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Scales of heavy quark production

Consider heavy quark production in either DIS or pp collisions

There are (at least) four scales in the game

m: mass of the heavy quark

Q: hard scale (virtuality of the photon, invariant mass of the final state)
√
s: parton-level centre-of-mass energy√
S: hadron-level centre-of-mass energy

Depending on the hierarchy, there may be large logs → need to resum them

Dimensionless ratios:

m2

Q2
, τ =

Q2

S
, x =

Q2

s
, τ ≤ x ≤ 1

Focus on the high-energy limit τ ≪ 1: large log x appear and must be resummed.

If m2/Q2 is also small, also log m2

Q2 must be resummed
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small-x resummation
[Catani,Ciafaloni,Colferai,Hautmann,Salam,Stasto]

[Thorne,White]
[Altarelli,Ball,Forte]

[Neill,Pathak,Rothstein,Stewart]
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Small-x logarithms in the context of collinear factorization

Collinear factorization: σ(x,Q2) =

∫ 1

x

dz

z
Ci

(
z, αs(Q

2)
)
fi

(
x

z
,Q2

)
DGLAP evolution: µ2 d

dµ2
fi(x, µ

2) =

∫ 1

x

dz

z
Pij(z, αs(µ

2)) fj

(
x

z
, µ2

)
Heavy-quark matching: f

[nf+1]

i (x, µ2) =

∫ 1

x

dz

z
Aij(z, αs(µ

2)) f
[nf ]

j

(
x

z
, µ2

)

Any object with a perturbative expansion can exhibit a logarithmic enhancement:

observable: coefficient functions C(x, αs)

evolution: splitting functions P (x, αs) and matching conditions A(x, αs)

Small-x logarithms: single logs αn
s

1

x
logk 1

x
(0 ≤ k ≤ n− 1)

When αs log
1

x
∼ 1 perturbativity is spoiled → all-order resummation needed

In MS and related schemes, both coefficient C(x, αs) and splitting P (x, αs) functions, and also

matching conditions A(x, αs), are logarithmically enhanced at small x (in the singlet sector)
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Small-x logarithms in gluon-gluon splitting function

Pgg(x, αs) splitting function at fixed order
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Logarithms start to grow for x ≲ 10−2 → perturbative instability for x ≲ 10−3

(for Q ∼ 5GeV)
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Small-x logarithms in gluon-gluon splitting function

Pgg(x, αs) splitting function at fixed order
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αs = 0.20,  nf = 4,  Q0MS‾‾‾

Logarithms start to grow for x ≲ 10−2 → perturbative instability for x ≲ 10−3

(for Q ∼ 5GeV)

Resummation obtained with the HELL public code

[MB,Marzani,Peraro 1607.02153] [MB,Marzani,Muselli 1708.07510] [MB,Marzani 1805.06460]
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Do we experience the need for small-x
resummation?

Hint: look at PDF fits...
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NNPDF3.1 kinematic coverage

Fixed target DIS
Collider DIS
Fixed target Drell-Yan
Collider Inclusive Jet Production
Collider Drell-Yan
Z transverse momentum
Top-quark pair production
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Low x at HERA

Deep-inelastic scattering (DIS) data from HERA extend down to x ∼ 3 × 10−5 in
the “perturbative region” Q2 > 2GeV2

Tension between HERA data at low Q2 and low x with fixed-order theory
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Figure 34: The combined low-Q2 HERA inclusive NC e+p reduced cross sections at
√
s =

318GeV with overlaid predictions from HERAPDF2.0 NNLO. The bands represent the total
uncertainties on the predictions. Dotted lines indicate extrapolation into kinematic regions not
included in the fit.
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Also leads to a deterioration of the χ2 of PDF fits
when including low-Q2 data
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Figure 20: The dependence of χ2/d.o.f. onQ2min for HERAPDF2.0 fits using a) the RTOPT [84],
FONNL-B [91], ACOT [110] and fixed-flavour (FF) schemes at NLO and b) the RTOPT and
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trix elements of the order of αs indicated in the legend. The number of degrees of freedom
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2 and to 868 for
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2.
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The first PDF fits with small-x resummation

