Heavy flavours at small-x

Marco Bonvini

INFN, Rome 1 unit

Heavy Flavours at High pT 30 Nov 2023, Higgs Centre, Edinburgh

Scales of heavy quark production

Consider heavy quark production in either DIS or pp collisions

There are (at least) four scales in the game

- *m*: mass of the heavy quark
- Q: hard scale (virtuality of the photon, invariant mass of the final state)
- \sqrt{s} : parton-level centre-of-mass energy
- \sqrt{S} : hadron-level centre-of-mass energy

Depending on the hierarchy, there may be large logs \rightarrow need to resum them

Dimensionless ratios:

$$rac{m^2}{Q^2}, \qquad au=rac{Q^2}{S}, \qquad x=rac{Q^2}{s}, \qquad au\leq x\leq 1$$

Focus on the high-energy limit $\tau \ll 1$: large $\log x$ appear and must be resummed. If m^2/Q^2 is also small, also $\log \frac{m^2}{Q^2}$ must be resummed

small-x resummation

[Catani,Ciafaloni,Colferai,Hautmann,Salam,Stasto] [Thorne,White] [Altarelli,Ball,Forte] [Neill,Pathak,Rothstein,Stewart]

Small-x logarithms in the context of collinear factorization

$$\begin{array}{ll} \text{Collinear factorization:} & \sigma(x,Q^2) = \int_x^1 \frac{dz}{z} \, C_i\big(z,\alpha_s(Q^2)\big) \, f_i\Big(\frac{x}{z},Q^2\Big) \\ \text{DGLAP evolution:} & \mu^2 \frac{d}{d\mu^2} f_i(x,\mu^2) = \int_x^1 \frac{dz}{z} \, P_{ij}(z,\alpha_s(\mu^2)) \, f_j\Big(\frac{x}{z},\mu^2\Big) \\ \text{Heavy-quark matching:} & f_i^{[n_f+1]}(x,\mu^2) = \int_x^1 \frac{dz}{z} \, A_{ij}(z,\alpha_s(\mu^2)) \, f_j^{[n_f]}\Big(\frac{x}{z},\mu^2\Big) \end{array}$$

Any object with a perturbative expansion can exhibit a logarithmic enhancement:

- observable: coefficient functions $C(x, \alpha_s)$
- evolution: splitting functions $P(x, lpha_s)$ and matching conditions $A(x, lpha_s)$

Small-x logarithms: single logs $\alpha_s^n \frac{1}{x} \log^k \frac{1}{x} \quad (0 \le k \le n-1)$ When $\alpha_s \log \frac{1}{x} \sim 1$ perturbativity is spoiled \rightarrow all-order resummation needed

In MS and related schemes, both coefficient $C(x, \alpha_s)$ and splitting $P(x, \alpha_s)$ functions, and also matching conditions $A(x, \alpha_s)$, are logarithmically enhanced at small x (in the singlet sector)

Small-x logarithms in gluon-gluon splitting function

 $P_{gg}(x, \alpha_s)$ splitting function at fixed order

Logarithms start to grow for $x \lesssim 10^{-2} ext{ }$ perturbative instability for $x \lesssim 10^{-3}$ (for $Q \sim 5 ext{GeV}$)

Small-x logarithms in gluon-gluon splitting function

 $P_{gg}(x, \alpha_s)$ splitting function at fixed order

Logarithms start to grow for $x \lesssim 10^{-2} o$ perturbative instability for $x \lesssim 10^{-3}$ (for $Q \sim 5$ GeV)

Resummation obtained with the HELL public code

[MB,Marzani,Peraro 1607.02153] [MB,Marzani,Muselli 1708.07510] [MB,Marzani 1805.06460]

Do we experience the need for small-x resummation?

Hint: look at PDF fits...

