Transverse Momentum Distributions of Heavy Hadrons and Polarized Heavy Quarks.

Rebecca von Kuk (DESY), Johannes K. L. Michel (Nikhef/UvA), Zhiquan Sun (MIT) based on 2305.15461 (JHEP 09 (2023) 205) and 2312.SOOON

Deutsches Elektronen-Synchrotron

Higgs Centre for Theoretical Physics Workshop – Heavy Flavours at High p_T

European Research Council Established by the European Commission

Outline.

Motivation and introduction

- very short introduction to transverse momentum dependent distributions (TMDs)
- why are heavy quarks interesting?

Heavy TMD fragmentation functions (FFs)

• discuss heavy TMD FFs in two regimes: $\Lambda_{
m QCD} \sim k_T \ll m$ and $\Lambda_{
m QCD} \ll k_T \sim m$

Towards phenomenology

- $e^+e^- \rightarrow HHX$
- Semi-inclusive deep inelastic scattering (SIDIS)

Outlook

heavy TMD FFs within Jets

Transverse Momentum Dependent Distributions.

Transverse momentum dependent (TMD) factorization formalism [Collins '11]

- collinear factorization [Collins, Soper, Sterman '89]: describes longitudinal momentum distribution (1D)
- TMDs allow for extraction of **3D** structure of the hadronization cascade
- TMDs are universal across processes [Collins, Metz '04]
- natural power-counting with transverse momentum $k_T \ll Q$

Transverse Momentum Dependent Distributions.

Transverse momentum dependent (TMD) factorization formalism [Collins '11]

- collinear factorization [Collins, Soper, Sterman '89]: describes longitudinal momentum distribution (1D)
- TMDs allow for extraction of **3D** structure of the hadronization cascade
- TMDs are universal across processes [Collins, Metz '04]
- natural power-counting with transverse momentum $k_T \ll Q$

 p_T

Why are heavy quarks interesting?

- bottom and charm quarks have $m_b, m_c \gg \Lambda_{
 m QCD}$
 - provides perturbative scale on otherwise non-perturbative dynamics of hadronization
- serve as static color source coupling to light degrees of freedom
- model independent prediction to tune shower to improve heavy flavor modeling
- Ideal to study hadronization process

Heavy TMD FFs.

Basics of TMD FFs.

TMD quark-quark correlator describing fragmentation

$$\begin{split} \Delta_{H/Q}(z_H, b_{\perp}) &= \frac{1}{2z_H N_c} \int \frac{\mathrm{d}b^+}{4\pi} \, e^{\mathrm{i}b^+ (P_H^-/z_H)/2} \operatorname{Tr} \oint_X \left\langle 0 | W^{\dagger}(b) \, \psi_Q(b) | HX \right\rangle \left\langle HX | \bar{\psi}_Q \, W | 0 \right\rangle, \\ \bullet \text{ unpolarized TMD FF:} \\ D_{1\,H/Q}(z_H, b_T) &= \operatorname{tr} \Big[\frac{\not{n}}{2} \Delta_{H/Q}(z_H, b_{\perp}) \Big] \end{split} \bullet \begin{array}{l} \bullet \text{ Collins TMD FF:} \\ H_{1\,H/Q}^{\perp(1)}(z_H, b_T) &= \operatorname{tr} \Big[\frac{\not{n}}{2} \frac{\not{b}_{\perp}}{M_H b_T^2} \, \Delta_{H/Q}(z_H, b_{\perp}) \Big] \end{split}$$

- in general: more TMD FFs if we allow polarized hadrons
- today: focus on unpolarized TMD FF!

Notation: momenta in terms of
$$n^{\mu}$$
, \bar{n}^{μ} with $n^2 = \bar{n}^2 = 0$ and $n \cdot \bar{n} = 2$:
 $p^{\mu} = \bar{n} \cdot p \, \frac{n^{\mu}}{2} + n \cdot p \, \frac{\bar{n}^{\mu}}{2} + p^{\mu}_{\perp} \equiv (p^-, p^+, p_{\perp})$, with $p^2_{\perp} \equiv p_{\perp} \cdot p_{\perp} < 0$, and $p_T = \sqrt{-p^2_{\perp}}$

Heavy TMD FFs.

Two different regimes

Regime 1 $\Lambda_{ m QCD} \sim k_T \ll m$

use bHQET:

$$\Delta_{H/Q}(z_H, b_{\perp}) = \underbrace{\frac{\delta(1 - z_H)}{\bar{n} \cdot v} C_m(m)}_{\mathbf{\bar{n}} \cdot v} \underbrace{\frac{1}{2N_c} \operatorname{Tr} \sum_{X} \left\langle 0 | W^{\dagger}(b_{\perp}) h_v(b_{\perp}) | H_v X \right\rangle \left\langle H_v X | \bar{h}_v W | 0 \right\rangle}_{F_H(b_{\perp})}$$
• project out unpol. TMD FF

$$D_{1\,H/Q}(z_H,b_T,\mu,\zeta) = egin{bmatrix} \delta(1-z_H)\,C_m(m,\mu,\zeta) \end{bmatrix} \chi_{1,H}\Big(b_T,\mu,rac{\sqrt{\zeta}}{m}\Big) \ + \mathcal{O}\Big(rac{1}{m}\Big)$$

