loop =
∑

i∈B(L)

coeffi Integrali + Rational

What are the intrinsic properties of amplitudes of QFT in flat space?
How much can we understand about the amplitudes without having to
compute them?
I Generic constraints on the integral coefficients? [cf Tourkine’s talk]

I What are the elements of the basis of integral functions?
These questions are central to many talks at this meeting
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-It’s bigger on the inside!

-Yes, the TARDIS is
dimensionally transcendental

In this talk we will present some approach to Feynman integral that
makes a essential use of the algebraic geometric setup defined by the
graphs

This approach is an alternative to the IBP method described in [Lee]’s
and [Tancredi]’s talk
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Feynman Integrals: parametric representation

Any Feynman integrals with L loops and n propagators

IΓ =

∫ ∏L
i=1 dD`i∏n
i=1 dνi

i

has the parametric representation

IΓ = Γ(ν−
LD
2

)

∫
xi>0

Uν−(L+1)D
2

(U
∑

i m2
i xi − V)ν−L D

2
δ(xn = 1)

n∏
i=1

dxi

xνi−1
i

I U and V are the Symanzik polynomials

I U is of degree L and V of degree L + 1 in the xi
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What are the Symanzik polynomials?

IΓ = Γ(ν−
LD
2

)

∫
xi>0

Uν−(L+1)D
2

(U
∑

i m2
i xi − V)ν−L D

2
δ(xn = 1)

n∏
i=1

dxi

xνi−1
i

U = detΩ determinant of the period matrix of the graph Ωij =
∮

Ci
vj

Ω2(a)=
(

x1 + x3 x3
x3 x2 + x3

)
; Ω3(b)=

(x1 + x2 x2 0
x2 x2 + x3 + x5 + x6 x3
0 x3 x3 + x4

)

Ω3(c)=

(x1 + x4 + x5 x5 x4
x5 x2 + x5 + x6 x6
x4 x6 x3 + x4 + x6

)
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What are the Symanzik polynomials?

IΓ ∝
∫∞

0

δ(1 − xn)

(
∑

i m2
i xi − V/U)n−L D

2

∏n
i=1 xνi−1

i dxi

U
D
2

V/U =
∑

16r<s6n kr · ksG(xr/Tr , xs/Ts;Ω) sum of Green’s function

G1−loop(αr ,αs;L) = −
1
2
|αs − αr |+

1
2
(αr − αs)

2

T
.
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Feynman integral and periods

IΓ = Γ(ν−
LD
2

)

∫
∆n

ΩΓ ; ΩΓ :=
Uν−(L+1)D

2

ΦΓ (xi)
ν−L D

2

n−1∏
i=1

dxi

xνi−1
i

The integrand is an algebraic differential form ΩΓ on the complement
of the graph hypersurface

ΩΓ ∈ Hn−1(Pn−1\XΓ ) XΓ := {ΦΓ (x) = 0, x ∈ Pn−1}

The domain of integration is the simplex ∆n with boundary
∂∆n ⊂ Dn := {x1 · · · xn = 0}
But ∂∆n ∩ XΓ , ∅ therefore ∆n < Hn−1(P

n−1\XΓ )
This is resolved by looking at the relative cohomology

H•(Pn−1\XΓ ;Dn\Dn ∩ XΓ )
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Feynman integral and periods

Dn and XΓ are separated by performing a series of iterated blowups of
the complement of the graph hypersurface [Bloch, Esnault, Kreimer]

The Feynman integral are periods of the relative cohomology after
performing the appropriate blow-ups [Bloch, Esnault, Kreimer] and [Brown’s talk]

Hn−1(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )
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Feynman integral and periods

I One can apply the construction and the discussion of the
ε = (D − Dc)/2 expansion of the Feynman integral [Belkale, Brosnan; Bogner,

Weinzierl]

IΓ =
∑

i>−n

ci ε
i

I The periods are master integrals. The minimal number of master
integral for this topology determined by the middle cohomology of
the motive

H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )
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Differential equation

M(sij ,mi) := H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )

Since ΩΓ varies when one changes the kinematic variables sij one
needs to study a variation of (mixed) Hodge structure

Consequently the Feynman integral will satisfy a differential equation

LΓ IΓ = SΓ

The Picard-Fuchs operator will arise from the study of the variation of
the differential in the cohomology when kinematic variables change

The inhomogeneous terms arises from the extension
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The sunset graph
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The sunset integral

We consider the sunset integral in two Euclidean dimensions

I2
� =

∫
∆3

Ω�; ∆3 := {[x : y : z] ∈ P2|x > 0, y > 0, z > 0}

I The sunset integral is the integration of the 2-form

Ω� =
zdx ∧ dy + xdy ∧ dz + ydz ∧ dx

(m2
1x + m2

2y + m2
3z)(xz + xy + yz) − p2xyz

∈ H2(P2\X�)