Low x at HERA

Deep-inelastic scattering (DIS) data from HERA extend down to $x\sim3 imes10^{-5}$ in the "perturbative region" $Q^2>2\,{
m GeV}^2$

Tension between HERA data at low Q^2 and low x with fixed-order theory

<code>HELL</code> \rightarrow makes possible a PDF fit with small-x resummation

NNPDF3.1sx [1710.05935]	xFitter [1802.00064, see also 1902.11125]
NeuralNet parametrization of PDFs	polynomial paramterization
MonteCarlo uncertainty	Hessian uncertainty
charm PDF is fitted	charm PDF perturbatively generated
DIS+tevatron+LHC (~ 4000 datapoints)	only HERA data (~ 1200 datapoints)
NLO, NLO+NLLx, NNLO, NNLO+NLLx	NNLO, NNLO+NLLx

The quality of the fit improves substantially including small-x resummation

NNPDF3.1sx, HERA inclusive structure functions

Impact of small-x resummation on PDFs: the gluon

Small-x resummation mostly affects the gluon PDF (and the total quark singlet)

Dramatic effect of resummation on the gluon PDF at $x \lesssim 10^{-3}$

Persists at higher energy scales \Rightarrow impact for LHC and FCC-hh phenomenology

heavy quark production in DIS

[Catani,Ciafaloni,Hautmann NPB 366 (1991) 135] [Ball,Ellis 0101199] [MB,Marzani,Muselli 1708.07510]

Heavy quark production in DIS at small \boldsymbol{x}

Heavy quark production in neutral or charged current

Leading small-x logarithms produced by chains of gluon emissions (in axial gauge) Factorization into a universal ladder and a process dependent *off-shell* coefficient function

Off-shell coefficient function

We computed the off-shell coefficients, projected onto F_2 , F_L and F_3 structure functions [MB,Marzani,Muselli 1708.07510]

In the charged current case, the flavour changes $\rightarrow m_1 \neq m_2$

Ignoring the top quark, and considering CKM suppression in V_{cb} , we can assume one of the quarks to be massless $(m_2 = 0)$.

Note: massless limit is finite as long as gluon is off-shell!

Variable flavour number scheme (1)

Consider the charm quark, with mass m. Collinear emissions are regulated by the mass, so no need to factorize them \rightarrow 3FS (3 light active flavours)

$$F_2(Q^2,m^2) = \sum_i^3 C_i^{[3]}(Q^2,m^2) \otimes f_i^{[3]}(Q^2)$$

 $C_i^{[3]}(Q^2, m^2)$ contains logs of m^2/Q^2 , which may get large for $Q^2 \gg m^2 \rightarrow$ resummation \rightarrow 4FS (the charm is considered massless)

$$=\sum_{k}^{4} C_{k}^{[4]}(Q^{2},0)\otimes f_{k}^{[4]}(Q^{2})+\mathcal{O}igg(rac{m^{2}}{Q^{2}}igg)$$

collinear emissions are factorized in the 4FS PDF, massless limit finite, power corrections lost.

Power corrections can be restored from the 3FS computation, after removing power counting

Linear relation between $f_i^{[3]}(Q^2)$ and $f_k^{[4]}(Q^2)$ (factorization scheme change)

Variable flavour number scheme (2)

Need the relation between PDFs in the two schemes

$$f_k^{[4]}(Q^2) = \sum_p^4 \sum_{i,j}^3 U_{kp}^{[4]}(Q^2,\mu_c^2) \otimes A_{pj}^{[4\leftarrow3]}(\mu_c^2,m^2) \otimes U_{ji}^{[3]}(\mu_c^2,\mu_0^2) \otimes f_i^{[3]}(\mu_0^2)$$

where $A^{[4 \leftarrow 3]}_{ki}(\mu^2_c,m^2)$ depends on m through logarithms of m^2/μ^2_c

