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SCATTERING EQUATIONS AND THE CHY APPROACH.

Since the remarkable work of Witten on the N' = 4 super Yang-Mills
theory, the on-shell methods for the computation of scattering amplitudes
have been deeply studied during the last years. In particular, the Cachazo—
He—Yuan (CHY) approach. [witten-03,Cachazo-He-Yuan-13, Mason, Skinner-13, Berkovits-13].
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SOME PROPERTIES (TREE-LEVEL).

@ It is applicable in arbitrary dimension.

@ It can be applied for a large family of interesting theories including
scalars, gauge bosons, gravitons and mixing interactions.
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MODULI SPACE

@ Let us consider a Sphere with punctures (holes).

Coordinate on
the Sphere

Fixing PSL(2,C)
( ) /$ — gauge fixing
Punctures (holes)
(01, 072, 073) = (2, 0, 1)
@ 04 is a free para meter. Coordinate on

the Moduli



FEYNMAN INTEGRANDS AND SCATTERING EQUATIONS

INTRODUCTION
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@ One can define the scattering equations as a map from the
factorization limits to the boundary of the Moduli Space. For
example, by considering four massless particles, i.e. s+t + u =0,
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SCATTERING EQUATIONS

@ One can define the scattering equations as a map from the
factorization limits to the boundary of the Moduli Space. For
example, by considering four massless particles, i.e. s+t + u =0,
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@ In general, the scattering equations are given by [Gross, Mende-87, 0.

Schlotterer’s talk, Lipstein’s talk, L. Mason'’s talk]
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INTRODUCTION

SCATTERING EQUATIONS (S.E.)

@ In general, the scattering equations are given by [Gross, Mende-87, 0.

Schlotterer’s talk, Lipstein’s talk, L. Mason'’s talk]

" ky - kp
E,= —— =0, ogmp:=0,—0p, a=1,...n
> b b
e PSL(2,C): >0 E,=>"_10,E,=3"_102E, =0.
@ Cachazo-He-Yuan Approach, 2013 (Contour Integral over the

Moduli Space and localized on E, =0 (S.E.). Mason-Skinner,
Ambitwistor, 2013 )

d"o
= [ dul9 1, duY =
/r o n(@), Fa” = Nol(PSL(2, €))

I is a contourn defined by E; =0 (S.E.)

OijOKkO ki
]
[loviju Ea

@ To obtain a well define I, over My ,, the meromorphic form,

dug,o) Z,, must be invariant under o, = A%+B

= oD with ap - Bc=1.
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INTRODUCTION

INTEGRANDS AND GRAPHS ON A SPHERE

o Under 0, = 2242 with AD-BC =1

n —4 —— weight

dp® H(Co’a + D)

a=1

7, [[I1_4(Cos + D)]*

d,uf,o) PSL(2,C)

@ Therefore, Z, PSLE2.C)
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INTEGRANDS AND GRAPHS ON A SPHERE

e Under o, = 4948 with AD—-BC=1

C o,+D?
n —4 —— weight
PSL(2,C
dp® D 4O | T](C o+ D)
a=1
PSL(2,C)

@ Therefore, Z,

4
Zy [[T5=1(Caa+D)]".
@ For example, let us consider, Z,, = PT((IO) X PT(ﬁO) = m,[«|f], with

PTEB) = (CayasTaas - Uoz,,oq)il — Parke — Taylor (PT).
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INTRODUCTION

INTEGRANDS AND GRAPHS ON A SPHERE

® Under 0, = £2%3 with AD-BC =1

n —4 —— weight
PSL(2,C
dp®) _PSL2O) dpul® H(Caa + D)
a=1
PSL(2,C)

o Therefore, Z, T, [[1"_,(Co. + D)]*.
@ For example, let us consider, Z,, = PT((IO) X PT(ﬁO) = m,[«|f], with

~!  Parke — Taylor (PT).

