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MOTIVATION

I D-dimensional one-loop Feynman integrals with many legs and
scales are complicated functions

| |s there some underlying structure ?

¥ Prst entry conditions, cuts as discontinuities
¥ elegant differential equations in canonical form

I The coaction [Brown] is an important tool to probe and organise
the analytic structure of Feynman integrals



MOTIVATION

| With the coaction, we will decompose “complicatedO integrals into
‘simplerO ones

e 1 (Lig(x)) =1 ! Lia(x)+Li o(x) ! 1—

I We consider the coaction on one-loop Feynman integrals:

¥ with completely generic mass conbPgurations

¥ in dimensional regularisation !  obtain degenerate conbPgurations by
taking masses to be equal or zero.

I We show the coaction can be written in terms of
¥ pinches: lower point integrals
¥ cuts: integrals with modiPed integration contour

' Simple diagrammatic construction



OUTLINE

1. Introduction

2. Coaction of one-loop (cut) Feynman integrals

3. Diagrammatic coaction: checks and applications

4. Summary and outlook
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INTRODUCTION

MULTIPLE POLYLOGARITHMS soncharov. srown. &

" Multiple Polylogarithms (MPLs) form a Hopf Algebra

-~ c o dt

G(ay,..., an;Z) = .Y alG(az ..... an; 1)
G(P.. #_% 2) = —In z G(0,1;z) = ! Lix(2) G(a;z) =log 1! é
" The coaction decomposes a MPL into OsimplerO pieces:
e In* z
Anz)=11! Inz+ln z! 1 | (Lin(@)=1! Lin(@+  Link@! —5-
k=0

" Weight : number of integrations

OsimplerO ~ lower weight



INTRODUCTION

COACTION ON MPL

" How to get lower weight MPLs? Two natural ways:

¥ Remove poles in integrand, keep integration contour:

q!!b

o di

G(h; 2)

¥ Keep same poles in integrand, modify integration contour

G(h; 2)

b! R

» G 2)

. G(a\ b 2)



INTRODUCTION

COACTION ON MPL

" How to get lower weight MPLs? Two natural ways:
¥ Remove poles in integrand, keep integration contour: b! b
dt dt
1 n G(h; 2) > G(!b; Z)

! h — .. q 'y
¥ Keep same poles in integrand, modify integration contour

t1! a4 . th ! an
! q ! b
w, |, . u G(k; 2) . G(a\ b 2)

P..: “set to zero all
NOTE: integrands and contours are dual to each other: Pss l'a = "s5 but weight zero

Mo termsO



INTRODUCTION

COACTION ON MPL

" How to get lower weight MPLs? Two natural ways:
¥ Remove poles in integrand, keep integration contour: b! b
dt dt
1 n G(h; 2) > G(!b; Z)

! h — .. q 'y
¥ Keep same poles in integrand, modify integration contour

t1! a4 . th ! an
! q ! b
w, |, . u G(k; 2) . G(a\ b 2)

OpinchC

OcutC

P..: “set to zero all
NOTE: integrands and contours are dual to each other: Pss l'a = "s5 but weight zero

Mo termsO



INTRODUCTION

ALGEBRAIC STRUCTURE OF MPL AND THE

" Coaction encodes discontinuities and differential equations
I =(@Gd! 1) I Disc = (Disc ! id)!

" Example:
I (Lig(x))=1"! Lig(x)+Lig(X)! 1+Lio(xX)! Inx+Liqix)!

In? x

2




INTRODUCTION

ALGEBRAIC STRUCTURE OF MPL AND THE

" Coaction encodes discontinuities and differential equations
T =(Gd! 1) I Disc = (Disc ! id)!

" Example: ,

| (Lig(x))=1" Lis(x)+Lisg(x)! 1+-+Li 60 In2x




INTRODUCTION

ALGEBRAIC STRUCTURE OF MPL AND THE

' Coaction encodes discontinuities and differential equations
T =(Gd! 1) I Disc = (Disc ! id)!

' Example:

I (Lig(x))=1"! Lisg(x)+Lisz(x)! 1+-+-

Action of differential operators and discontinuities Pxed
by the action on weight-one MPLs



INTRODUCTION

~d

BEYOND MULTIPLE POLYLOGARITHMS N N

" Master formula for coaction: [Abreu, Britto, Duhr, Gardi, 1703.05064&1704.0 7931]

¥ Master integrands ! ;

dual to each other: Pss L i
¥ Master contours !

¥ Second factor debned mod 1!