HELL → makes possible a PDF fit with small-x resummation

NNPDF3.1sx [1710.05935] xFitter [1802.00064, see also 1902.11125]

NeuralNet parametrization of PDFs polynomial paramterization
MonteCarlo uncertainty Hessian uncertainty
charm PDF is fitted charm PDF perturbatively generated
DIS+tevatron+LHC (∼ 4000 datapoints) only HERA data (∼ 1200 datapoints)
NLO, NLO+NLLx, NNLO, NNLO+NLLx NNLO, NNLO+NLLx

The quality of the fit improves substantially including small-x resummation

χ2/Ndat NNLO NNLO+NLLx

xFitter 1.23 1.17
NNPDF3.1sx 1.130 1.100

smaller!

Stable upon inclusion of low-x data →

 44Juan Rojo                                                                                                       Proton Structure and PDFs, DIS2019

Evidence for BFKL dynamics

Monitor the fit quality as one includes 
more data from the small-x region

NNPDF3.1 fits based on fixed order (NNLO) and small-x resumed (NNLO+NLLx) theory
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NNPDF3.1sx, HERA inclusive structure functions

NNLO

NNLO+NLLx

NNPDF3.1sx, HERA inclusive structure functions

NNLO quality degrades as more 
small-x data included

Best description of small-x HERA data 
only possible with BFKL effects!

Ball et al 17, xFitter 18
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Impact of small-x resummation on PDFs: the gluon

Small-x resummation mostly affects the gluon PDF (and the total quark singlet)
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Dramatic effect of resummation on the gluon PDF at x ≲ 10−3

Persists at higher energy scales ⇒ impact for LHC and FCC-hh phenomenology
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heavy quark production in DIS

[Catani,Ciafaloni,Hautmann NPB 366 (1991) 135]
[Ball,Ellis 0101199]

[MB,Marzani,Muselli 1708.07510]
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Heavy quark production in DIS at small x

Heavy quark production in neutral or charged current

m1
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V ú
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QÕ
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+
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m2
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Q̄

QÕ

gú
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2

Figure 1. Representative diagrams that contribute to the DIS structure functions at NLL in the gluon
channel (left) and quark channel (right). In the quark loop the flavour (and thus the mass) can change in
the charged-current case (hence the di�erent colours).

where �ca,i(mqk) is the resummed contribution in the case of a light active flavour being struck by
the photon, and �Âca,i(mqk) is the resummed contribution in the case of a heavy flavour being struck
by the photon.2 Recall that being active does not necessarily imply being massless and indeed both
massless and massive flavours contribute to �ca,i. Crucially though, in this contribution collinear
logarithms are factorized and resummed and, consequently, the zero mass limit of �ca,i is finite.
On the other hand, �Âca,i(mqk) only contains massive quarks and no resummation of mass loga-
rithms has been performed. Thus, the massless limit of this type of contributions is logarithmically
divergent. In some simplified approaches, the mass of the heavy-quark is immediately neglected
once it becomes active: this leads to what is sometimes called a zero-mass variable flavour number
scheme (ZM-VFNS). Note that the massless contribution is identical for each massless quarks, so
in a ZM-VFNS we would have

nfÿ

k=1
e2k �ca,i(0) = Èe2Ínf�ca,i(0), i = g, q. (2.17)

For this reason, a factor nf is usually included in the definition of the massless singlet coe�cient
function, see e.g. Refs. [49, 61]. Here instead, we wish to retain the mass dependence of the active
flavours, if present. To this purpose, we adopt a factorization scheme akin to S-ACOT [78, 79] or
FONLL [84] (which are formally identical [75, 88]) in which the mass dependence is retained in the
coe�cient functions.

We now perform a logarithmic counting on Eq. (2.14). None of the matching functions are LL,
with the exception of the LO diagonal components, which are all equal to 1 at O(–0

s), K
(0)
ii = 1.