PTEB) = (quazaazas te Uanoq)

1
PTO© 0 _
1234 = o 22033034 04

(1239 X PT
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INTRODUCTION

INTEGRANDS AND GRAPHS ON A SPHERE

e Under o, = 4948 with AD—-BC=1

C o,+D?
n —4 —— weight
PSL(2,C
dp® D 4O | T](C o+ D)
a=1
PSL(2,C)

@ Therefore, Z,

4
Zy [[T5=1(Caa+D)]".
@ For example, let us consider, Z,, = PT((IO) X PT(ﬁO) = m,[«|f], with

PTEB) = (CayasTaas - Uoz,,oq)il — Parke — Taylor (PT).

0 1
X P 02, 03,03, 0%
12023034 021

(0) _
PT [1234] =

[1234]

(7p=0p)?

(05-0,)*

CHY graph — weight four means four lines at each vertex.
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INTRODUCTION

INTEGRANDS AND THEORIES

@ The CHY prescription is “Universal”, i.e. a theory is determined just
by the Integrand, Z,, and the contour integral, E; = 0, remains the

same.
PTO % PT(BO) = mp|a| ] (Biadjoint ®3)
PTO x prv = AM(aq,...,a,) (Yang — Mills)
PTY x det/A = ANLSM(a .. ) (NLSM)
PF'W x PIW .= M(1,...,n) (Gravity) { C-H.Y
) (2013)

det’ A x det’ A := MEAL(1,. .. n) (Galileon
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Goal of the talk: To show how we got a new proposal for biadjoint
partial amplitude at one loop, with quadratic propagators, e, c
Lopez-Arcos, P. Talavera-1707XXX].
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Goal of the talk: To show how we got a new proposal for biadjoint
partial amplitude at one loop, with quadratic propagators, e, c
Lopez-Arcos, P. Talavera-1707XXX].

wfals] = [ [ du «

dQ = d(kifr + kg;)d(kgf)d(kg )(5(/([;r + k@ — E)d(kgl— + kl71+)§(kl72— + kg;r).

2
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Outline
@ The double cover approach (A—Scattering Equations.) [H.c-16]

@ CHY prescription at one and two loops. [c.Cardona H.G-16, H.G S. Mizera, G.
Zhang-16]

@ CHY at one loop with quadratic propagators. [H.G-17, H.G., C. Lopez-Arcos, P.
Talavera-1707XXX]]
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opening of the branch cut.
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A-SCATTERING EQUATIONS

DOUBLE COVER PRESCRIPTION (DC)

@ Let us consider a double cover of the Sphere.

&

Parametrized by : (z)

double cover

double cover

(v,0)

@ This double cover is given by the algebraic curve
y2 =02 — X2 C CP? where X\ € C*. Note that X controls the
opening of the branch cut.

@ The scattering equations in this language are given by (H.G 2016)

E‘;\ = iika.kb

g
bta ab

n

1 z=3(0at73;) ki k
B(Een)=e T EeY e

Z.
Ya b#a ab
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A-SCATTERING EQUATIONS

@ The DC prescription is, A, := fr du) Z,(y, o), where

n FP FP
du)\ _ dA % H Ya d}/a H de « qur|m pqr
! A a=1 G d# Ej E,?‘., 7
N = p.q,r,m
split the sphere A
in two pieces configurations

and [ is the contour defined by the equations

A=0, Ca::yaz—ag—k)\zzo,a:l,...n, Ej:O7 b+#p,q,r,m
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@ The DC prescription is, A, := fr du) Z,(y, o), where
FP FP

dA il Y, dy. doy A | A,
A a a pqr|m Pq
ar= 5] [H o |*| I F| "
<o a=1 d#p,q,r,m —d m

split the sphere
in two pieces

sum over
configurations

and [ is the contour defined by the equations

A=0, C ::yf—a§+)\2:0, a=1...n, Ej:O7 b+#p,q,r,m
@ the DC prescription is able to gauge 4 particles, since A has been
promoted as a variable. (PSL; extended, 1, — PSL, x C*).
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configuration depends on the gauge fixing. This is a advantage to
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4 4

@ On this gauge the leading order in A is enough. This program is
called the A\—algorithm, which is an iterative process.
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@ The DC formalism sums over all possible configurations, and each
configuration depends on the gauge fixing. This is a advantage to
simplify the computation.

1
1

2 Moving to a good gauge
~ 1 12 y
5 3 by “+ .- 5 3

4 4

@ On this gauge the leading order in A is enough. This program is
called the A\—algorithm, which is an iterative process.