¥ Discont.: ! Disc = (Disc! id)! | Disc ! = Disc 1 1

¥ Derivatives: ' 1 = (id! 1)! o = SRR



COACTION OF ONE-L
FEYNMAN INTEGRAL



ONE-LOOP (CUT) FEYNMAN INTEGRALS

RELATIONS BETWEEN ONE-LOOP FEYNM/

. ' S ol
[HemP = PR . Pi=(k! g)?! m?
i R &
" Tensor integrals
i * 1
Ui,...U :D Passarino-Veltman D 1) = D
Iy reduction SRS IERREARD d kP1!1P2!2 P,

" Integrals in different dimensions

|D ! ’_”’! Tarasov/Lee > |D12! ’”.’!
( 1 n) dimension shift n ( 1 n)

" Integrals with propagators raised to higher powers

Integration-by-parts D — D
1D, o - » 1P =1P51.....1
(Y1,.itn) (IBP) relations n n (Lo 1)



ONE-LOOP (CUT) FEYNMAN INTEGRALS

A BASIS OF ONE-LOOP FEYNMAN INTEGR/
| 1

" Dimensions vary with number of propagators: D, =2

¥ tadpole and bubbles;: 21 2!
¥ triangles and boxes: 41 2l
¥ pentagon and hexagons: 6! 2!

I This choice of master integrals has nice analytic properties:

¥ coefpcients in Laurent expansion in ! have uniform weight

¥ if we set the weight of ! to -1, can debne weight of unexpanded function: 'n/ 2"

¥ Feynman diagrams satisfy differential equations in canonical form
[Henn]



ONE-LOOP (CUT) FEYNMAN INTEGRALS

LANDAU CONEBNDUONISEGRATION CONTOUI

[Landau, Cutkosky, tOHooft&Veltman, Analytic S-Matrix,E]

" Landau conditions characterise singularities of the integrand:

¥ encircle poles of propagators: Landau singularity of the 1st kind

¥ pinch pole at inbnity: Landau singularity of the 2nd kind
[cf. talk by A. Volovich]

" We can list interesting contours of one-loop Feynman integrals:

¥ original contour: !,
¥ encircle poles of propagators :1'1,! 2 1123 E

¥ pinch pole at inbPnity and encircle propagators: I'y , !'1 15E

Do these integrals form a basis of integration contours?
Homology theory



ONE-LOOP (CUT) FEYNMAN INTEGRALS

D ECO M POS I TI O N TH qum Hwa&Teplitz; Federbush;

nghorne; E]

" Relations between integration contours of one-loop integrals were
explored in the 600s:

ly c=121c! Z l ce + ... C odd E,: all propagators in Jj, ;
e"E \C C: set of propagators ;
_ _ E : contours that vanish
['ooc = | [ce ! ['cet + ... C ever mod i

eck; \C ef €E; \C
" Contours that pinch nPnity are not independent

" Basis of master contours: label by subset of encircled propagator

poles
Cut Feynman Integrals



ONE-LOOP (CUT) FEYNMAN INTEGRALS

[Landau, Cutkosky:; tOHooft&Veltman; Analytic S-Matrix;

C U T O N E ~ LO O P I N T E Gmﬁﬁgwa&Teplitz; Federbush; Landshof;

[Abreu, Britto, Duhr, Gardi, 1702.03163 ]

11 RIS

d® k ' d® k
, P1P2P3P4 ,, P1P2P3P4
Contour encircle poles of propagators ! residue calculation in D dimensions

Consistent with prescription “replace cut propagator by " -functionO

1
(k! )21 m?

—_— | (k! g)*! m?
Residue calculation made precise with LerayOs theory of multivariate residues

Picture very clear in projective space : cuts involve projections on intersections of
hyperplanes debned by cut conditions.



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AR

ie'E
Jo=  d°"k =
" P...P

' Integrands with different propagators are independent

g,

¥ Basis of master integrands: ! ¢ for C! E;



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AR

ie'E
Jo=  d°"k =
" P...P

" Integrands with different propagators are independent

g,

¥ Basis of master integrands: ! ¢ for C! E;

" Are the bases of master contours and integrands dual?

¥ Ceven: PSS/ |¢ — "d:,C / ’YC — I C
¢



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AR

je'E
J,= d°rk =
" P...P

" Integrands with different propagators are independent

g,

¥ Basis of master integrands: ' ¢ for C! E;

" Are the bases of master contours and integrands dual?

¥ Ceven: PSS/ le="cc e ="!c
¢

| 1

- C I



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AR

je'E
J,= d°"k = !
" p...B,

" Integrands with different propagators are independent

¥ Basis of master integrands: ' ¢ for C! E;

" Are the bases of master contours and integrands dual?

