SOFT GLUON RESUMMATION WITH (MOSTLY VERY) MASSIVE QUARKS

ANNA KULESZA UNIVERSITY OF MÜNSTER

HEAVY FLAVOURS AT HIGH PT WORKSHOP, EDINBURGH, 39.11.2923

TOPS AND BOTTOMS WITH A BIT OF CHARM

- Realm of perturbative QCD, yet very different species
 - Different position of the mass scale in the hierarchy of scales for a given process or observable -> potentially large logarithms involving masses
 - Different lifetimes -> hadronize or not

- Resummation of soft gluon emission important in all cases
 - better description of physics: additional corrections to cross sections... especially applicable when higher fixed-order calculations out of reach
 - restoration of predictive power of perturbation theory
 - reduction of the theory error due to scale variation
 - cross-talk with parton shower techniques and tools

FACTORIZATION

- Factorization of soft and collinear emission is the underlying principle allowing resummation
- Intuitive: short distance incoherent with long distance dynamics, long-wavelength soft gluons "insensitive" to short wavelength physics
- Details of factorization / resulting expressions for cross section depend on the specific process and observable in question
 - **7** $\alpha_s^n \log^m(...)$ originating from soft/collinear emissions
 - Threshold logs : $\alpha_s^n \log^m (1 \frac{M^2}{s})$ (absolute threshold, M= sum of final state particle masses), $\alpha_s^n \left(\frac{\log^m (1 \frac{Q^2}{s})}{1 \frac{Q^2}{s}} \right)_+$ (invariant mass threshold), ...
 recoil logs $\alpha_s^n \log^m (\frac{p_T^2}{Q^2})$ mass logs $\alpha_s^n \log^m (\frac{m_b^2}{Q^2})$...
- Various formalisms (direct QCD, SCET), shown to be equivalent

SOFT GLUON RESUMMATION

Systematic reorganization of perturbative series

Factorization at threshold: space of Mellin moments N

$$\hat{\sigma}^{(N)} \sim \mathcal{C}(\alpha_s) \exp \left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$$

sums up LL: $\alpha_s^n \log^{n+1}(N)$ NLL: $\alpha_s^n \log^n(N)$

STRUCTURE OF THE RESUMMED CROSS SECTION Resummation \leftrightarrow all-order factorization of soft and collinear emissions 7 7 Exponentiation \leftrightarrow solutions of RGEs 7 For a generic process with n jets in the final state: Hard function: hard off-shell radiation Soft function: soft wide-angle $d\sigma_{i\to f}^{\mathrm{res}}(N,\mu_F,\mu_R,\dots) = \mathrm{Tr}\left[\mathbf{H}_{i\to f}\left(\mu_F,\mu_R,\dots\right)\mathbf{S}_{i\to f}(N,\mu_R,\dots)\right]$ $\Delta_{i_1}(N,\mu_F,\mu_R,\dot{D}\Delta_{i_2}(N,\mu_F,\mu_R,\dots) J_{f_1}(N,\mu_R,\dots) \dots J_{f_n}(N,\mu_R,\dots)$ Jet functions: collinear emission: incoming outgoing &

- If heavy particles in the final state (e.g. tops) no final state jets
- Processes with four or more legs carrying colour: hard and soft functions are matrices in colour space

MULTI-SCALE PROBLEM

- Multi-scale problems: appearance of the logarithms of ratios of various scales
- Hierarchy of scales determines the importance of these terms, e.g. m_b , $m_c \ll Q^2$

see the talks yesterday!