1 2 1 2 1 2
5 3 5 3 5 3
4 4 4
@ The idea is to develop a A—algorithm for the whole Pfaffian. (Work
in progress with N. E. J. Bjerrum-Bohr and Poul H. Damgaard). In

other words, we hope to obtain a covariant version for the CSW
recurrence relation [Cachazo-Svrcek-Witten-2004].
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particular we consider an elliptic curve (Torus)
y? =2z(z = 1)(z — \) C CP?, [c Cordona and H.G. 2016].
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@ The DC prescription can be generalized to any algebraic curve, in
particular we consider an elliptic curve (Torus)
y? =2z(z = 1)(z — \) C CP?, [c Cordona and H.G. 2016].
@ By the global residue theorem, the modular parameter “A" can be
integrated around A = 0, namely, we are Pinching the A-cycle
(Nodal singularity).

Pinching A—cycle
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ELLIPTIC CURVE

@ The DC prescription can be generalized to any algebraic curve, in
particular we consider an elliptic curve (Torus)
y? =2z(z = 1)(z — \) C CP?, [c Cordona and H.G. 2016].

@ By the global residue theorem, the modular parameter “A" can be
integrated around A = 0, namely, we are Pinching the A-cycle
(Nodal singularity).

Pinching A—cycle
e

@ Unlike to the sphere, on the Torus there is a global holomorphic
form, w = %. This holomorphic form has a CHY interpretation.

@

dim (H°(@Q)) =0
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ELLIPTIC CURVE

@ The DC prescription can be generalized to any algebraic curve, in
particular we consider an elliptic curve (Torus)
y? =2z(z = 1)(z — \) C CP?, [c Cordona and H.G. 2016].

@ By the global residue theorem, the modular parameter “A" can be
integrated around A = 0, namely, we are Pinching the A-cycle
(Nodal singularity).

Pinching A—cycle
e

@ Unlike to the sphere, on the Torus there is a global holomorphic
form, w = %. This holomorphic form has a CHY interpretation.

yl
%‘ P. A—cycle
RS
A-cydle

dim (H°(@Q)) =0 dim (H°(2) =1

Op+y—
O10+ O10—
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@ So, it is natural to consider the integrand Ifll) = m

(y12) P. A—cycle (1 Vaa g—)Z (wgy* )2 s (Wﬁ;e* )2
(1)2(y2)%(y3)?(va)? v 0+, 0-)2

@ A dashed line means a numerator, oy, a blue line means two black
lines and (i1, ..., in) 1= Giiy == * Tip 1y Tiiy -
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ONE AND TwWO LOOP INTEGRANDS IN THE CHY APPROACH

@ So, it is natural to consider the integrand Ifll) = m

V4

(y2) - P. A—cycle 9 (wfrg ) . (OJ{:‘K? )2
(YI)Z(Y2)QEY3)2(Y4)2 (L.e5.67) (e+,£-)2

@ A dashed line means a numerator, oy, a blue line means two black
lines and (i1, ..., in) := Oiiy =+ * Oir_1ir Tiiy -
° Using the A-algorithm this graph is simple to compute

N4+2

Nz Z (- kay)[ £+ka1+ka2) —2)(£ - ka,)

Linear in ¢, Q—cut.
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ONE AND TwWO LOOP INTEGRANDS IN THE CHY APPROACH

@ So, it is natural to consider the integrand 7 = m

O P. A—cycle A
el iy - .
= Y

(y12) P. A—cycle (1 Vaa )Z(Wfre ) "(Wffi)z
(71)2(y2)2(y3)?(va)? T (er, )2
A dashed line means a numerator, o, a blue line means two black
lines and (i1, ..., in) := Oiiy =+ * Oir_1ir Tiiy -

@ Using the A-algorithm this graph is simple to compute

. 1
dN4+2 _ 1 1 o |
/ e Z;, (0 ko I+ Ky + k)2 — I k) RA SRR
4

3

Linear in £, Q—cut.

[Geyer, Mason, Monteiro, Tourkine-15, Baadsgaard, Bohr, Bourjaily, Caron, Damgaard, Feng-15, Cachazo, He,
Yuan-15, Cardona, H.G.-16]
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Two Loop.