I The sunset family of open elliptic curve (modular only for all equal
masses)

X� = {(m2
1x + m2

2y + m2
3z)(xz + xy + yz) − p2xyz = 0}
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The differential operator: from the period

Consider the integral which is the same integral as the sunset one with
a different cycle of integration

π0(p2) :=

∫
|x |=|y |=1

Ω�

I This is the cut integral of Tancredi’ talk. Changing the domain of
integration realises the cut

I The other period is π1(s) = log(s)π0(s) +$1(s) with $1(s)
analytic. They are the two periods of the elliptic curve

I By definition they are annihilated by the Picard-Fuchs operator

LPFπ0 = LPFπ1 = 0
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The differential operator: from the period

I The integral is the analytic period of the elliptic curve around
p2 ∼∞
π0(p2) := −

∑
n>0

1
(p2)n+1

 ∑
n1+n2+n3=n

(
n!

n1!n2!n3!

)2 3∏
i=1

m2ni
i


From the series expansion we can deduce the Picard-Fuch differential

operator
L�π0(p2) = 0

I With this method one easily derives the PF at all loop order for the
all equal mass banana and show the order(PF)=loop order

I Gives for the 3-loop banana 2 unequal masses PF of order 4, and
order 6 for 3 different masses [Vanhove, to appear]

I The PF has maximal unipotent monodromy we can reconstruct all
the periods using Frobenius method
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The differential equation

By general consideration we know that since the integrand is a top
form we have

LΓ IΓ =

∫
∆n

dβΓ = −

∫
∂∆n

βΓ = SΓ , 0

Writing the differential equation as δs := s d
ds s = 1/p2

(
δ2

s + q1(s)δs + q0(s)
)(1

s
I�(s)

)
= Y� +

3∑
i=1

log(m2
i )ci(s)

I The right-hand side are the tadpole graphs [Tancredi’s Talk]
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The differential equation

The works from [del Angel,Müller-Stach] and [Doran, Kerr] on the rank of the D-module
system of differential equations imply that Y� is the Yukawa coupling
for the residue form ω� = ResX�(Ω�) =

dx√
P(x)

∈ Ω1(X�)

Y�(s) :=
∫

X�
ω� ∧ s

d
ds
ω� =

2s2∏4
i=1 µi − 4s

∑
i m2

i + 6∏4
i=1(µ

2
i s − 1)

The Yukawa coupling is the Wronskian of the Picard-Fuchs operator
and only depends on the form of the Picard-Fuchs operator

Y� = det

(
π0(s) π1(s)

s d
dsπ0(s) s d

dsπ1(s)

)
So far all we got can be deduced from the graph polynomial, and the
associated Picard-Fuchs operator. Applies to all banana graphs
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The differential equation

The logarithmic terms arise more specific to the open elliptic curve
geometry

v

q

q

p

q

p

1

1 2

2 3

3

p

v

v

v

v

v

1

23

5

6

4

Es

The mass dependent log-terms come from derivative of partial elliptic
integrals on globally well-defined algebraic 0-cycles arising from the
punctures on the elliptic curve [Bloch, Kerr,Vanhove]

ci(s) =
d
ds

∫qi+1

qi

ω�; c1(s) + c2(s) + c3(s) = 0

They are rational function by construction.
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Solving the differential equation

s

ϕϕ

ϕ

ϕ ϕ

ϕ
0

ϕ

2
3

4

5
6

1

1

0
0

0

0
0

P
P

P

12

23

31

q

q
q

1

2

3

E

The integral divided by a period of the elliptic curve is a (regulator)
function defined on punctured torus [Bloch, Kerr,Vanhove]

I� ≡
i$r

π

(
L2

{
X
Z
,
Y
Z

}
+ L2

{
Z
X
,
Y
X

}
+ L2

{
X
Y
,

Z
Y

})
mod period

I $r is the real period on 0 < p2 < (m1 + m2 + m3)
2
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Solving the differential equation

Representing the ratio of the coordinates on the sunset cubic curve as
functions on E� ' C×/qZ

X
Z
(x) =

θ1(x/x(Q1))θ1(x/x(P3))

θ1(x/x(P1))θ1(x/x(Q3))

Y
Z
(x) =

θ1(x/x(Q2))θ1(x/x(P3))

θ1(x/x(P2))θ1(x/x(Q3))

θ1(x) is the Jacobi theta function

θ1(x) = q
1
8

x1/2 − x−1/2

i

∏
n>1

(1 − qn)(1 − qnx)(1 − qn/x) .