+SOFT

- Combination of the massive fixed-order results with resummation of mass logarithms In the fragmentation approach[Cacciari, Greco, Nason'98] [Cacciari, Frixione, Nason'98][Neubert'07][Forte, Laenen, Nason, Rojo'10], Forte, Napoletano, Ubiali'16, Bonvini, Papnastasiou, Tackmann'15, Pietrulewich et al.'17, Ridolfi, Ubiali, Zaro'19
- Desirable to improve the predictions by resumming jointly with soft gluons, but different structure of soft logs in the two mass schemes (double log vs single log in the fully massive calculations) due to non-commuting massless and soft limits [Cacciari, Corcella, Mitov'02][Corcella, Mitov'04][Aglietti et al.'07] [Gaggero, Ghira, Marzani, Ridolfi'22] [Aglietti, Ferrera'22]
- New approach relies on modifying jet function through its calculation in the quasi-colinear limit [Ghira, Marzani, Ridolfi'23], recovers the resummation result for fragmentation [Cacciari, Catani'01] for mass scales smaller than soft scale and the usual soft gluon resummation for the reversed order

+SOFT

- Combination of the massive fixed-order results with resummation of mass logarithms In the fragmentation approach[Cacciari, Greco, Nason'98] [Cacciari, Frixione, Nason'98][Neubert'07][Forte, Laenen, Nason, Rojo'10], Forte, Napoletano, Ubiali'16, Bonvini, Papnastasiou, Tackmann'15, Pietrulewich et al.'17, Ridolfi, Ubiali, Zaro'19
- Desirable to improve the predictions by resumming jointly with soft gluons, but different structure of soft logs in the two mass schemes (double log vs single log in the fully massive calculations) due to non-commuting massless and soft limits [Cacciari, Corcella, Mitov'02][Corcella, Mitov'04][Aglietti et al.'07] [Gaggero, Ghira, Marzani, Ridolfi'22] [Aglietti, Ferrera'22]
- New approach relies on modifying jet function through its calculation in the quasi-colinear limit [Ghira, Marzani, Ridolfi'23], recovers the resummation result for fragmentation [Cacciari, Catani'01] for mass scales smaller than soft scale and the usual soft gluon resummation for the reversed order

In this context, tops are much easier to handle

25+YEARS OF RESUMMATION FOR HEAVY FLAVOURS

- Top-pair production
 - Pioneering analytical work of [Kidonakis, Sterman'96 '97] and [Bonciani, Catani, Mangano, Nason,'98] -> NLL resummation
 - Extension to NNLL and numerical results in [Czakon, Mitov, Sterman'09] [Cacciari et al.'11] (direct QCD) and [Beneke et al. '09-'12] [Ahrens et al.'10-'11] (SCET)

DIFFERENTIAL DISTRIBUTIONS TT

[Ahrens et al.'10-'11] (SCET)

Pair invariant-mass (PIM) kinematics

1-particle inclusive (1PI) kinematics

 $\log(1-z)$ $z = \left(\frac{Q^2}{s}\right)$

BOOSTED TOPS

[Ferroglia, Pecjak, Yang'12-'13] [Ferroglia, Marzani, Pecjak, Yang'13] [Czakon et al.'19]

p_T (GeV) Edinburgh, 30.11.23

A. Kulesza, Soft gluon resummation with heavy quarks

PT OF THE TOPS

Also available: 0-jettiness resummation [Alioli, Broggio, Lim'21]

[Ju, Schönherr'23]

A. Kulesza, Soft gluon resummation with heavy quarks

$\mathbf{t}\overline{\mathbf{t}}\mathbf{H},\ \mathbf{t}\overline{\mathbf{t}}\mathbf{W}/\mathbf{Z},\ \mathbf{t}\mathbf{H}$

associated production

ASSOCIATED HIGGS PRODUCTION WITH TOP QUARKS

- Direct probe of the strength of the top-Yukawa coupling
- Crucial for understanding the Higgs sector and in searches for deviations from the SM
- ✓ Far-reaching consequences
 → stability of our Universe

TTBAR+W,Z

- Probes of top-quark couplings
- Sensitive to BSM contributions
- Dominant backgrounds to searches and SM precision measurements (*ttH* included)

Measurements of differential distributions of the Z boson produced in association with ttbar