@ The previous program can be extended to an hyperelliptic curve,
y? = z(z —1)(z — M1)(z — X\2)(z — A3) € CP?. On this curve there

zdz

are two global holomorphic forms, Q;(z) = %, (z) =%
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Two Loop.

@ The previous program can be extended to an hyperelliptic curve,
y? = z(z —1)(z — M1)(z — X\2)(z — A3) € CP?. On this curve there

are two global holomorphic forms, Q;(z) = %, Q(z) = Zsz.

1 2%y _ _ 2
P. Ay and A cycles 7 — lell v, kgir =Ky = lq, El #0
+
o1

00 2
W Wi, kg ==k =L, 5570
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ONE AND TwWO LOOP INTEGRANDS IN THE CHY APPROACH

Two Loop.

@ The previous program can be extended to an hyperelliptic curve,
y? = z(z —1)(z — M1)(z — X\2)(z — A3) € CP?. On this curve there
are two global holomorphic forms, Q;(z) = %, Qo(z) = 2%,

y
1 O
y y Y
1 1 e 2
P. Ay and A cycles 7 — lell v, kgir =Ky = lq, El #0
ey
o1 2 %2 _ _ 2
/ ;—>w1:1 ,k@——g—fz, 62#0
A,—cycle A,—cycle
@ Since A does not feel to A, then we consider a cycle which is able
to link them.
dual form e 050
@ Q — wyp T Wi’

1

Ay =A-A,
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Two Loop.

@ The previous program can be extended to an hyperelliptic curve,
y? = z(z —1)(z — M1)(z — X\2)(z — A3) € CP?. On this curve there
are two global holomorphic forms, Q;(z) = %, Qo(z) = 2%,

y
1 o
y y Y
! 1 1244 2
P. Ay and A cycles 7 — lell v, kgir =Ky = lq, El #0
ey
o1 2 %2 _ _ 2
/ o Wi »ke;—_z;—fb 6#0
A,—cycle A,—cycle
@ Since A does not feel to A, then we consider a cycle which is able
to link them.
dual form e 050
@ Q — wyp T Wi’

A;:A,—Ae
@ So, we have the following base for global quadratic differentials ,
HO(Qz, 22), [H.G, S. Mizera, G. Zhang-16.]

1. o e ogey 2 gy, ey e 3 0T 05l
q, ‘= wazla ! (wa:la 1 — Wa:za 2 )7 q; = wazza 2 (wa:za 2 — wa:la ! ); q; = Wa:la ! wa?a 2
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@ We define the following CHY-integrand at two loop [H.G, S. Mizera, G.
Zhang-16.]

s S— ﬁqi ﬁ a2 H g2 + per(1,2,3)

+ )+ )= p—\2
(61’52’€2’€1) a1l boi+l  c—m+l
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@ We define the following CHY-integrand at two loop [H.G, S. Mizera, G.

Zhang-16.] .
1 TUTT 2 TT .3
¥ = (CRCRNRE an H b H qc +per(1,2,3)
1572572571 a-1 b_i+1 c=m+1

@ Using the scattering equations proposed by [Geyer, Mason, Monteiro,
Tourkine16], (£2 # 0,43 # 0), and by modifying the A-algorithm, we
obtain
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@ We define the following CHY-integrand at two loop [H.G, S. Mizera, G.

Zhang-16.] .
1 TUTT 2 TT .3
¥ = (CRCRNRE an H b H qc +per(1,2,3)
1572572571 a-1 b_i+1 c=m+1

@ Using the scattering equations proposed by [Geyer, Mason, Monteiro,
Tourkine16], (£2 # 0,43 # 0), and by modifying the A-algorithm, we
obtain

FDEry PNy m + Pelmy o+ PET(y (g4 p))

i-1

2) (2) pfiin {£1.65},
/ d n+4I not in (£1+4£9)
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ONE AND TwWO LOOP INTEGRANDS IN THE CHY APPROACH

@ We define the following CHY-integrand at two loop [H.G, S. Mizera, G.

