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MOTIVATION

» D-dimensional one-loop Feynman integrals with many legs and
scales are complicated functions

» Is there some underlying structure?

e first entry conditions, cuts as discontinuities

e elegant differential equations in canonical form

» The coaction [Brown] is an important tool to probe and organise
the analytic structure of Feynman integrals



MOTIVATION

» With the coaction, we will decompose "‘complicated’ integrals into
‘simpler’ ones

ex A(Lis(z)) = 1 ® Lis(z) + Lis(z) @ 1—

» We consider the coaction on one-loop Feynman integrals:

e with completely generic mass configurations

e in dimensional regularisation = obtain degenerate configurations by
taking masses to be equal or zero.

» We show the coaction can be written in terms of
e pinches: lower point integrals

e cuts: integrals with modified integration contour

—> Simple diagrammatic construction



OUTLINE

1. Introduction
2. Coaction of one-loop (cut) Feynman integrals
3. Diagrammatic coaction: checks and applications

4. Summary and outlook



INTRODUCTION




INTRODUCTION

MULTIPLE POLYLOGARITHMS (Goncharov, Brown, ...

» Multiple Polylogarithms (MPLs) form a Hopf Algebra

G(al,...,an;z):/ dat G(ag,...,an;t)
0

t—&l

1
G(0,..., 0;2)=—1In"z G(0,1;2) = —Lis(2) G(a; z) — log (1 _ 5)

A(lnz)=1®Inz+Inz®1 A(Li,(2)) =1® Li,(2) + Z Lip_r(2) ®

» Weight: number of integrations

“simpler” ~ lower weight



INTRODUCTION

COACTION ON MPL

» How to get lower weight MPLs? Two natural ways:

e Remove poles in integrand, keep integration contour: b C @

dtq dty,

Wg = - (Wp

tl_afl tn_an

e Keep same poles in integrand, modify integration contour

Y m— g

U, o @ a . ] G(CL;Z)
0 > 2 0 Vg z

as ‘ag as a2




INTRODUCTION

COACTION ON MPL

» How to get lower weight MPLs? Two natural ways:

e Remove poles in integrand, keep integration contour: b C @

dt dt
Wg = 1 n q Wy

tl_afl tn_an

e Keep same poles in integrand, modify integration contour

"}/ q 7{3’ ~
“w e o G(d; z) » G(a )\ b; z)

-

as ‘ag as a2

P..: “set to zero all
Wg | = 55,5 but weight zero

NOTE: integrands and contours are dual to each other: Ps; (/
~

b

terms’



INTRODUCTION

COACTION ON MPL

» How to get lower weight MPLs? Two natural ways:

e Remove poles in integrand, keep integration contour: b C @

dt dt
Wg = 1 n q Wy

tl_afl tn_an

G(a; z) » G(b; 2)

e Keep same poles in integrand, modify integration contour

Y —
o, e 0 » G(a; z) » G(d\b;z)
0 > 2 0 Vg z
EL3 *as as a2 / \
“pinch”
llcutll
P..: “set to zero all
NOTE: integrands and contours are dual to each other: Ps; / wg | = 5575 but weight zero
76 terms’



INTRODUCTION

ALGEBRAIC STRUCTURE OF MPL AND THE COACTION

» Coaction encodes discontinuities and differential equations
A0 = (id ® 0)A ADisc = (Disc ® id)A

» Example:

1
A(Liz(z)) = 1 ® Lis(2) + Lis(2) ® 1 + Lis(2) ® Ina + Li; () ® ——

2




INTRODUCTION

ALGEBRAIC STRUCTURE OF MPL AND THE COACTION

» Coaction encodes discontinuities and differential equations
A0 = (id ® 0)A ADisc = (Disc ® id)A

» Example:

L) = 16 Uis(e) + Lite) o 1+ T - 1 2 2




INTRODUCTION

ALGEBRAIC STRUCTURE OF MPL AND THE COACTION

» Coaction encodes discontinuities and differential equations
A0 = (id ® 0)A ADisc = (Disc ® id)A