Furthermore, all coe�cient functions are NLL, except the non-singlet LO coe�cient of F2, which
is CNS,(0)

2,q = O(1) and thus LL. The leading non-trivial logarithmic contributions in the coe�cient
functions are then NLL, and their resummed contributions, Eq. (2.16), are related in the two
schemes by

�C
[nf ]
a,g = �C

[nf+1]
a,g + e2nf+1C

NS,(0)
a,q �Khg(mqnf+1),

2In charged-current DIS, where the photon is replaced by a W boson, the quark flavour changes after hitting it,
and so does its mass. Therefore, in this case, the coe�cient functions �ca,i and �Âca,i would also depend on the
mass of the outgoing quark.

– 8 –

Leading small-x logarithms produced by chains of gluon emissions (in axial gauge)

Factorization into a universal ladder and a process dependent off-shell coefficient
function
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Off-shell coefficient function

We computed the off-shell coefficients, projected onto F2, FL and F3 structure
functions [MB,Marzani,Muselli 1708.07510]

m1

m1

m2

V ú

Q̄

QÕ

gú

+

m1

m2

m2

V ú

Q̄

QÕ

gú

------------------

m1
m2

m2

V ú

Q̄

QÕ

gú

+
m1

m1

m2

V ú

Q̄

QÕ

gú

------------------

2

In the charged current case, the flavour changes → m1 ̸= m2

Ignoring the top quark, and considering CKM suppression in Vcb, we can assume one
of the quarks to be massless (m2 = 0).

Note: massless limit is finite as long as gluon is off-shell!
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Variable flavour number scheme (1)

Consider the charm quark, with mass m. Collinear emissions are regulated by the
mass, so no need to factorize them → 3FS (3 light active flavours)

F2(Q
2,m2) =

3∑
i

C
[3]
i (Q2,m2) ⊗ f

[3]
i (Q2)

C
[3]
i (Q2,m2) contains logs of m2/Q2, which may get large for Q2 ≫ m2

→ resummation → 4FS (the charm is considered massless)

=
4∑
k

C
[4]
k (Q2, 0) ⊗ f

[4]
k (Q2) + O

(
m2

Q2

)
collinear emissions are factorized in the 4FS PDF, massless limit finite, power
corrections lost.

Power corrections can be restored from the 3FS computation, after removing power
counting

Linear relation between f
[3]
i (Q2) and f

[4]
k (Q2) (factorization scheme change)
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Variable flavour number scheme (2)

Need the relation between PDFs in the two schemes

Marco Bonvini New insights on the proton's structure

How is a PDF set determined?

Once all (active) PDFs are known at an "initial" (low) scale, they can be computed at all (higher) scales 
using DGLAP evolution

Given the initial-scale boundary condition, then PDFs at higher scales are fully determined by 
‣ perturbative accuracy of DGLAP splitting functions Pij 
‣ quark masses mi 
‣ quark matching scales μi 
‣ perturbative accuracy of matching conditions Aij

A lot of the information on the PDF set is contained in the initial-scale PDFs 

f [3]
i (x, μ20)

i = g , u , ū , d, d̄, s, s̄

μ0 ∼ 1GeV
DGLAP 

nf=3
f [4]
i (x, μ2

c )
i = g , u , ū , d , d̄ , s, s̄, c c̄

μc ∼ mc

f [5]
i (x, μ2

b)
i = g , u , ū , d , d̄ , s, s̄, c c̄, b, b̄

μb ∼ mb

μ

f [3]
i (x, μ20)

How are these determined?