Zhang-16.] .
1 TUTT 2 TT .3
¥ = (CRCRNRE an H b H qc +per(1,2,3)
1572572571 a-1 b_i+1 c=m+1

@ Using the scattering equations proposed by [Geyer, Mason, Monteiro,
Tourkine16], (£2 # 0,43 # 0), and by modifying the A-algorithm, we
obtain

FDEry PNy m + Pelmy o+ PET(y (g4 p))

2) 2) pfiin {£1,02},
/ d n+4I not in (£1+4£9)
22
6162

@ In particular, let us consider the following CHY integrand,
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@ We define the following CHY-integrand at two loop [H.G, S. Mizera, G.

Zhang-16.] n
2) _ 2 3
7 = (61*,@,42,6 {an 1]« 1] qﬁper(l’m)}'

a-1 b_i+1 c-m+1
@ Using the scattering equations proposed by [Geyer, Mason, Monteiro,
Tourkine16], (£2 # 0,43 # 0), and by modifying the A-algorithm, we
obtain

FDEry PNy m + Pelmy o+ PET(y (g4 p))

i-1

2) 2) pfiin {£1,02},
/d n+4I not in (£1+4£9)
22
6162

@ In particular let us consider the foIIowing CHY integrand,

1 2)
£2£2 /dMEn+1)+4 (( €2 A7) qn+1 H ap =
1
GO (—br - knp1) 2 (G4 ) (0 + Lo+ kay )P (0 + Lo — K,y )

linear in £ quadratic in (£1+£02)

—+ {51,2 — —51,2}

a€S,
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1 u(Z) q111+1 HZ:1 qi pfi in £
GG )TN G 4 )

@ From the CHY approach, we have obtained an integrand which
looks like a @3 integrand at one loop with quadratic propagators.
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1 u(2) q111+1 HZ:1 qi pfi in £
GG )TN G 4 )

@ From the CHY approach, we have obtained an integrand which
looks like a @3 integrand at one loop with quadratic propagators.

@ So, we propose the following CHY integral [H.c-17]
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ONE AND TwWO LOOP INTEGRANDS IN THE CHY APPROACH

1 u(2) q111+1 HZ:1 qi pfi in £
GG )TN G 4 )

From the CHY approach, we have obtained an integrand which
looks like a @3 integrand at one loop with quadratic propagators.

@ So, we propose the following CHY integral [H.c-17]

no =3
— (0) I1b.1 G5

2 _ 2 _ 2 _ g2 _
kgr*kg;*kgl— *kZ; =0.
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1 e Gri1llb 198 piing e
g%g% .u“(n+1)+4 (gi»’ €3>7 62—761—)2 ner T PEI1n

@ From the CHY approach, we have obtained an integrand which

looks like a @3 integrand at one loop with quadratic propagators.

@ So, we propose the following CHY integral [H.c-17]

no~3
O O L © Ilb1d
A_(kq+k£2+) ) (ke; +kzz+)5 (ke; +k41*)/d“”+4(21+,22+,l72‘,l71‘)2’
2 L2 L2 L2

Kgp = Ky = ki = ki = 0.

@ Computing A (there are several techniques to do that),
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1 e Gri1llb 198 piing e
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@ From the CHY approach, we have obtained an integrand which

looks like a @3 integrand at one loop with quadratic propagators.

@ So, we propose the following CHY integral [H.c-17]

no~3
O O L © Ilb1d
A_(kq+k£2+) ) (ke; +kzz+)5 (ke; Jrkef)/d””“([f,lgr,gz_,gl_)z,
2 L2 L2 L2

Kgp = Ky = ki = ki = 0.

@ Computing A (there are several techniques to do that),

1
A:
aez;n (kzr + kze )2 (kee + kge + kay)? - (kg + kgz — ka, )

quadratic in (k4 +k;+)
1 2
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Ll

1 e Gri1llb 198 piing e
g%g% .u“(n+1)+4 (gi»’ é;, 62—761—)2 ner T PEI1n

@ From the CHY approach, we have obtained an integrand which

looks like a @3 integrand at one loop with quadratic propagators.