TTBARH AND TTBARW AT NNLO

 soft Higgs approximation for the 2loop amplitudes [Catani et al. '22]

soft approximation to W emission as well as massification procedure to W+4 parton amplitudes [Buonocore et al.'23]

A. Kulesza, Soft gluon resummation with heavy quarks

RESUMMATION FOR TTBAR+B

- Threshold limit in the invariant mass kinematics: $\hat{s} \rightarrow Q^2 = (p_t + p_{\bar{t}} + p_B)^2$
- **A** Large logarithmic contributions of the form $\alpha_s^n \left(\frac{\log^m (1-\hat{\rho})}{1-\hat{\rho}}\right)_+$; $\hat{\rho} = Q^2/\hat{s}$
- **Direct** QCD \rightarrow *N* space:

$$\frac{d\tilde{\hat{\sigma}}_{ij\to klB}}{dQ^2}(N,Q^2,\{m^2\},\mu_{\rm F}^2,\mu_{\rm R}^2) = \int_0^1 d\hat{\rho}\,\hat{\rho}^{N-1}\frac{d\hat{\sigma}_{ij\to klB}}{dQ^2}(\hat{\rho},Q^2,\{m^2\},\mu_{\rm F}^2,\mu_{\rm R}^2)$$

- In Mellin space, logarithms of $1 \hat{\rho}$ become logarithms of Mellin moments N
- **Resummation**

$$\hat{\sigma}^{(N)} \sim \mathcal{C}(\alpha_s) \exp \left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$$
LL: $\alpha_s^n \log^{n+1}(N)$ NLL: $\alpha_s^n \log^n(N)$ NNLL: $\alpha_s^n \log^{n-1}(N)$

RESUMMATION FOR TTBAR+B

Resummation ↔ all-order factorization of soft and collinear emissions

Processes with four or more legs carrying colour: hard and soft functions are matrices in colour space

NNLL FOR TTBAR+B

Soft function from the solution of the RG equation

$$\mathbf{S}_{ij\to klB}(N, Q^2, \{m^2\}, \mu_{\mathrm{R}}^2) = \bar{\mathbf{U}}_{ij\to klB}(N, Q^2, \{m^2\}, \mu_{\mathrm{R}}^2) \,\tilde{\mathbf{S}}_{ij\to klB}(\alpha_{\mathrm{s}}(Q^2/\bar{N}^2)) \mathbf{U}_{ij\to klB}(N, Q^2, \{m^2\}, \mu_{\mathrm{R}}^2)$$
$$\mathbf{U}_{ij\to klB}(N) = \operatorname{Pexp}\left[\int_{\mu}^{Q/\bar{N}} \frac{dq}{q} \mathbf{\Gamma}_{ij\to klB}\left(\alpha_{\mathrm{s}}\left(q^2\right)\right)\right] \qquad \Gamma_{ij\to klB} = \left[\left(\frac{\alpha_s}{\pi}\right) \mathbf{\Gamma}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \mathbf{\Gamma}^{(2)} + \dots\right]$$

- Soft anomalous dimensions Γ known at two loops for any number of legs [Mert-Aybat, Dixon, Sterman'06] [Becher, Neubert'09] [Mitov, Sterman, Sung'09-'10] [Ferroglia, Neubert, Pecjak, Yang'09] [Beneke, Falgari, Schwinn'09], [Czakon, Mitov, Sterman'09] [Kidonakis'10] √
- To calculate, eliminate path-ordered exponentials:
 - \checkmark use basis that diagonalize $\Gamma^{(1)} \rightarrow$ enough for NLL accuracy
 - For NNLL, treat matrices U perturbatively [Buras'80][Buchalla, Buras, Lautenbacher'96]] [Ahrens, Ferroglia, Neubert, Pecjak, Yang'10]