DGLAP 

nf=4

DGLAP 

nf=5

f
[4]
k (Q2) =

4∑
p

3∑
i,j

U
[4]
kp (Q

2, µ2
c) ⊗A

[4←3]
pj (µ2

c ,m
2) ⊗ U

[3]
ji (µ2

c , µ
2
0) ⊗ f

[3]
i (µ2

0)

where A
[4←3]
ki (µ2

c ,m
2) depends on m through logarithms of m2/µ2

c

Choosing µc ∼ m the logs of m2/Q2 are resummed through DGLAP
evolution from µ2

c to Q2

Choosing µc = Q resummation is switched off and we get

f
[4]
k (Q2) =

3∑
i

A
[4←3]
ki (Q2,m2) ⊗ f

[3]
i (Q2)

Marco Bonvini Phenomenology of small-x resummation 15



Variable flavour number scheme (3)

We can thus write

F2(Q
2,m2) =

3∑
i

C
[3]
i (Q2,m2) ⊗ f

[3]
i (Q2)

=
4∑
k

C
[4]
k (Q2, 0) ⊗ f

[4]
k (Q2) + O

(
m2

Q2

)

=
3∑
i

4∑
k

C
[4]
k (Q2, 0) ⊗A

[4←3]
ki (Q2,m2) ⊗ f

[3]
i (Q2) + O

(
m2

Q2

)
from which we get

lim
m2≪Q2

C
[3]
i (Q2,m2) =

4∑
k

C
[4]
k (Q2, 0) ⊗A

[4←3]
ki (Q2,m2)

out of which we can compute the matching functions A
[4←3]
ki (Q2,m2) and the power

corrections

O
(
m2

Q2

)
=

3∑
i

[
C

[3]
i (Q2,m2) −

4∑
k

C
[4]
k (Q2, 0) ⊗A

[4←3]
ki (Q2,m2)

]
⊗ f

[3]
i (Q2)

=
4∑
k

∆C
[4]
k (Q2,m2) ⊗ f

[4]
k (Q2)
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Matching conditions at small x

Expanding this equation to NLL at small x

lim
m≪Q

C
[3]
i (Q2,m2) =

4∑
k

C
[4]
k (Q2, 0) ⊗A

[4←3]
ki (Q2,m2)

we get (in Mellin space) at LL [MB,Marzani,Muselli 1708.07510]

A
[4←3],LL
ki (Q2,m2) = δki

and at NLL

A[4←3],NLL
cg (Q2,m2) = lim

m≪Q
C[3],NLL

g (Q2,m2) − C[4],NLL
g (Q2, 0)

A[4←3],NLL
cq (Q2,m2) =

CF

CA

A[4←3],NLL
cg (Q2,m2)

A
[4←3],NLL
ki (Q2,m2) = 0 if k is light (g, u, d, s)
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Perturbative stability of charm matching conditions

f [4]
c (Q2) =

4∑
p

3∑
i,j

U [4]
cp (Q2, µ2

c) ⊗A
[4←3]
pj (µ2

c ,m
2) ⊗ U

[3]
ji (µ2

c , µ
2
0) ⊗ f

[3]
i (µ2

0)
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κc = µc/m, µc = charm matching scale (threshold)

[xFitter 1802.00064]

The perturbatively generated charm PDF is much less dependent on the
(unphysical) matching scale when small-x resummation is included!
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Resummed DIS coefficient functions

Resummed result with power corrections included:

F2(Q
2,m2) =

4∑
k

[
C

[4]
k (Q2, 0) + ∆C

[4]
k (Q2,m2)

]
⊗ f

[4]
k (Q2)

Resummed contribution to F2,g, FL,g and F3,g DIS coefficient functions for the
charm with mass effects
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heavy quark production at LHC

[Catani,Ciafaloni,Hautmann NPB 366 (1991) 135]
[Ball,Ellis 0101199]

[Chachamis,Deák,Hentschinski,Rodrigo,Sabio Vera 1507.05778]
[Guiot 1812.02156]

[Bolognino,Celiberto,Fucilla,Ivanov,Mohammed,Papa 1909.03068, 2109.11875]
[MB,Silvetti 2211.10142]
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Theoretical predictions with hadrons in the initial state

QCD collinear factorization: y = Y − 1
2 log x1

x2

dσ

dQ2dY dpt...
=

∑
i,j=g,q

∫ 1

τ
dx1

∫ 1

τ
dx2 fi

(
x1, Q

2
)
fj
(
x2, Q

2
)
Cij

(
τ

x1x2
, y, pt, ..., αs

)

proton proton

p2p1 x1p1 x2p2
fi(x1,Q2) fj(x2,Q2)