@ So, we propose the following CHY integral [H.c-17]

no =3
- () 15135
A= (kg + g )6 g+ g )0 (b + kff)/ W TG )P

)

2 _ 2 _ 2 _ g2 _
kgr*kg;*kgl— *kZ; =0.

@ Computing A (there are several techniques to do that),

1
A:
aez;n (ke + kg Y2 (Kge + kg + ko) (kg + kg — ka,)?

quadratic in (ke—Ir +kl7§)
@ Hence, we Identify the off-shell momentum, kZ{ + k@, with the loop
momentum at one loop, kg + kg; := £, namely
1
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@ How to generalize this idea to Biadjoint ®3 theory?
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QUADRATIC PROPAGATORS

1
a€S, “ v

s+ per1mﬂ

@ How to generalize this idea to Biadjoint ®3 theory? Schematically,
we can think in the Parke-Taylor Factor on the Torus in the
following way
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QUADRATIC PROPAGATORS

1
0k + kg — A = Z£2€+k) ko )?

@ How to generalize this idea to Biadjoint ®3 theory? Schematlcally
we can think in the Parke-Taylor Factor on the Torus in the

following way ﬂ
- (5

s+ per1mﬂ
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1
0k + kg — A = Z£2€+k) (ka2

@ How to generalize this idea to Biadjoint ®3 theory? Schematlcally
we can think in the Parke-Taylor Factor on the Torus in the

following way ﬂ
0 3 at one 1loo R -
A—cycle

Pinching
A-cycle
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QUADRATIC PROPAGATORS

1
0k + kg — A = Z£2€+k) ko )?

@ How to generalize this idea to Biadjoint ®3 theory? Schematlcally
we can think in the Parke-Taylor Factor on the Torus in the

following way ﬂ
0 3 at one 1loo R -
Aicycle

J Pinching

s+ per1mﬂ

A-cycle
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QUADRATIC PROPAGATORS

1
5(D)(k21++kz72+_ JA = Zgzg_,_k) (0= kg )2:

@ How to generalize this idea to Biadjoint ®3 theory? Schematlcally
we can think in the Parke-Taylor Factor on the Torus in the

following way ﬂ
|:>-|—(1g)34 — % at one loop @

A= cycle

Pinching
A-cycle

1) ot 1 1 et 1 ATA :
P! = w w, —w — W,
1234 12 opomoar T onpW2s omen T onon@ss o T onosenWat

[He-Yuan-13, Baadsgaard, Bohr, Bourjaily, Damgaard, Feng-15.]
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@ As it has been shown in [Hevuan13, the ®3 biadjoint partial amplitude
at one loop, with ordering o and §3, is given by the expression,

1 1 1 1
m(l)[a\/i’] = 72 /d/iEwZz X (e+ g—)z PTEJI) X PTE3)

1 -
PTS) = Z wﬁn;frl .

o o 0
7T€cyc(a) T2 Y T2T3 Th—1Tn
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@ As it has been shown in [Hevuan13, the ®3 biadjoint partial amplitude
at one loop, with ordering o and §3, is given by the expression,

1 1 1 1
mWa|B] = 72 /d/iEwZz x (t+,0-)2 PTEJI) X PTE3)

1 o
PTS) = Z wﬁn;frl .

o o o
recye(a) O 1m0 M2 Tn—1Tn

@ Nevertheless, the integrands obtained by m(!)[«|S] are linear in the
loop momentum. In order to get quadratic propagators one can
apply the ideas given here. Let us recall the symmetrized n-gon
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apply the ideas given here. Let us recall the symmetrized n-gon
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@ As it has been shown in [Hevuan13, the ®3 biadjoint partial amplitude
at one loop, with ordering o and §3, is given by the expression,

1 1 1 1
mWa|B] = 72 /d/iEwZz x (t+,0-)2 PTEJI) X PTE3)

1 .
1) . yARY4
PT = )~ - wi it

recye(a) mmOmoms * " Oy,

@ Nevertheless, the integrands obtained by m(!)[«|S] are linear in the
loop momentum. In order to get quadratic propagators one can
apply the ideas given here. Let us recall the symmetrized n-gon
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@ As it has been shown in [Hevuan13, the ®3 biadjoint partial amplitude
at one loop, with ordering o and §3, is given by the expression,