NNLL FOR TTBAR+B

Soft function from the solution of the RG equation

$$\mathbf{S}_{ij\to klB}(N, Q^2, \{m^2\}, \mu_{\mathrm{R}}^2) = \bar{\mathbf{U}}_{ij\to klB}(N, Q^2, \{m^2\}, \mu_{\mathrm{R}}^2) \,\tilde{\mathbf{S}}_{ij\to klB}(\alpha_{\mathrm{s}}(Q^2/\bar{N}^2)) \mathbf{U}_{ij\to klB}(N, Q^2, \{m^2\}, \mu_{\mathrm{R}}^2) \\ \mathbf{U}_{ij\to klB}(N) = \operatorname{Pexp}\left[\int_{\mu}^{Q/\bar{N}} \frac{dq}{q} \mathbf{\Gamma}_{ij\to klB}\left(\alpha_{\mathrm{s}}\left(q^2\right)\right)\right] \qquad \qquad \mathbf{\Gamma}_{ij\to klB} = \left[\left(\frac{\alpha_s}{\pi}\right) \mathbf{\Gamma}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \mathbf{\Gamma}^{(2)} + \dots\right]$$

Soft anomalous dimensions Γ known at two loops for any number of legs [Mert-Aybat, Dixon, Sterman'06] [Becher, Neubert'09] [Mitov, Sterman, Sung'09-'10] [Ferroglia, Neubert, Pecjak, Yang'09] [Beneke, Falgari, Schwinn'09], [Czakon, Mitov, Sterman'09] [Kidonakis'10] √

To calculate, eliminate path-ordered exponentials:

- \checkmark use basis that diagonalize $\Gamma^{(1)} \rightarrow$ enough for NLL accuracy
- For NNLL, treat matrices U perturbatively [Buras'80][Buchalla, Buras, Lautenbacher'96]] [Ahrens, Ferroglia, Neubert, Pecjak, Yang'10]
- **Hard function** $\mathbf{H}_{ij \to klB} = \mathbf{H}_{ij \to klB}^{(0)} + \frac{\alpha_{s}}{\pi} \mathbf{H}_{ij \to klB}^{(1)} + \dots$
 - H⁽¹⁾ extracted from aMC@NLO [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli'11] (ttH, ttW, ttZ) and PowHel (HELAC-NLO [Bevilacqua et al.'11] +POWHEG-Box) package [Garzelli, Kardos, Papadopoulos,Trocksanyi'11] (ttH)

A. Kulesza, Soft gluon resummation with heavy quarks

RESUMMATION-IMPROVED NNLL+N(N)LO TOTAL CROSS SECTION

NNLL resummed expression has to be matched with the full N(N)LO QCD(+EW) result

$$\begin{split} \sigma_{h_{1}h_{2}\rightarrow kl}^{(\text{match})}(\rho,\{m^{2}\},\mu^{2}) &= \sum_{i,j=q,\bar{q},g} \int_{C_{\text{MP}}-i\infty}^{C_{\text{MP}}+i\infty} \frac{dN}{2\pi i} \,\rho^{-N} \,f_{i/h_{1}}^{(N+1)}(\mu^{2}) \,f_{j/h_{2}}^{(N+1)}(\mu^{2}) \\ &\times \left[\hat{\sigma}_{ij\rightarrow kl}^{(\text{res},N)}(\{m^{2}\},\mu^{2}) \,- \,\hat{\sigma}_{ij\rightarrow kl}^{(\text{res},N)}(\{m^{2}\},\mu^{2}) \,\Big|_{N(N)L0\,QCD} \right] \\ &+ \sigma_{h_{1}h_{2}^{-}\rightarrow kl}^{N(N)L0\,QCD(+EW)}(\rho,\{m^{2}\},\mu^{2}), \end{split}$$

Inverse Mellin transform evaluated using a contour in the complex N space according to 'Minimal Prescription' [Catani, Mangano, Nason Trentadue'96]

NLO+NNLL FOR TTBARH

[AK, Motyka, Stebel, Theeuwes'17] [AK, Motyka, Schwartläder, Stebel, Theeuwes'20]