- Choosing $\mu_c \sim m$ the logs of m^2/Q^2 are resummed through DGLAP evolution from μ_c^2 to Q^2
- Choosing $\mu_c = Q$ resummation is switched off and we get

$$f_k^{[4]}(Q^2) = \sum_i^3 A_{ki}^{[4 \leftarrow 3]}(Q^2,m^2) \otimes f_i^{[3]}(Q^2)$$

Variable flavour number scheme (3)

We can thus write

$$\begin{split} F_2(Q^2, m^2) &= \sum_i^3 C_i^{[3]}(Q^2, m^2) \otimes f_i^{[3]}(Q^2) \\ &= \sum_k^4 C_k^{[4]}(Q^2, 0) \otimes f_k^{[4]}(Q^2) + \mathcal{O}\left(\frac{m^2}{Q^2}\right) \\ &= \sum_i^3 \sum_k^4 C_k^{[4]}(Q^2, 0) \otimes A_{ki}^{[4 \leftarrow 3]}(Q^2, m^2) \otimes f_i^{[3]}(Q^2) + \mathcal{O}\left(\frac{m^2}{Q^2}\right) \end{split}$$

from which we get

$$\lim_{m^2 \ll Q^2} C_i^{[3]}(Q^2, m^2) = \sum_k^4 C_k^{[4]}(Q^2, 0) \otimes A_{ki}^{[4 \leftarrow 3]}(Q^2, m^2)$$

out of which we can compute the matching functions $A_{ki}^{[4 \leftarrow 3]}(Q^2,m^2)$ and the power corrections

$$\begin{split} \mathcal{O}\!\left(\frac{m^2}{Q^2}\right) &= \sum_i^3 \! \left[C_i^{[3]}(Q^2,m^2) - \sum_k^4 C_k^{[4]}(Q^2,0) \otimes A_{ki}^{[4\leftarrow3]}(Q^2,m^2)\right] \otimes f_i^{[3]}(Q^2) \\ &= \sum_k^4 \Delta C_k^{[4]}(Q^2,m^2) \otimes f_k^{[4]}(Q^2) \end{split}$$

Matching conditions at small x

Expanding this equation to NLL at small x

$$\lim_{m \ll Q} C_i^{[3]}(Q^2,m^2) = \sum_k^4 C_k^{[4]}(Q^2,0) \otimes A_{ki}^{[4 \leftarrow 3]}(Q^2,m^2)$$

we get (in Mellin space) at LL

[MB,Marzani,Muselli 1708.07510]

$$A^{[4 \leftarrow 3], \mathrm{LL}}_{ki}(Q^2, m^2) = \delta_{ki}$$

and at NLL

$$\begin{split} A^{[4 \leftarrow 3], \text{NLL}}_{cg}(Q^2, m^2) &= \lim_{m \ll Q} C^{[3], \text{NLL}}_g(Q^2, m^2) - C^{[4], \text{NLL}}_g(Q^2, 0) \\ A^{[4 \leftarrow 3], \text{NLL}}_{cq}(Q^2, m^2) &= \frac{C_F}{C_A} A^{[4 \leftarrow 3], \text{NLL}}_{cg}(Q^2, m^2) \\ A^{[4 \leftarrow 3], \text{NLL}}_{ki}(Q^2, m^2) &= 0 \quad \text{if } k \text{ is light } (g, u, d, s) \end{split}$$

Perturbative stability of charm matching conditions

 $\kappa_c = \mu_c/m, \qquad \mu_c = \text{charm matching scale (threshold)}$

The perturbatively generated charm PDF is much less dependent on the (unphysical) matching scale when small-x resummation is included!