¥ Ceven: PSS/ !¢:"¢,C / e =!c
¢

| 1

!Ce

ect\C

el €\C

NOTE: Normalise contours or integrand by maximal cut at ! 9 to get dual basis



ONE-LOOP (CUT) FEYNMAN INTEGRALS

COACTION OF ONE-LOOP FEYNMAN INTEC

" Coaction for J associated with Feynman graph G

' Diagrammatic representation of the coaction

| |
I (Jg) = Jo. ! #CJg + ac Ceedg
"= C#Eq e$EG\C



ONE-LOOP (CUT) FEYNMAN INTEGRALS

COACTION OF ONE-LOOP FEYNMAN INTEC

" Coaction for J associated with Feynman graph G

" Diagrammatic representation of the coaction

1 (Jg) =

Kv I"=C# Eg T
Sum over all subset Pinch integral with
of propagators propagators not in

Cuts of graph G:
- Cut all propagatorsin C

- For odd | C|, add 1/2 times the sum of
all diagrams with one extra cut

C pinched




DIAGRAMMATIC COA!
CHECKS AND APPLIC



DIAGRAMMATIC COACTION: CHECKS

D | AG R AM M ATl C COA@HEtI@NGardi, 1703.05064&81704.0 7931]

e g

l (Jg) = Jo. ! #Clg + ac Ceedg
"= C#E e$Ec\C

" Simple diagrammatic rules , valid for any one-loop integral

" Extends trivially to a coaction on cut Feynman integrals
" Valid in dimensional regularisation ! massless limits

" Use known coaction of MPLs to check validity :

1. Evaluate integrals in dim. regularisation
2. Expand each function in dim. regularisation parameter |

3. Check at each order that we agree with the coaction of MPLs



DIAGRAMMATIC COACTION: CHECKS

THREE-MASS TRIANGLE

e 2
" Massless propagators, massive external legs: J3(p1, P2, P3) = —1<E
1 3

€2 €3 €3 ~
" Pinches & >+ = = == mad¥sless tadpoles vanish
&1 e €1

S L2172 e A2 22
n . | 1 1 - - -- 1 --
Contours & cuts !; ! O S |2 E NG | €3 Ny |es
% 3 1 3 ’ 3 ’ 3
1 12 ' 23 ' 13 ' 123



DIAGRAMMATIC COACTION: CHECKS

THREE-MASS TRIANGLE

e 2
" Massless propagators, massive external legs: J3(p1, P2, P3) = —1<E
1 3

€2 €3 €3 ~
" Pinches & >+ = = == mad¥sless tadpoles vanish
€1 €2 €1

2
" Contours &cuts !i! O —< |
’ 3
' 12
" Coaction
(7] 2 & €2 2 e € > e3 e



DIAGRAMMATIC COACTI@MECKS

THREE-MASS TRIANGLE

" Three-mass triangle is bnite, bubbles introduce poles . Still works because:
27 €27 eo A2 ey 2
1 es + 1 . + 1 . _ 1 es
el’ . . 2 633 . el 633 . e 3 1
€ € € ~, '€
¥ Particular case of remarkable general relation: CJg + Gide = ! g
el Eg ef! Ec

e<f

" Checked order-by-orderin !, up to weight 4.

" Requires many terms to combine in highly non-trivial way



DIAGRAMMATIC COACTION: CHECKS

BOX WITH ONE MASSIVE PROPAGATOR

€2 e1 €2 €1 2 €2 11

€1 €3, . e, €3 &
+ S S | 4 + t t |
C €2 : C €
= B L Z S I T
€4 e3 1 e3 E 1 €4 €3
+ t e 1 L. & 4 = éz'" _|€a + = t e | éz' €4
e2 1 1 e
3 & % €3
+ } S eq | _ €4 + } S e | €4
2 ey ©2 ! 2 ep =2 I
€3 €3




DIAGRAMMATIC COACTION: CHECKS

BOX WITH ONE MASSIVE PWATOR

€3 :
= e4 @ | ey +1' = Massless tadpoles vanish
& . — ' 2| e 2 €| e in dim.reg.
€1 €3, e €4 €3 . Cuts on massless channels
+£<>i! 4 +L©t_! e B L
~ 2| e - e - vanish in dim.reg.