μ_0	$\rm NLO[fb]$	$\rm NLO+\rm NLL[fb]$	$\rm NLO+\rm NLLwC[fb]$	$\rm NLO+NNLL[fb]$	$K_{ m NNLL}$
Q	$425^{+12.1\%}_{-11.6\%}$	$445^{+10.0\%}_{-9.2\%}$	$489^{+8.4\%}_{-8.5\%}$	$505^{+7.5\%}_{-7.0\%}$	1.19
H_T	$434^{+11.6\%}_{-11.4\%}$	$451^{+9.5\%}_{-8.9\%}$	$491^{+7.9\%}_{-8.2\%}$	$502^{+7.3\%}_{-6.7\%}$	1.16
Q/2	$476^{+9.9\%}_{-10.8\%}$	$484^{+8.7\%}_{-8.2\%}$	$503^{+6.2\%}_{-7.3\%}$	$505^{+5.7\%}_{-6.4\%}$	1.06
$H_T/2$	$484^{+8.9\%}_{-10.4\%}$	$490^{+8.4\%}_{-8\%}$	$503^{+5.5\%}_{-6.8\%}$	$502^{+5.4\%}_{-6.1\%}$	1.04
M/2	$506^{+6\%}_{-9.3\%}$	$510^{+8.2\%}_{-7.8\%}$	$512^{+5.9\%}_{-6.2\%}$	$510^{+5.6\%}_{-6.1\%}$	1.01

 $K_{\rm NNLL=} \sigma_{\rm NLO+NNLL} / \sigma_{\rm NLO}$

- Compared to NLO, remarkable stability of NLO+NNLL
- Stability improves with increasing accuracy of resummation
- Reduction of the theory scale error
- "Best" (envelope) NNLL+NLO prediction in agreement with NLO QCD+EW at $\mu_0 = M/2$

$$\sigma_{t\bar{t}H}^{\text{NLO+NNLL}} = 504^{+7.6\%+2.4\%}_{-7.1\%-2.4\%} \text{ fb}$$

(± scale) (± pdf)

A. Kulesza, Soft gluon resummation with heavy quarks

TTBAR+W,ZAT NLO+NNLL

[AK, Motyka, Schwartländer, Stebel, Theeuwes'18 '20]

Envelope over results for different central scales NLO(QCD+EW) +NNLL (± scale) (± pdf) $\sigma_{t\bar{t}Z}^{\text{NLO+NNLL}} = 859^{+8.6\%+2.3\%}_{-9.5\%-2.3\%} \text{ fb},$ $\sigma_{t\bar{t}W}^{\text{NLO+NNLL}} = 592^{+26.1\%+2.1\%}_{-16.2\%-2.1\%} \text{ fb}$

- Significant reduction (up to by half) in the scale dependence of the *ttZ* total cross section
- Depending on the central scale, correction up to ~30% for the *ttZ* cross section
- Smaller impact on the ttW predictions: only $q\bar{q}$ initial channel at LO

TTBAR+W,Z AT NLO+NNLL

[AK, Motyka, Schwartländer, Stebel, Theeuwes'18 '20]

Envelope over results for different central scales NLO(QCD+EW) +NNLL (± scale) (± pdf) $\sigma_{t\bar{t}Z}^{\text{NLO+NNLL}} = 859^{+8.6\%+2.3\%}_{-9.5\%-2.3\%} \text{ fb},$ $\sigma_{t\bar{t}W}^{\text{NLO+NNLL}} = 592^{+26.1\%+2.1\%}_{-16.2\%-2.1\%} \text{ fb}$

NLO+NNLL results for ttbar+W,Z,H also obtained in the SCET formalism [Broggio, Ferroglia, Pecjak, Signer, Yang'15] [Broggio, Ferroglia, Ossola, Pecjak'16] [Broggio, Ferroglia, Pecjak, Yang'16][Broggio, Ferroglia, Ossola, Pecjak, Samoshima'17] [Broggio et al. 19]

TTBAR+W,ZAT NLO+NNLL

[AK, Motyka, Schwartländer, Stebel, Theeuwes'18 '20]