P1 = [1,0,0]; Q1 = [0,−m2
3,m

2
2]; x(P1)x(Q1) = −1

P2 = [0,1,0]; Q1 = [−m2
3,0,m

2
1]; x(P1)x(Q1) = −1

P3 = [0,0,1]; Q1 = [−m2
2,m

2
1,0]; x(P1)x(Q1) = −1
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Solving the differential equation

Since

L2

{
X
Z
,
Y
Z

}
= −

∫ x

x0

log

(
X
Z
(y)
)

d log y

and

∫
log(θ1(x)) d log x =

∑
n>1

∫
(Li1(qnx) + Li1(qn/x) + cste) d log(x)

=
∑
n>1

(Li2(qnx) − Li2(qn/x)) + cste log(x)
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Solving the differential equation

I�(s) ≡
i$r

π

(
Ê2

(
x(P1)

x(P2)

)
+ Ê2

(
x(P2)

x(P3)

)
+ Ê2

(
x(P3)

x(P1)

))
mod periods

where

Ê2(x) =
∑
n>0

(Li2 (q
nx) − Li2 (−qnx)) −

∑
n>1

(Li2 (q
n/x) − Li2 (−qn/x)) .

I For the all equal mass case x(Pk ) = e2iπk/6 are sixth root of unity

I An equivalent expression using elliptic multiple-polylogarithms has
been given by [Adams, Bogner, Weinzeirl] (see as well [Brown, Levin; Adams’ talk])

I The three-loop banana all equal mass is elliptic 3-logarithms
because the geometry is the symmetric square of the sunset
curve [Bloch, Kerr, Vanhove]
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The sunset integral as an Eichler

For the all equal mass case we have family of elliptic curve with 4
singular fiber which by [Beauville] classification is a modular family
X� 'H/Γ1(6)
I We can pullback the residue 1-form from the elliptic curve toH

giving [Bloch,Vanhove]

I2
�(t) = periods +$r

∫ i∞
τ

dx(τ− x)
∑

(m,n),(0,0)

(−1)n−1
√

3

sin πn
3 + sin 2πn

3
(m + nτ)3

= periods −$r
12

(2πi)2

∑
n∈Z∗

(−1)n

n2

sin πn
3 + sin 2πn

3
1 − qn

Similar result at 3 loops the elliptic 3-log is the Eichler integral of a
weight 4 Eisenstein series [Bloch, Kerr, Vanhove]
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Mirror Symmetry
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The sunset Gromov-Witten invariants

Around 1/s = p2 =∞ the sunset Feynman integral has the expansion

I�(s) = −π0

3R3
0 +

∑
`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`(1 − `R0)N`1,`2,`3

3∏
i=1

m`i
i Q`

 .

N`1,`2,`3 are local genus zero Gromov-Witten numbers

N`1,`2,`3 =
∑

d |`1,`2,`3

1
d3 n `1

d ,
`2
d ,
`3
d
.

the Kaehler parameter is the logarithmic Mahler measure

logQ = iπ−

∫
|x |=|y |=1

log(Φ�(x , y)/(xy))
d log xd log y

(2πi)2 .
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The sunset Gromov-Witten invariants

Around 1/s = p2 =∞ the sunset Feynman integral has the expansion

I�(s) = −π0

3R3
0 +

∑
`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`(1 − `R0)N`1,`2,`3

3∏
i=1

m`i
i Q`

 .

N`1,`2,`3 are local genus zero Gromov-Witten numbers

N`1,`2,`3 =
∑

d |`1,`2,`3

1
d3 n `1

d ,
`2
d ,
`3
d
.

For the all equal masses case m1 = m2 = m3 = 1, the mirror map is

Q = −q
∏
n>1

(1 − qn)nδ(n); δ(n) := (−1)n−1
(
−3
n

)
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The sunset mirror symmetry

I The sunset elliptic curve is embedded into a singular
compactification X0 of the local Hori-Vafa 3-fold

Y := {1−s(m2
1x+m2

2y+m2
3)(1+x−1+y−1)+uv = 0} ⊂ (C∗)2×C2 ,

I We have an isomorphism of A- and B-model Z-variation of Hodge
structure

H3(Xz0) � Heven(X◦Q0
) ,

and taking (the invariant part of) limiting mixed Hodge structure on
both sides yields

I the number of independent periods given by the surviving periods
I One can map the computation to the one of [Huang, Klemm, Poretschkin] who

studied elliptically fibered CY 3-fold with a based given by a toric
del Pezzo surface and get the expansion at infinity
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Outlook

I We have described a systematic way of deriving the differential
operators for the general multiloop sunset graphs

I The inhomogeneous terms arise from total derivative going back
and forth because parametric and Feynman representation we
hope this can help with the integration by part method

I They are many interesting useful connection to mathematics
i) The connection to the work on mirror symmetry gives a natural way

of understanding the basis of master integral
ii) [Broadhurst] shows that banana graph at p2 = 1 gives

L-functions values in the critical band. They are realisation of
[Deligne]’s conjectures on periods [Bloch, Kerr, Vanhove]

iii) The graph polynomials and the differential equation are sometime
known to mathematician cf. [v. Straten et al.] classification
of Fano varieties

iv) Interesting connection to Gamma class conjecture of [Golyshev,
Zagier]
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