Cij(z,αs)

parton i parton j

x1, x2,
τ

x1x2

can get as small as τ =
Q2

S
(note: typical values x1, x2 ∼

√
τ )

τ Higgs low mass DY bb̄ cc̄

LHC (13 TeV) 10−4 ∼ 10−6 ∼ 10−6 ∼ 10−7

FCC-hh (100 TeV) 10−6 ∼ 10−8 ∼ 10−8 ∼ 10−9

Heavy-quark production at pp colliders probes rather small x!!
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Heavy-quark pair production at LHC

Fully differential heavy-quark pair production [MB,Silvetti 2211.10142]

gú

gú Q̄

Q
gú

gú

Q̄

Q

g∗(k1) + g∗(k2) → Q(p) + Q̄(p̄) (pair with momentum q = p+ p̄)

We have resummed the cross section for different kinematics:

single heavy quark
dσ

dY dpt
→ e.g. D, B meson production

heavy-quark pair
dσ

dQ2 dY dqt
→ e.g. J/ψ, Υ production

Small-x resummation crucial for charm and bottom production

sensitive to very small x → constrain the PDFs [Gauld, Rojo 1610.09373]

key process at a forward physics facility (FPF) [Feng et al 2203.05090]
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Heavy-quark pair production at LHC: single-quark kinematics
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At large pt a larger perturbative instability, likely due to small-x logs, as it is cured
by resummation

Induced by kinematic constraint x e2|y|
(
1 +

p2t
m2

)
≤ 1
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Heavy-quark pair production at LHC: single-quark kinematics

Low pt = 2 GeV
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Heavy-quark pair production at LHC: single-quark kinematics

High pt = 20 GeV
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conclusions

Marco Bonvini Phenomenology of small-x resummation 26



Conclusions

Why small x resummation:

stabilises perturbative expansion at small x ≲ 10−3

has important effects in PDFs at small x, especially the gluon

impact on LHC and future high-energy colliders

Heavy quark production in DIS:

crucial for DIS description and so for PDF determination

small-x resummation at lowest non-trivial order known (available from HELL)

variable flavour number scheme at small x fully ready (from HELL)

Heavy quark production at pp colliders:

can probe very small x

fully differential resummed results available (from HELL)

single-quark and quark-pair kinematics both considered

potential for improving knowledge of PDFs at small x
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The role of the longitudinal structure function

The HERA data are reduced cross sections, given by

σr,NC = F2(x,Q
2) −

y2

1 + (1 − y)2
FL(x,Q

2) y =
Q2

x s

in terms of the structure functions F2, FL

The turnover can be explained by a larger FL, contributing mostly at small x

The other option, a turnover in F2, seems unlikely (requires peculiar PDF shape)

Note that FL = O(αs), and it is gluon dominated

It plays a key role in DIS at small x

⇒ having good measurements of FL is very important!

Future ep colliders (LHeC, FCC-eh) could provide precise
FL measurements!!
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Higher twist explanation of HERA low-x data

FL → FL ×
(
1 +

AL

Q2

)
with AL fitted from data

Improved description, but χ2 still grows

PDFs unaffected
↓ ↓ ↓ ↓ ↓

term is, as expected, confined to the low-Q2 region. The
HHT fits show a slower rise in χ2 as Q2

min is reduced.
The fits withQ2

min ¼ 2.0 GeV2 close to the starting scale
μ2f0 ¼ 1.9 GeV2 were studied in more detail. The relevant
χ2 values are listed in Table II. The PDF and especially the
higher-twist parameters of HHT NNLO do not change
much when Q2

min is lowered from 3.5 GeV2 to 2.0 GeV2.
The partial χ2=ndp for the NC eþp data with

ffiffiffi
s

p
¼318GeV

increases from 1.12 to 1.14, but the partial χ2=ndp drops
from 1.28 to 1.04 for the 25 points in the range
2.0 ≤ Q2 < 3.5 GeV2.
Refitting with lower Q2

min has a stronger effect at NLO
than at NNLO, but again, the higher-twist term is basically
unchanged. The results at NLO are, as before, not strongly
dependent on the details of the gluon distribution. This can
be seen when refitting with HHT NLO AG, which yields
almost the same result as HHT NLO.