^{[×}Fitter 1802.00064]

Resummed result with power corrections included:

$$F_2(Q^2,m^2) = \sum_k^4 \Bigl[C_k^{[4]}(Q^2,0) + \Delta C_k^{[4]}(Q^2,m^2) \Bigr] \otimes f_k^{[4]}(Q^2)$$

Resummed contribution to $F_{2,g},\ F_{L,g}$ and $F_{3,g}$ DIS coefficient functions for the charm with mass effects

heavy quark production at LHC

[Catani,Ciafaloni,Hautmann NPB 366 (1991) 135] [Ball,Ellis 0101199] [Chachamis,Deák,Hentschinski,Rodrigo,Sabio Vera 1507.05778] [Guiot 1812.02156] [Bolognino,Celiberto,Fucilla,Ivanov,Mohammed,Papa 1909.03068, 2109.11875] [MB,Silvetti 2211.10142] QCD collinear factorization: $y = Y - \frac{1}{2} \log \frac{x_1}{x_2}$ $\frac{d\sigma}{dQ^2 dY dp_t \dots} = \sum_{i,j=g,q} \int_{\tau}^{1} dx_1 \int_{\tau}^{1} dx_2 f_i(x_1, Q^2) f_j(x_2, Q^2) C_{ij}\left(\frac{\tau}{x_1 x_2}, y, p_t, \dots, \alpha_s\right)$

 $x_1, x_2, rac{ au}{x_1 x_2}$ can get as small as $au = rac{Q^2}{S}$ (note: typical values $x_1, x_2 \sim \sqrt{ au}$)

au	Higgs	low mass DY	$ bar{b}$	$c\bar{c}$
LHC (13 TeV)	10^{-4}	$\sim 10^{-6}$	$ \sim 10^{-6}$	$ \sim 10^{-7}$
FCC-hh (100 TeV)	10^{-6}	$\sim 10^{-8}$	$\sim 10^{-8}$	$\sim 10^{-9}$

Heavy-quark production at pp colliders probes rather small x!!

Heavy-quark pair production at LHC

Small-x resummation crucial for charm and bottom production

- sensitive to very small $x \rightarrow \text{constrain the PDFs}$ [Gauld, Rojo 1610.09373]
- key process at a forward physics facility (FPF) [Feng et al 2203.05090]

At large p_t a larger perturbative instability, likely due to small-x logs, as it is cured by resummation

Induced by kinematic constraint
$$x \, e^{2|y|} igg(1+rac{p_t^2}{m^2}igg) \leq 1$$

Low $p_t=2~{
m GeV}$

High $p_t=20~{
m GeV}$

conclusions

Conclusions

Why small x resummation:

- ullet stabilises perturbative expansion at small $x \lesssim 10^{-3}$
- has important effects in PDFs at small x, especially the gluon
- impact on LHC and future high-energy colliders

Heavy quark production in DIS:

- crucial for DIS description and so for PDF determination
- small-x resummation at lowest non-trivial order known (available from HELL)
- variable flavour number scheme at small x fully ready (from HELL)

Heavy quark production at pp colliders:

- can probe very small x
- fully differential resummed results available (from HELL)
- single-quark and quark-pair kinematics both considered
- ullet potential for improving knowledge of PDFs at small x

backup slides

The role of the longitudinal structure function

The HERA data are reduced cross sections, given by

$$\sigma_{r,\mathrm{NC}} = F_2(x,Q^2) - rac{y^2}{1+(1-y)^2} F_L(x,Q^2)$$
 $y = rac{Q^2}{xs}$

in terms of the structure functions F_2, F_L

The turnover can be explained by a larger F_L , contributing mostly at small xThe other option, a turnover in F_2 , seems unlikely (requires peculiar PDF shape)

Note that $F_L = \mathcal{O}(\alpha_s)$, and it is gluon dominated

It plays a key role in DIS at small x

 \Rightarrow having good measurements of F_L is very important! Future ep colliders (LHeC, FCC-eh) could provide precise F_L measurements!!