1 1 1 1
mWa|B] = 72 /d/iEwZz x (t+,0-)2 PTEJI) X PTE3)

1 .
1) . yARY4
PT = )~ - wi it

recye(a) mmOmoms * " Oy,

@ Nevertheless, the integrands obtained by m(!)[«|S] are linear in the
loop momentum. In order to get quadratic propagators one can
apply the ideas given here. Let us recall the symmetrized n-gon

Linear propagators Quadratic propagators

(1) (0)
dpnin diiniy
. o T T,
(€ e)2 , U600, 0))
kyp = —k,_ =40, £2#0 K, =k_ =k, =K_=0
£ £ [ o 23 [
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QUADRATIC PROPAGATORS AT ONE LOOP

@ As it has been shown in [Hevuan13, the ®3 biadjoint partial amplitude
with ordering e and 3, is given by the expression,

at one loop,
1 1
1 _ (1) (1) (1)
m( )[a\/i’] =5 /du"Jr2 X .y PT,’ x PTB
1 T
(1) . E : ot
PTa T o o o wﬂn:m .
recye(a) w2 O mams Th—1Tpn

@ Nevertheless, the integrands obtained by m(!)[«|S] are linear in the
loop momentum. In order to get quadratic propagators one can
apply the ideas given here. Let us recall the symmetrized n-gon

Linear propagators Quadratic propagators

1)
dpgis dig i
(et em)72, , ) (/f’[2’£2;7/1)22
k,y = —k =4, L k =k =k =k =0
ot - =t #0 o e o o
+.0— o+ p— +.p0— +.p— i i Pagtie ity
(“’fl ‘ "'wﬁn'é ) X (Wffz "'Wf»n'[ G w1 ) X (w0 “wnin )
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@ As it has been shown in [Hevuan13, the ®3 biadjoint partial amplitude
at one loop, with ordering o and §3, is given by the expression,

©?

1 .
1) . yARY4
PT = )~ - wi it

recye(a) mmOmoms * " Oy,

1 1
mWa|B] = /dﬂgz x (t+,0-)2 PTEJI) X PTS)

@ Nevertheless, the integrands obtained by m(!)[«|S] are linear in the
loop momentum. In order to get quadratic propagators one can
apply the ideas given here. Let us recall the symmetrized n-gon

Linear propagators Quadratic propagators
dﬂ(nljz dN‘EEZA
(et e7)=2, € G067
Kyt = —kp— =€, 2 #0 kjf:k[ :52{:/([2;:0
ETT W) ol ) T e ) e iy
pTl) % PTQ) prii i PTi2+ ]
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®3 BIADJOINT AT ONE LOOP WITH QUADRATIC PROPAGATORS

@ The natural proposal to obtain ®3 biadjoint at one loop with

quadratic propagators is given by [H.G., C. Lopez-Arcos, P. Talavera-1707XXX]
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®3 BIADJOINT AT ONE LOOP WITH QUADRATIC PROPAGATORS

@ The natural proposal to obtain ®3 biadjoint at one loop with
quadratic propagators is given by [H.G., C. Lopez-Arcos, P. Talavera-1707XXX]
1 i+ gl
Wlalg] = / dQ / dpl X e PTU  PT ™
m[a|f] = J N e — X
1) TG R ’

dQ = d(k[{r + kg;)d(kgf)d(kg; )5(/(@ + kl72+ — E)d(kgl— + kZ{r)KS(kZ; + k@).
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CONCLUSIONS AND PERSPECTIVES

@ The DC prescription is a powerful tool to compute CHY-graph. To
extend this idea to string theory. For example, to find an alternative
method to compute the coefficients in the o’ expansion.

@ The DC prescription is extended in a natural form to an elliptic
curve. How to do that for an hyperelliptic curve? In addition, how
to get the scattering equations at two loop given by Mason et al
from this approach? .

@ We have been able to obtain quadratic propagator in ®3 at
one loop, by including four more massless points. We would
like to extend this approach to YM. [o. schiotterer's talk].

@ By dimensional reduction, it is possible to reproduce the Feynman je
in the quadratic propagators prescription. To generalize to higher
loops.



Thank you very much for your
attention.
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