Envelope over results for different central scales NLO(QCD+EW) +NNLL (± scale) (± pdf) $\sigma_{t\bar{t}Z}^{\text{NLO+NNLL}} = 859^{+8.6\%+2.3\%}_{-9.5\%-2.3\%}$ fb = 0.859^{+0.073+0.028}_{-0.085-0.028} pb

ATLAS, EPJC 81 (2021) 737:

 $\sigma_{pp \to t\bar{t}Z}^{\text{ATLAS},2021} = 0.99 \pm 0.05 \text{(stat.)} \pm 0.08 \text{(syst.)}$

CMS, JHEP 03 (2020) 056:

 $\sigma_{pp \to t\bar{t}Z}^{\rm CMS} = 0.95 \pm 0.05 ({\rm stat.}) \pm 0.06 ({\rm syst.})$

Accuracy of the NLO+NNLL result comparable with experimental precision!

Central value brought closer to the measured cross section

TTBAR+W,Z AT NLO+NNLL

Envelope over results for different central scales NLO(QCD+EW) +NNLL (± scale) (± pdf) $\sigma_{t\bar{t}Z}^{\text{NLO+NNLL}} = 859^{+8.6\%+2.3\%}_{-9.5\%-2.3\%}$ fb = 0.859^{+0.073+0.028}_{-0.028} pb

ATLAS, EPJC 81 (2021) 737:

$$\sigma_{pp \to t\bar{t}Z}^{\text{ATLAS},2021} = 0.99 \pm 0.05 \text{(stat.)} \pm 0.08 \text{(syst.)}$$

CMS, JHEP 03 (2020) 056:

$$\sigma_{pp \to t\bar{t}Z}^{\text{CMS}} = 0.95 \pm 0.05 (\text{stat.}) \pm 0.06 (\text{syst.})$$

ATLAS-CONF-2023-065

$$\sigma_{pp \to t\bar{t}Z}^{\text{ATLAS},2023} = 0.86 \pm 0.04 \text{(stat.)} \pm 0.04 \text{(syst.)}$$

TTBAR+V: TOTAL X SECTION

INVARIANT MASS DISTRIBUTION FOR TTBARH

[AK, Motyka, Stebel, Theeuwes'17'20]

- NNLL+NLO distributions for the two considered scale choices very close, NLO results differ visibly → K_{NNLL} = $\sigma_{\text{NLO+NNLL}} / \sigma_{\text{NLO}}$ factors also different
- NNLL+NLO error band slightly narrower than NLO (7-point method)

INVARIANT MASS DISTRIBUTION FOR TTBARH

[AK, Motyka, Stebel, Theeuwes'17 '20]

- NNLL+NLO distributions for the two considered scale choices very close, NLO results differ visibly → K_{NNLL} = $\sigma_{\text{NLO+NNLL}} / \sigma_{\text{NLO}}$ factors also different
- NNLL+NLO error band slightly narrower than NLO (7-point method)

TTBARZ: Z'S TRANSVERSE MOMENTUM DISTRIBUTION AT NLO(QCD+EW)+NNLL

[AK, Motyka, Schwartländer, Stebel, Theeuwes'19'20]

CMS, JHEP 03 (2020) 056

NNLO+NNLL

Matching to the new NNLO results for tTH [Catani et al.'22], undertaken within framework of the LHCHWG

Ongoing comparison with results based on the approach of [Broggio et al.'19]

ASSOCIATED SINGLE TOP AND HIGGS PRODUCTION

- Measured together with ttbarH [ATLAS Collaboration, PRL125.061802 (2015)] [CMS Collaboration PRD.99.092005 (2019)]
- Sensitive to the top Yukawa coupling and HWW coupling
- At LO negative interference between the diagrams involving the two couplings in the dominant tchannel → sensitivity to BSM

- NLO QCD for t- and s-channel [Demartin et al.'15] and NLO(QCD+EW) for combined [Pagani, Tsinikos, Vryonidou'20]
- Approximation of NNLO based on the expansion of the resummed formula [Forslund, Kidonakis'20]