IV. HEAVY-FLAVOR SCHEMES

The influence of the heavy-flavor scheme was already
discussed in the context of HERAPDF2.0 [3]. To study the
effect on this analysis, the HERAFitter [20] package
was used to replace the default RTOPT scheme with the
fixed-order plus next-to-leading logarithms (FONLL)

scheme [27,28]. The resulting dependence of χ2 on Q2
min

is shown in Fig. 3, together with the values from the
standard fits.
In the FONLL scheme, the HHT NNLO fit has a

substantially improved χ2=ndof for low Q2
min compared

to HERAPDF2.0, just as for the standard HHT NNLO fit
with RTOPT. The value of the higher-twist parameter
AHT
L ¼ 6.0# 0.7 GeV2 is also similar. However, the

HHT NLO FONLL fit has only a marginally improved
χ2=ndof for low Q2 as compared to HERAPDF2.0 and a
small value of AHT

L , i.e. AHT
L ¼ 1.2# 0.6 GeV2. This is

probably associated with the order of αs at which FL is
evaluated in these different heavy-flavor schemes. RTOPT
at NLO calculates FL to Oðα2sÞ and RTOPT at NNLO
calculates FL to Oðα3sÞ. FONLL at NLO calculates FL to
OðαsÞ and FONLL at NNLO calculates FL to Oðα2sÞ. Only
calculating FL to OðαsÞ results in a relatively large FL,
which can reduce the need for a higher-twist term.
However, as soon as FL is calculated to Oðα2sÞ or higher,
a higher-twist term is required. The best fit achieved for
HHT NNLO is with the RTOPT scheme.

V. REDUCED CROSS SECTIONS

A comparison of the predictions of HHT and
HERAPDF2.0 with Q2

min ¼ 3.5 GeV2 to the measured
reduced NC eþp cross sections is shown at NNLO in
Fig. 4 and at NLO in Fig. 5. In all cases, the predictions
are extrapolated down to Q2 ¼ 2.0 GeV2; HHT clearly
describes this low-Q2, low-xBj data better. This was already
indicated by the χ2=ndof values in Table I, where the
χ2=ndp for the data points with 2.0 ≤ Q2 < 3.5 GeV2 are
listed separately. The HHT NNLO predictions are clearly
preferred as they describe the turnover of the data towards
low xBj quite well. This turnover region at low xBj is not
well described by the predictions from HERAPDF2.0.
The predictions of the HHT NNLO and HHT NLO with

Q2
min ¼ 2.0 GeV2 are shown in Fig. 6. The data are well

described at NNLO, even better than for the standard HHT
NNLOwithQ2

min ¼ 3.5 GeV2. The effect of the lowerQ2
min

is stronger at NLO, where the turnover is better described.

TABLE I. Table of χ2 values for the HHT fit compared to the equivalent HERAPDF2.0 fit, both with
Q2

min ¼ 3.5 GeV2. Also listed are the partial χ2=ndp (number of data points) values of the fits for the high-precision
NC eþp data at

ffiffiffi
s

p
¼ 318 GeV for Q2 ≥ Q2

min. The final row for each fit lists the χ2=ndp for its predictions for Q2

below the fitted region down to 2.0 GeV2. In addition, the higher-twist parameters for the HHT fits are given.