» Example:

Action of differential operators and discontinuities fixed
by the action on weight-one MPLs



INTRODUCTION

BEYOND MULTIPLE POLYLOGARITHMS — MASTER FORMULA

> M aster fO rmu Ia fOr COaCtion: [Abreu, Britto, Duhr, Gardi, 1703.05064&1704.07931]

® Master integrands w;

T
&
o
N———
|
N
<

} dual to each other: P, (
e Master contours 7;

e Second factor defined mod 27

* Discont.: ADisc = (Disc ®id)A A (Diso/w =Y " Disc wi> @/‘ w

)
* Derivatives: Ad = (id ® 0)A A (a/w> =



COACTION OF ONE-LOQGP (CUT)
FEYNMAN INTEGRALS



ONE-LOOP (CUT) FEYNMAN INTEGRALS

RELATIONS BETWEEN ONE-LOOP FEYNMAN INTEGRALS

P L
JHreess pi; D /de Vk _ -k _ P=(k—q)*—m;
PP Pyt
» Tensor integrals
i 1
L1y w1 D Passarino-Veltman ID _ de
In reduction T in (Vl’ Y Vn) Plyl P2V2 L PYr

» Integrals in different dimensions

ID gy Tarasov/Lee . ID:I:2 gy
n( 1, ’ n) dimension shift n ( 1, 9 n)

» Integrals with propagators raised to higher powers

D Int tion-by-part D D
I (V1o vy) APSSEORIPRE, [0 = [P(1,... 1)




ONE-LOOP (CUT) FEYNMAN INTEGRALS

A BASIS OF ONE-LOOP FEYNMAN INTEGRALS

» Dimensions vary with number of propagators: D, =2 [gw — 2¢

e tadpole and bubbles: 2 — 2¢
e triangles and boxes: 4 — 2¢

e pentagon and hexagons: 6 — 2¢

» This choice of master integrals has nice analytic properties:

e coefficients in Laurent expansion in € have uniform weight

* if we set the weight of € to -1, can define weight of unexpanded function: [n /2]

®* Feynman diagrams satisfy differential equations in canonical form
[Henn]



ONE-LOOP (CUT) FEYNMAN INTEGRALS

LANDAU CONDITIONS AND INTEGRATION CONTOURS

[Landau, Cutkosky, t'Hooft&Veltman, Analytic S-Matrix,...]

» Landau conditions characterise singularities of the integrand:

® encircle poles of propagators: Landau singularity of the 1st kind

® pinch pole at infinity: Landau singularity of the 2nd kind
[cf. talk by A. Volovich]

» We can list interesting contours of one-loop Feynman integrals:

® original contour: L'y
e encircle poles of propagators:1'1,1'2, I'123 ...

e pinch pole at infinity and encircle propagators:I'o, L 0015 ...

Do these integrals form a basis of integration contours?
Homology theory



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DECOMPOSITION THEOREM Fotidipnom Hustdeplie Federbush

Landshof; Polkinghorne; ...

» Relations between integration contours of one-loop integrals were
explored in the 60’s:

looo = —2I'c - Z Lce+ ... C odd E,: all propagators in J, ;
e€cE;\C C: set of propagators ;
... . contours that vanish
I'evceo = — Z I'ce — Z FCef + ... C even mod i
SEEJ\C & fEEJ\C

» Contours that pinch infinity are not independent

» Basis of master contours: label by subset of encircled propagator

poles
Cut Feynman Integrals



ONE-LOOP (CUT) FEYNMAN INTEGRALS

[Landau, Cutkosky; t'Hooft&Veltman; Analytic S-Matrix;

CUT UNE_LOUP INTEGRALS Ez’rli(e;rc]j;izt::z.;.l.-]lwa&TepIitz; Federbush: Landshof:

[Abreu, Britto, Duhr, Gardi, 1702.03163]

11 RIS

/ dPk / dPk
r, P1P2Ps5 Py r,, P1P2P3Py

» Contour encircle poles of propagators = residue calculation in D dimensions

» Consistent with prescription ‘replace cut propagator by d-function’

1
(k —qi)? —m;7

1

—> I ((k—q)*—m)
» Residue calculation made precise with Leray’s theory of multivariate residues

» Picture very clear in projective space: cuts involve projections on intersections of
hyperplanes defined by cut conditions.