THJET RESUMMATION

$$d\sigma_{ij \to tHk}^{\text{res}}(N, \mu_F, \mu_R, \dots) = \text{Tr}\left[\mathbf{H}_{ij \to tHk}\left(\mu_F, \mu_R, \dots\right) \mathbf{S}_{ij \to tHk}(N, \mu_R, \dots)\right]$$
$$\Delta_i(N, \mu_F, \mu_R, \dot{\Delta}_j(N, \mu_F, \mu_R, \dots) \ J_k(N, \mu_R, \dots)$$

- Exploratory study for s-channel (t-channel suffers from flavour scheme dependence)
- **Resummation of logarithms that are large in the invariant mass threshold limit** $s \rightarrow Q^2$

 $Q^2 = (p_t + p_H + p_j)^2$ triple invariant mass kinematics

- NLL accuracy augmented with NLO contributions (NLLwC, also called NLL')
 - calculations of 1-loop soft anomalous dimension (NLL), NLO non-logarithmic contributions to S, H and
 J functions
- New aspect: final state jet
 - can consider jets that at threshold are either massive (non-zero p_i^2) or massless ($p_i^2 = 0$)

THJET AT THE LHC

[Moreno Valero, AK, Theeuwes'21]

Massive jets at the threshold:

Invariant mass distribution

THJET AT THE LHC

Massive jets at the threshold:

[Moreno Valero, AK, Theeuwes'21]

- Invariant mass distribution
- Total cross section

Promising, but more studies needed: relation to massless jets, t-channel contributions..

4-TOP

Sensitive to the Yukawa coupling

[CMS Collaboration, JHEP 11 (2021) 118]

4-TOP

- Sensitive to the Yukawa coupling
- Can receive significant contributions in BSM scenarios: SUSY, 2HDM, simplified DM models...
- Used to constrain four-fermion operators in SMEFT
- Known in the SM at NLO (QCD+EW), matched to parton showers [Bevilacqua, Worek'12], [Maltoni, Pagani, Tsinikos'16][Frederix, Pagani, Zaro'17], [Jezo, Kraus'21]

4-TOP AT THE LHC

COLOUR STRUCTURE

 $d\sigma_{ij \to t\bar{t}t\bar{t}}^{\mathrm{res}}(N,\mu_F,\mu_R) = \mathrm{Tr}\left[\mathbf{H}_{ij \to t\bar{t}t\bar{t}}(\mu_F,\mu_R)\mathbf{S}_{ij \to t\bar{t}t\bar{t}}(N,\mu_R)\right]\Delta_i(N,\mu_F,\mu_R)\Delta_j(N,\mu_F,\mu_R)$

Processes with four or more legs carrying colour: hard and soft functions are matrices in colour space ↔ soft radiation sensitive to the overall colour structure of the Born process

$$q\bar{q}$$
 channel:
 $\mathbf{3} \otimes \mathbf{\bar{3}} = \mathbf{3} \otimes \mathbf{\bar{3}} \otimes \mathbf{3} \otimes \mathbf{\bar{3}}$ $\mathbf{1} \oplus \mathbf{8} = (2 \times \mathbf{1}) \oplus (2 \times \mathbf{8}) \oplus \mathbf{8}_S \oplus \mathbf{8}_A \oplus \mathbf{10} \oplus \mathbf{\overline{10}} \oplus \mathbf{27}$
6-dimensional colour space gg channel:
 $\mathbf{8} \otimes \mathbf{8} = \mathbf{3} \otimes \mathbf{\bar{3}} \otimes \mathbf{3} \otimes \mathbf{\bar{3}}$ $\mathbf{0} \oplus \mathbf{1} \oplus \mathbf{8}_S \oplus \mathbf{8}_A \oplus \mathbf{10} \oplus \mathbf{\overline{10}} \oplus \mathbf{27} =$
 $\mathbf{0} \oplus (2 \times \mathbf{1}) \oplus (2 \times \mathbf{8}) \oplus \mathbf{8}_S \oplus \mathbf{8}_A \oplus \mathbf{10} \oplus \mathbf{\overline{10}} \oplus \mathbf{27}$