—_— e—— _—-ee-————

€4 €3 1 €3 1 €4 eSE

B T S - e e G o
1 1 e
e : e

1 e3| 1 63
N eq | _| &4 + = e | <4
2 ey ©2 ! 2 ep ez_el |

€3 "

€ ---?3 .| &4




DIAGRAMMATIC COACTION: CHECKS

BOX WITH ONE MASSIVE PWATOR

| = €4 Massless tadpoles vanish
' 2| o in dim.reg.

™

: Cuts on massless channels
vanish in dim.reg.

! Three-propagator cut
+ & R that isolates massless
2 ¢ 2| gy 3 point vertex vanishes




DIAGRAMMATIC COACTION: CHECKS

BOX WITH ONE MASSIVE PRORAGATOR

63
™

— (e

Three-propagator cut
that isolates massless
3 point vertex vanishes



DIAGRAMMATIC COACTION: APPLICATIONS

DISCONTINUITIES  (abreu, britto, Duhr, Gardi, 1703.0506481704.0  7931]
I Disc = (Disc! 1d)!

Discontinuity operators act on weight one contributions in left factor

& ] 6 . €2 . . €2
I 1 —_ - 1 — s 2 1
Disc,: —<Ig— Disc 2 i<e>i < =211" pf < |®
€1 1 ’ ’

Consistent with all results on the relation between cuts and discontinuities.

Consistent with “Prst-entry conditionQ the left factor of the coaction has the same
bl’anCh CUuts as a Feynman integral [Gaiotto, Maldacena, Sever, Vieira; Abreu, Britto, Grdnqvist; Brown; E]

Sharper version: [cf. talk by F. Brown]

In the coaction of a (cut) Feynman integral, the brst entries are themselves Feynman
Integrals , with a subset of propagators but the same set of cut propagators.



DIAGRAMMATIC COACTION: APPLICATIONS

Dl FFEREN'H AL EQ UW@“NJ Gardi, 1703.0506481704.0 7931]
1= (id! 1)

' Differential operators act on weight one contributions in right factor

1. Max cut at order !
2. NMax cut at order ! (n even) or ! 9 (n odd)
3. NNMax cut at order !9



DIAGRAMMATIC COACTION: APPLICATIONS

D | F F E R E N T | AL EQ UW@HN@; Gardi, 1703.05064&1704.0 7931]
1= (id! 1)

Differential operators act on weight one contributions in right factor

WEOVE COMPUTEIL

1. Max cut at order ! ALL, FOR ANY ONE-LO(
FULLY DETERMINE ALR
AND SYMBOL OF ANY ONE-

2. NMax cut at order ! (n even) or ! 9 (n odd)
3. NNMax cut at order !9




DIAGRAMMATIC COACTION: APPLICATIONS

DIFFERENTIAL EQ U[A\ﬂﬂNJS Gardi, 1703.05064&1704.0 7931]
1= (id! 1)

" Differential operators act on weight one contributions in right factor

WEOVE COMPUTEIL

1. Max cut at order ! ALL, FOR ANY ONE-LO(
FULLY DETERMINE ALF
AND SYMBOL OF ANY ONE-

2. NMax cut at order ! (n even) or ! 9 (n odd)
3. NNMax cut at order !9

" Directly write down the differential equation of any  J,, no need to construct
differential operators or use IBP relations




SUMMARY & OUTLOC



SUMMARY & OUTLOOK

Summary

¥ Conjectured a formula for the coaction of large class of integrals
¥ When applied to one-loop integrals, diagrammatic representation

¥ Extract information (discontinuities, derivatives, E) on complicated integrals from
simpler ones



SUMMARY & OUTLOOK

Summary

¥ Conjectured a formula for the coaction of large class of integrals
¥ When applied to one-loop integrals, diagrammatic representation

¥ Extract information (discontinuities, derivatives, E) on complicated integrals from
simpler ones

Other results [with James Matthew]
¥ Coaction on other functions debned as iterated integrals:
1. Hypergeometric functions 2F1, 3F2, 4F3,... /

2. Appell functions F1,F2,F3,E v



SUMMARY & OUTLOOK

OUTLOOK: TWO-LOOP SUNRISE, ONE MAS

" Two masters at the top level

—— =PI Y o= I LD L2 D)=
!1 !1
Master contours =1, Iy = g! ! - | 123
. 3 . 6"
" I]_ " I]_ "’ PSS 1 O
Duality contours/integrands | = 1 K —_—
Lt e 0 1
Coaction l O _ Q ! O + O - R 4
o e 1 Y

¥ Master formula predicts correct coaction!
¥ Larger number of contours , diagrammatic representation harder to determine.
¥ Many two-loop examples to study, that evaluate to MPLs or elliptic integrals .
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