Higher twist explanation of HERA low-x data

$$F_L
ightarrow F_L imes \left(1 + rac{A_L}{Q^2}
ight)$$

with A_L fitted from data

Improved description, but χ^2 still grows

PDFs unaffected

 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

[Abt,Cooper-Sarkar,Foster,Myronenko,Wichmann,Wing 1604.02299]

Improved description of low-x HERA data

Improved description of the data, turnover well reproduced

The better description mostly comes from a larger resummed F_L

Note: no extra parameters in the fit, just improved theory

Marco Bonvini

Phenomenology of small-x resummation

ggH cross section at FCC-hh $\sim 10\%$ larger than expected! At LHC +1% effect; larger effect expected at differential level

Other recent works on Higgs production

[Hentschinski,Kutak,vanHameren 2011.03193] [Celiberto,Ivanov,Mohammed,Papa 2008.00501]

Parton luminosities at LHC

Difference more pronounced in differential distributions at large rapidity

Parton luminosities at FCC-hh

Large effects also at the EW scale, especially at large rapidities

Heavy-quark pair production at LHC: quark-pair kinematics

Approximate N³LO splitting functions from resummation [MB, Marzani 1805.06460]

 $\alpha_s = 0.20, n_f = 4, Q_0 \overline{\text{MS}}$

Large uncertainties from subleading logs

$$x P_{gg}^{(3)}(x) = a_{\rm LL}^{\rm known} \log^3 \frac{1}{x} + a_{\rm NLL}^{\rm known} \log^2 \frac{1}{x} + a_{\rm NNLL}^{\rm not \ known} \log \frac{1}{x} + \dots$$

Could be constrained with the recent impressive progress (Mellin moments) [Davies,Vogt,Ruijl,Ueda,Vermaseren 1610.07477] [Moch,Ruijl,Ueda,Vermaseren,Vogt 1707.08315]

Small-*x* logarithms in DIS coefficient functions

Only singlet sector affected: $C_{a,g}$, $C_{a,q}^{S}$, a = 2, L, 3

DIS coefficient functions are NLL quantities

Small-*x* logarithms in DIS coefficient functions

Only singlet sector affected: $C_{a,g}$, $C_{a,q}^{S}$, a = 2, L, 3

DIS coefficient functions are NLL quantities

Some representative HELL results: DIS coefficient functions

 $F_{2,g}$ and $F_{L,g}$ massless DIS coefficient functions

_

Some representative HELL results: DIS coefficient functions

 $F_{2,g}$ and $F_{L,g}$ massless DIS coefficient functions

First fit with HELL 3.0

[MB,Giuli 1902.11125]

Red and yellow curves differ by subleading logs

Achieved with a new parametrization, more flexible at small x

$$xf(x,\mu_0^2) = A x^B (1-x)^C \left[1 + Dx + Ex^2 + F \log x + G \log^2 x + H \log^3 x \right]$$

Improved description of the low x data even at fixed order

Impact of subleading logs (with xFitter)

The good agreement obtained at fixed order with the low x HERA data is achieved in a different way with respect to the resummed case [MB,Giuli 1902.11125]

At resummed level, both F_L and F_2 grow

At fixed order, F_L grows below $x\sim 10^{-4}$ and F_2 decreases, due to the sudden growth of the gluon PDF

Why is the effect of resummation mostly driven by the PDFs?

$$\frac{d\sigma}{dQ^2 dY...} = \int_{\tau}^{1} \frac{dz}{z} \int d\hat{y} f_i \left(\sqrt{\frac{\tau}{z}} e^{\hat{y}}, Q^2\right) f_j \left(\sqrt{\frac{\tau}{z}} e^{-\hat{y}}, Q^2\right) C_{ij}(z, Y - \hat{y}, ..., \alpha_s)$$

The small z integration region, where logs in C are large, is weighted by the PDFs at large momentum fractions $x = \sqrt{\frac{z}{z}}e^{\pm \hat{y}}$ Since PDFs die fast at large x, especially the gluon, the small-z region is suppressed!

Rather, the large z region is enhanced by the gluon-gluon luminosity In that region, the difference between fixed-order and resummed PDFs is large

gg partonic cross section

gg luminosity