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AND CONTOURS

1 VE€
J. = [ d°~k
/ P ...P,

» Integrands with different propagators are independent

e Basis of master integrands: wg for C C E;



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AND CONTOURS

1eEC
P...B, Jp, 7’

» Integrands with different propagators are independent

e Basis of master integrands: wg for C C E;

» Are the bases of master contours and integrands dual?

e Ceven: PSS/ ws =905 - \/ vo = I'c
Co ’



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AND CONTOURS

1e7EC
P...B, Jp, 7’

» Integrands with different propagators are independent

e Basis of master integrands: wg for C C Ej

» Are the bases of master contours and integrands dual?

e C even: PSS/ ws =905 - \/ vo =1¢
Co ’

1
o ’



ONE-LOOP (CUT) FEYNMAN INTEGRALS

DUAL BASES OF MASTER INTEGRANDS AND CONTOURS

1e7EC
P...P,  Jp,

» Integrands with different propagators are independent

e Basis of master integrands: wg for C C Ej

» Are the bases of master contours and integrands dual?

e Ceven: PSS/ W = 55 C / YO = FC
I'c ’

* Codd: Pss/ we 50 XK :EE :EEE
I'c ’

1
P.. (/cha—l_Z Z /FCGCL)@)(S@,C ’YC—FC‘I—— Z FCe:—§FooC'

ecC\C

NOTE: Normalise contours or integrand by maximal cut at €% to get dual basis



ONE-LOOP (CUT) FEYNMAN INTEGRALS

COACTION OF ONE-LOOP FEYNMAN INTEGRALS

» Coaction for J associated with Feynman graph G

s T[]

0#ACCE¢

» Diagrammatic representation of the coaction

A(Jg) = Z Ja. & (CcJG + ac Z Ccejg)

0#CCEq e€EG\C



ONE-LOOP (CUT) FEYNMAN INTEGRALS

COACTION OF ONE-LOOP FEYNMAN INTEGRALS

» Coaction for J associated with Feynman graph G

s T[]

0£ACCEq

» Diagrammatic representation of the coaction

AlJg)= ) R

W#ACCEg T
Cuts of graph G:

Sum over all subset Pinch integral with | 1. ¢t 41 propagators in C
of propagators propagators notin | 1. ror 6dd |C|, add 1/2 times the sum of

C pinched

all diagrams with one extra cut




DIAGRAMMATIC COACTION.
CHECKS AND APPLICATIONS



DIAGRAMMATIC COACTION: CHECKS

DIAG RAM MATIC COACTIUN [Abreu, Britto, Duhr, Gardi, 1703.05064&1704.07931]

A(Jg)z Z Ja. & Coda + ac Z Coedc
0ACCEqg ecEg\C

» Simple diagrammatic rules, valid for any one-loop integral

» Extends trivially to a coaction on cut Feynman integrals
» Valid in dimensional regularisation = massless limits

» Use known coaction of MPLs to check validity:

1. Evaluate integrals in dim. regularisation
2. Expand each function in dim. reqularisation parameter ¢

3. Check at each order that we agree with the coaction of MPLs



DIAGRAMMATIC COACTION: CHECKS

THREE-MASS TRIANGLE

» Massless propagators, massive external legs: J3(p2,p3,p3) = s

€1 3

» Pinches —O— —O— —O— — massless tadpoles vanish

» Contours & cuts v — 0 —<[ /<[ —<[ <[

Y123



DIAGRAMMATIC COACTION: CHECKS

THREE-MASS TRIANGLE

€9 2
» Massless propagators, massive external legs: J3(p2,p3,p3) = = s
el 3

€9 €3 €3
» Pinches < >+ == 2 >+ — massless tadpoles vanish

» Contours & cuts v; —+ 0 3

» Coaction

e (&
€2 2 €9 . 2 2 €3 . 2 2 €3 €2 2
1 _ 1 1 1 2 2 1 | 3 3 1
€3 —_— <> 63 _I_ <> - -
® e ® e ® ) €3
e 1 e 3
1 3 €1 ’ 3 2 €1 3 €1 ’ 3
e
€9 2 \ 2 2
1 1
—I— €3 ( g ) - -
€1 €3
e]. 3 ’ 3




DIAGRAMMATIC COACTION: CHECKS

THREE-MASS TRIANGLE

A

1

€2

€1

2
€3
3

e e
e T2 e3 N €3 ey A 2
— 1 1 1 2 2 1 3 3 1
= o=@ =ls +=>=® -+ = OER =
€1 Vi 3 €9 61 3 61 4 3
[
€9 2 \ 2 2
1 1

es --

-+ & < T

€1 3 ’ 3

» Three-mass triangle is finite, bubbles introduce poles. Still works because:

L2 L2 eg A 2 €2 ~
1 e 4+ 1 - + 1 - _ e
et ] el €3
’ 3 €1 3 3 €1 3 1

e Particular case of remarkable general relation: »  Cedo+ »  Cesda = —eJg

ecFEqa e,feEEq
e<f

» Checked order-by-order in g, up to weight 4.

» Requires many terms to combine in highly non-trivial way



DIAGRAMMATIC COACTION: CHECKS

BOX WITH ONE MASSIVE PROPAGATOR

€3

€2

€4

€3

€3

€]

el €4 €3
€4 t €4
€2 e €2 .
€3 , 1 €2 1
1
: e
t 64 . e ]‘ % €4 ]- t 4
4
+ a @ | - AP = e ] o
2 '€] 2 2 '€ 2 e
S S
+— e ® e o o & Q - -t
2 ) : ! 2 ) 2 'e]
[] —_
€3 e3
_|_ 64 ® . __64
e

€4

F)

€3,
€4

Iel



DIAGRAMMATIC COACTION: CHECKS

BOX WITH ONE MASSIVE PROPAGATOR /\
s LI |- @sEE e )

——

1 1
1 1
1
el es | ) ey €3 . Cuts on massless channels
4+ S 5 ® Lo L ®  --- - L, .

e e vanish in dim.reg.

9 9
€3 '€1 €2 €1

“ € €3, “ €3 .
; e e t €4
+ L 1 ® I L T ST SR P + — 3 & =e-- ==
e
2l e 2 2] e 2 & 2l e
1 1
1 1
1 b st | 1 “ st |
S S
+— e ® e o o & Q - -t
el 2 1 €1 2 €] 2 1 €1
: :
" €4 =X e
4
+ S e e
€2 el €9 req




DIAGRAMMATIC COACTION: CHECKS

BOX WITH ONE MASSIVE PROPAGATOR /-\

€3 .
2 ey . Massless tadpoles vanish
€2 el in dim.reg.

— \

: Cuts on massless channels
vanish in dim.reg.

= — Three-propagator cut
3 :

n O S N that isolates massless

€2 el 2l gy 3 point vertex vanishes




DIAGRAMMATIC COACTION: CHECKS

BOX WITH UNE MASSIVE PROPAGATOR

A

€2

€3

Massless tadpoles vanish
in dim.reg.

: Cuts on massless channels
vanish in dim.reg.

Three-propagator cut
that isolates massless
3 point vertex vanishes



DIAGRAMMATIC COACTION: APPLICATIONS

DISCONTINUITIES [Abreu, Britto, Duhr, Gardi, 1703.05064&1704.07931]
ADisc = (Disc ® id)A

Discontinuity operators act on weight one contributions in left factor

€ (&
ey . 2 L2

Dl 2 1 p— 1 1 1 1 — ) 2 L
SCp2 3 DISCP% —<>— S e3 _27m€(p1) e

61 61 4

Consistent with all results on the relation between cuts and discontinuities.