14-dimensional colour space

Construction of the colour basis as in [Keppeler, Sjodahl'12], with modification for the gg channel

RESUMMATION FOR 4 -TOPS

- Resummation performed at the production threshold limit $s \rightarrow 4m_t^2 = M^2$
- **Z** Logarithms of *N* arise from Mellin transform of logarithms of $1 4m_t^2/s$
- The soft function can be written as an exponential if $\Gamma^{(1)}$ diagonal

$$\mathbf{S}_{ij \to t\bar{t}t\bar{t},R} = \exp\left[\frac{\operatorname{Re}\left(\mathbf{\Gamma}_{\mathbf{ij} \to \mathbf{t}\bar{\mathbf{t}}\mathbf{t}\bar{\mathbf{t}},\mathbf{R}}^{(\mathbf{1})}\right)}{b_0\pi}\log(1-2\lambda)\right]$$

- Construction of the colour basis as in *[Keppeler, Sjodahl'12]*, with modification for the *gg* channel
- The calculated $\Gamma_{ij,R}^{(1)}$ become in the threshold limit $2\text{Re}[\overline{\Gamma}_{q\bar{q},R}] = \text{diag}(0,0,-3,-3,-3,-3)$

$$2\text{Re}[\overline{\Gamma}_{gg,R}] = \text{diag}(-8, -6, -6, -4, -3, -3, -3, -3, -3, -3, -3, -3, 0, 0)$$

negative values of the quadratic Casimir operators for the corresponding SU(3) irreducible representations

SCALE VARIATION AT NLO

[van Beekveld, Moreno Valero, AK'22]

QCD only

Fixed-order results obtained with aMC@NLO [Alwall et. al.'14][Frederix'18]

SCALE VARIATION AT NLO+NLL'

LUXqed plus PDF4LHC15 nnlo 100, $\sqrt{s} = 13$ TeV 17.5 \bar{N} -resummed, $m_r = 172.5$ GeV, $\mu_B = \mu_F$ -15.0 12.5 ο_{tītī} (fb) 7.5 5.0 NLO+NLL NLO+NLL' 2.5 NLO(QCD+EW)+NLL' NLO 10 0.0 0.25 0.5 1.0 2.0 $\mu/(2m_t)$

[van Beekveld, Moreno Valero, AK'22]

 $\mu = \mu_R = \mu_F$

Fixed-order results obtained with aMC@NLO [Alwall et. al.'14][Frederix'18]

4-TOP AT 13TEV

[van Beekveld, AK, Moreno Valero'22]

4-TOP AT 13TEV

[van Beekveld, AK, Moreno Valero'22]

4-TOP AT 13TEV

[van Beekveld, AK, Moreno Valero'22]

COMPARISON WITH MEASUREMENTS

[van Beekveld, Moreno Valero, AK'22]

COMPARISON WITH MEASUREMENTS

[van Beekveld, Moreno Valero, AK'22]

COMPARISON WITH MEASUREMENTS

[van Beekveld, Moreno Valero, AK'22]

SUMMARY

25+ years of soft gluon resummation for heavy flavours

- Soft gluon resummation for processes involving b quarks brings new challenges due to the gap between bottom mass and the typical scale of the process but progress is made
- In the context of soft gluons, ground zero are the studies for top quarks
- For tops, new developments for top-pair production and first application of threshold resummation to a class of $2 \rightarrow 3$ and $2 \rightarrow 4$ processes reaching N(N)LL+N (N)LO (QCD+EW) accuracy
 - Remarkable stability of the total and differential and cross sections w.r.t. scale variation
 - Reduction of the theory error due to scale variation with the increasing logarithmic order of the calculations