Fit at With Q2
min ¼ 3.5 GeV2 HERAPDF2.0 HHT AHT

L =GeV2

NNLO χ2=ndof 1363=1131 1316=1130 5.5# 0.6
χ2=ndp for NC eþp: Q2 ≥ Q2

min 451=377 422=377
χ2=ndp for NC eþp: 2.0 GeV2 ≤ Q2 < Q2

min 41=25 32=25
NLO χ2=ndof 1356=1131 1329=1130 4.2# 0.7

χ2=ndp for NC eþp: Q2 ≥ Q2
min 447=377 431=377

χ2=ndp for NC eþp: 2.0 GeV2 ≤ Q2 < Q2
min 46=25 46=25

2 / GeV
min
2Q
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 / 
nd

of
2 χ
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FIG. 2. The χ2=ndof versus Q2
min for HHT and HERAPDF2.0

fits at NNLO and NLO.
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The HHT PDFs, xdv and xuv for the valence quarks and
xS for the sea quarks together with xg, are shown in Fig. 1.
The PDFs of HHT are very similar to the PDFs of
HERAPDF2.0, even though the values of AHT

L extracted
are quite high: AHT

L ¼ 5.5" 0.6 GeV2 from the NNLO and
AHT
L ¼ 4.2" 0.7 GeV2 from the NLO fit. The PDFs of

HHT remain very similar to those of HERAPDF2.0 when

they are evolved in Q2 up to the scale of the LHC, across
the kinematic reach of xBj of the ATLAS, CMS and LHCb
experiments. Thus the need for higher-twist terms at low
Q2 has no effect on LHC physics.
The χ2=ndof for HHT NNLO is 1316=1130 and for

HHT NLO is 1329=1130. This may be compared to the
HERAPDF2.0 χ2=ndof values of 1363=1131 for the
NNLO and 1356=1131 for the NLO fit. This represents
an improvement of Δχ2 ¼ −27 for NLO and an even more
significant Δχ2 ¼ −47 at NNLO. Table I details the main
contributions to this reduction of χ2. The HHT fit at NNLO
has a lower χ2 than the fit at NLO. This is a reversal of the
situation for HERAPDF2.0. Table I also lists the partial
χ2=ndp values for the high-precision NC eþp data withffiffiffi
s

p
¼ 318 GeV2. In addition, the χ2=ndp values for the

data points below Q2
min ¼ 3.5 GeV2 down to 2.0 GeV2 are

listed. These χ2 values provide an evaluation of the quality
of the predictions below Q2

min and quantify that the
extrapolation of HHT NNLO describes these data better
than the extrapolation of HERAPDF2.0, while the descrip-
tion at NLO does not improve.
The positive higher-twist terms preferred by the HHT

fits imply that FL is larger than those determined in the
HERAPDF2.0 fits. Since the structure function FL is
directly related to the gluon distribution at low x, at
OðαsÞ, it might be expected that a larger FL implies at
larger low-x gluon. However, this ignores the role of
higher-order matrix elements. In fact, the NNLO gluon
distribution exhibits a turnover at low x andQ2. This comes
from the substantial A0

g term which the HHT NNLO fit
requires even in the presence of the large higher-twist term.
To investigate this a gluon parametrization of the form
xgðxÞ ¼ AgxBgð1 − xÞCgð1þDgxÞ was also tested at both
NLO and NNLO. This form is called the alternative gluon
or AG form of the parametrization and it ensures that the
gluon distribution is always positive definite for Q2 ≥ μ2f0.
The AG fits and the fits using the form of Eq. (4) are very
similar at NLO. In contrast, the AG parametrization at
NNLO results in much higher χ2=ndof values, 1389=1133
for HERAPDF2.0 and 1350=1132 for HHT. At NNLO
the data favor a strong gluon turnover whereas AG, by
construction, does not allow this. The AG parametrization
is clearly not suited for fits at NNLO.
The validity of the assumption that perturbation theory is

applicable in the kinematic regime of the fits is tested by the
dependence of the quality of the fits, as represented by
χ2=ndof, on the value ofQ2

min. The value of χ
2=ndof should

ideally not depend strongly on Q2
min. The dependence of

χ2=ndof on Q2
min for HHT and HERAPDF2.0 is shown in

Fig. 2 for both NNLO and NLO. The values drop steadily
until Q2

min ≈ 10 GeV2, when the χ2=ndof becomes similar
for HHT and HERAPDF2.0. The effect of the higher-twist
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FIG. 1. The HHT parton distribution functions, xuv, xdv, xS
and xg, at the scale μ2f ¼ 10 GeV2 compared to the PDFs from
HERAPDF2.0 at NNLO (top) and NLO (bottom). The gluon and
sea distributions are scaled down by a factor 20. The bands
represent the experimental, i.e. fit, uncertainties.
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[Abt,Cooper-Sarkar,Foster,Myronenko,Wichmann,Wing 1604.02299]
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Improved description of low-x HERA data