Consistent with “first-entry condition’: the left factor of the coaction has the same
branch cuts as a Feynman integ ral [Gaiotto, Maldacena, Sever, Vieira; Abreu, Britto, Gronqvist; Brown; ...]

Sharper version: [cf. talk by F. Brown]

In the coaction of a (cut) Feynman integral, the first entries are themselves Feynman

integrals, with a subset of propagators but the same set of cut propagators.




DIAGRAMMATIC COACTION: APPLICATIONS

D":FEREN'" AL EQU A'”UNS [Abreu, Britto, Duhr, Gardi, 1703.05064&1704.07931]
A = (id ® §)A

» Differential operators act on weight one contributions in right factor:

1. Max cut at order ¢
2. NMax cut at order € (n even) or €% (n odd)
3. NNMax cut at order €9



DIAGRAMMATIC COACTION: APPLICATIONS

D":FEREN'” AL EQU A'"UNS [Abreu, Britto, Duhr, Gardi, 1703.05064&1704.07931]

A = (id ® 8)A
» Differential operators act on weight one contributions in right factor:
WE'VE COMPUTED THEM
1. Max cut at order ALL, FOR ANY ONE-LOOP INTEGRAL!

2. NMax cut at order € (n even) or €% (n odd)
3. NNMax cut at order €9

FULLY DETERMINE ALPHABET
AND SYMBOL OF ANY ONE-LOOP INTEGRAL




DIAGRAMMATIC COACTION: APPLICATIONS

D":FEREN'" AL EQU A'"ONS [Abreu, Britto, Duhr, Gardi, 1703.05064&1704.07931]

A = (id ® 8)A
» Differential operators act on weight one contributions in right factor:
WE'VE COMPUTED THEM
1. Max cut at order & ALL, FOR ANY ONE-LOOP INTEGRAL!
2. NMax cut at order € (n even) or €% (n odd)
3 NNMax cut at order £° FULLY DETERMINE ALPHABET

AND SYMBOL OF ANY ONE-LOOP INTEGRAL

» Directly write down the differential equation of any J,, no need to construct
differential operators or use IBP relations




SUMMARY & OUTLOOK



SUMMARY & OUTLOOK

Summary

e Conjectured a formula for the coaction of large class of integrals
e When applied to one-loop integrals, diagrammatic representation

e Extract information (discontinuities, derivatives, ...) on complicated integrals from
simpler ones



SUMMARY & OUTLOOK

Summary

e Conjectured a formula for the coaction of large class of integrals
e When applied to one-loop integrals, diagrammatic representation

e Extract information (discontinuities, derivatives, ...) on complicated integrals from
simpler ones

Other resu Its [with James Matthew]
e Coaction on other functions defined as iterated integrals:
1. Hypergeometric functions 2F1, 3F2, 4F3,... v

2. Appell functions F1, F2, F3, ... \/



SUMMARY & OUTLOOK

OUTLOOK: TWO-LOOP SUNRISE, ONE MASSIVE PROPAGATOR

» Two masters at the top level

— :e2r1J(1,1,1):/ Wi —— :e[rQJ(1,1,1)+r;J(1,2,1)]:/ wo

Y1 n
2 1

Master contours v1 = 1y Y2 = §F@ — arms

Duality contours/integrands ~ §) = (

;b
<

ﬁ%
N—

PSS 1 O
= (0 7)

Coaction A( O ): O % O + @ ®[y2w1 v
o NN N R
A(\‘/>—\/®\‘/+\‘/®/ww2‘/

 Master formula predicts correct coaction!
e |arger number of contours, diagrammatic representation harder to determine.
e Many two-loop examples to study, that evaluate to MPLs or elliptic integrals.



THANK YOU!