[Cm calculated by Hoang, Pathak, Pertrulewicz, Stewart '15]

new scalar bHQET TMD fragmentation factors

$$\chi_{1,H}(b_T)=rac{1}{2}\operatorname{tr} F_H(b_\perp)$$

bHQET: Use bHQET to describe dynamics at non-perturbative scale $\mathcal{L} = \bar{h}_v (\mathrm{i} v \cdot D) h_v + \mathcal{L}_{\mathrm{light}} + \mathcal{O} \Big(\frac{1}{m} \Big), \quad \psi_Q(x) = e^{-\mathrm{i} m v \cdot x} h_v(x)$

November 30 2023

Regime 1: $\Lambda_{ m QCD} \sim k_T \ll m$

Now: decouple spin d.o.f. from light dynamics [Korchemsky and Radyushkin '92, Bauer, Pirjol and Stewart '02]

$$F_{H}(b_{\perp}) = \frac{1}{2} \sum_{\substack{h_{H}, h_{Q}, \\ h'_{Q}, h_{\ell}, h'_{\ell}}} u(v, h_{Q}) \, \bar{u}(v, h'_{Q}) \, \overbrace{\langle s_{Q}, h_{Q}; s_{\ell}, h_{\ell} | s_{H}, h_{H} \rangle \langle s_{H}, h_{H} | s_{Q}, h'_{Q}; s_{\ell}, h'_{\ell} \rangle}^{\text{Clebsch-Gordan-Coefficients}} \rho_{\ell, h_{\ell} h'_{\ell}}(b_{\perp})$$

• $\rho_{\ell,h_{\ell}h'_{\ell}}(b_{\perp})$: light spin density matrix, encodes all non-perturbative physics

Results for the unpolarized TMD FF

• performing trace sets
$$h_Q = h_Q'$$
 and $h_\ell = h_\ell'$

$$D_{1 H/Q}(z_H, b_T, \mu, \zeta) \propto \chi_{1,H}(b_T) = \frac{1}{2} \sum_{h_H} \sum_{h_Q} \sum_{h_\ell} \left| \underbrace{\langle s_Q, h_Q; s_\ell, h_\ell | s_H, h_H \rangle}_{\text{Clebsch-Gordan-Coefficients}} \right|^2 \rho_{\ell,h_\ell h_\ell}(b_\perp)$$

$$b \text{HQET: } h_v(x) = Y_v(x) h_v^{(0)}(x), \ Y_v(x) = P\left[\exp\left(ig \int_0^\infty \mathrm{d}s \, v \cdot A(x + vs) \right) \right]$$

$$h_v(x) |s_Q, h_Q; s_\ell, h_\ell, f_\ell; X\rangle = u(v, h_Q) \ Y_v(x) |s_\ell, h_\ell, f_\ell; X\rangle, \text{ where } u(v, h_Q) = u(mv, h_Q)/\sqrt{m}$$

Results for the unpolarized TMD FF

• example:
$$D \ (s_{\ell} = 1/2 \ , \ s_{H} = 0)$$
 vs. D^{*} meson $(s_{\ell} = 1/2 \ , \ s_{H} = 1)$

$$\chi_{1,D}(b_T) = \frac{1}{4} \big[\rho_{\ell,++}(b_\perp) + \rho_{\ell,--}(b_\perp) \big] \quad \text{vs.} \quad \chi_{1,D^*}(b_T) = \frac{3}{4} \big[\rho_{\ell,++}(b_\perp) + \rho_{\ell,--}(b_\perp) \big]$$

• $\chi_{1,H}(b_T)$: conditional probability of Q to fragment into H given k_T

$$D_{1\,D/Q}=rac{1}{3}D_{1\,D^*/Q}$$

- ▶ three times as likely to produce *D*^{*} than *D*!
- ▶ for the first time: show that relations hold point by point in k_T [proven for inclusive fragmentation Falk and Peskin '94, Manohar and Wise '00]

Unpolarized for $\Lambda_{ m QCD} \ll k_T \sim m$

• match onto bHQET at $\mu \sim k_T \sim m$ [Nadolsky, Kidonakis, Olness and Yuan '03]

$$D_{1\,H/Q}(z_H, b_T, \mu, \zeta) = \boxed{d_{1\,Q/Q}(z_H, b_T, \mu, \zeta)} \chi_H + \mathcal{O}\Big(rac{\Lambda_{
m QCD}}{m}\Big) + \mathcal{O}(\Lambda_{
m QCD}b_T)$$

new perturbative matching coefficient:

$$\overline{d_{1\,Q/Q}(z_H,b_T,\mu,\zeta)} = \mathrm{tr}\Big[rac{n}{2}\Delta_{Q/Q}(z_H,b_\perp)\Big] = \delta(1-z_H) + \mathcal{O}(lpha_s)$$

• χ_H total probability of Q to fragment into H

Regime 2.