Low x at HERA: importance of resummation in PDFs

DIS data from HERA extend down to x ⇠ 10�5

Tension between HERA data at low Q2 and low x with theory
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uncertainties on the predictions. Dotted lines indicate extrapolation into kinematic regions not
included in the fit.

81

Attempts to explain this deviation with higher twists, saturation models, ...

Successful description of this region including small-x resummation!
[Ball,Bertone,MB,Marzani,Rojo,Rottoli 1710.05935] [xFitter+MB 1802.00064] [MB,Giuli 1902.11125]

Note: future higher energy colliders will probe smaller values of x
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Impact of small-x resummation at LHC and future colliders

gg → H inclusive cross section
[MB,Marzani 1802.07758] [MB 1805.08785]
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ggH production cross section  ---  effect of small-x resummation
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ggH cross section at FCC-hh ∼ 10% larger than expected!

At LHC +1% effect; larger effect expected at differential level

Other recent works on Higgs production [Hentschinski,Kutak,vanHameren 2011.03193]

[Celiberto,Ivanov,Mohammed,Papa 2008.00501]
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Parton luminosities at LHC
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Difference more pronounced in differential distributions at large rapidity
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Parton luminosities at FCC-hh
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Large effects also at the EW scale, especially at large rapidities
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Heavy-quark pair production at LHC: quark-pair kinematics
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Approximate N3LO splitting functions from resummation [MB,Marzani 1805.06460]
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Could be constrained with the recent impressive progress (Mellin moments)
[Davies,Vogt,Ruijl,Ueda,Vermaseren 1610.07477] [Moch,Ruijl,Ueda,Vermaseren,Vogt 1707.08315]
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Small-x logarithms in DIS coefficient functions

Only singlet sector affected: Ca,g, C
S
a,q, a = 2, L, 3
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Small-x logarithms in DIS coefficient functions

Only singlet sector affected: Ca,g, C
S
a,q, a = 2,L, 3
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Some representative HELL results: DIS coefficient functions

F2,g and FL,g massless DIS coefficient functions
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Some representative HELL results: DIS coefficient functions

F2,g and FL,g massless DIS coefficient functions
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Impact of subleading logs (with xFitter)

First fit with HELL 3.0 [MB,Giuli 1902.11125]

Red and yellow curves differ by subleading logs
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Achieved with a new parametrization, more flexible at small x

xf(x, µ2
0) = AxB(1− x)C

[
1 +Dx+ Ex2 + F log x+G log2 x+H log3 x

]
Improved description of the low x data even at fixed order
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Impact of subleading logs (with xFitter)

The good agreement obtained at fixed order with the low x HERA data is achieved
in a different way with respect to the resummed case [MB,Giuli 1902.11125]
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At resummed level, both FL and F2 grow

At fixed order, FL grows below x ∼ 10−4 and F2 decreases, due to the sudden
growth of the gluon PDF
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Why is the effect of resummation mostly driven by the PDFs?

dσ

dQ2dY...
=

∫ 1

τ

dz

z

∫
dŷ fi

(√
τ

z
eŷ, Q2

)
fj

(√
τ

z
e−ŷ, Q2

)
Cij(z, Y − ŷ, ..., αs)

The small z integration region, where logs in C are large, is weighted by the PDFs
at large momentum fractions x =

√
τ
z
e±ŷ

Since PDFs die fast at large x, especially the gluon, the small-z region is suppressed!

Rather, the large z region is enhanced by the gluon-gluon luminosity
In that region, the difference between fixed-order and resummed PDFs is large
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