Unpolarized for $\Lambda_{ m QCD} \ll k_T \sim m$: consistency between regimes

- dependence on the hadronic final state is purely encoded in χ_H
- still valid for $m \ll k_T$, but need to resum logs at $\mu \sim m
 ightarrow$ refactorization

$$d_{1\,Q/Q}(z_H, b_T, \mu, \zeta) = \frac{1}{z_H^2} \sum_i \int \frac{\mathrm{d}z}{z} \, \mathcal{J}_{i/Q}(z, b_T, \mu, \zeta) \, d_{Q/i}\Big(\frac{z_H}{z}, \mu\Big) + \mathcal{O}(m^2 b_T^2)$$

with collinear FFs $d_{j/i}$ [Mele, Nason '91] and coefficients $\mathcal{J}_{i/k}$ [Collins '11, Echevarria, Idilbi, Sciememi '14] for $k_T \ll m$

$$d_{1\,Q/Q}(z,b_T,\mu,\zeta)=\delta(1-z)\,C_m(m,\mu,\zeta)\,C_1\Bigl(b_T,\mu,rac{\sqrt{\zeta}}{m}\Bigr)+\mathcal{O}\Bigl(rac{1}{b_Tm}\Bigr)$$

symmetry relations hold for all values of k_T and to all orders in α_s !

$$D_{1\,H/Q} = rac{1}{3} D_{1\,H^*/Q}$$

Heavy TMD FFs.

Unpolarized TMD FF: work in progress

• also consider $d_{1\,g/Q}(z_H,b_T,\mu,\zeta)$ and $d_{1\,Q/g}(z_H,b_T,\mu,\zeta)$

$$d_{1g/Q} = \underbrace{\otimes}_{\omega, \ k_{\perp}}^{\ell} \underbrace{\otimes}_{p} \otimes + \underbrace{\otimes}_{\omega, \ k_{\perp}}^{\ell} \otimes \otimes}_{p} \otimes , \quad d_{1Q/g} = \underbrace{\otimes}_{\omega, \ k_{\perp}}^{\ell} \otimes \otimes$$

ullet recall light quark limit: use and $d_{g/i}$ [Mele, Nason '91] and $d_{Q/i}$ [Cacciari, Nason, Oleari '05] at ${\cal O}(lpha_s)$

Heavy TMD FFs.

numerical model

• at LL: unpol. TMD FF completely specified by $\chi_{1,H}$ and TMD evolution

 $\int_{z_{
m cut}} {
m d} z_H \, D_{1\,H/Q}(z_H,b_T,\mu,\zeta) = \chi_{1,H}(b_T,\mu_0,
ho_0) \, U_q(\mu_0,\zeta_0,\mu,\zeta)$

• assume simple Gaussian model:

$$\chi_{1,H}(b_T,\mu_0,
ho_0)=\chi_H \expigl(-\kappa_H^2 b_T^2igr)$$

- plot identical for both quark flavors (b, c):
 - \blacktriangleright exactly equal for $k_T \ll m$
 - $k_T \sim m$: independent of m up to $\mathcal{O}(\alpha_s)$

Towards Phenomenology.

Towards Phenomenology: $e^+e^- \rightarrow HHX$.

Charm continuum production

- cross section depends on transverse momentum of the hadron $P_{a,T}$ and partonic transverse momentum $q_T = P_{a,T}/z_a$
- again: plots identical for b and c quarks

Towards Phenomenology: SIDIS at future EIC.

cross section

- SIDIS: interesting for spin correlations
- broader peak for B because of different size of phase space

14/17.

Outlook.

TMD FFs within jets

- consider heavy-quark TMD fragmentation within jets
- straightforward extension: our results are independent of the factorization theorem!
- NLO factorization theorem for TMD FFs within jets in pp collisions for $Q \sim R p_T^{
 m jet} \gg k_T, m$ w.r.t. standard jet axis [Kang, Liu, Ringer, Xing '17]

Non-global logs

- starting from NNLO effects from NGLs [Dasgupta, Salam '01, Banfi, Marchesini, Smye '02]
- studying k_T w.r.t to groomed jet axis could mitigate NGL effects [Makris, Neill, Vaidya '17, Makris, Vaidya '18]

Polarized Hadrons

- so far: considered TMD FFs only for unpol. hadrons
 - gives us access to two TMD FFs (unpolarized D_1 and Collins H_1^{\perp})
- now: also consider polarized hadrons
 - study all eight TMD FFs for heavy quarks
- relevant for LHC: polarized hadrons can be reconstructed from angular distribution of decay products

Summary

- heavy transverse momentum dependent fragmentation functions:
 - $\Lambda_{\rm QCD} \sim k_T \ll m$: unpol. TMD FF matches onto TMD fragmentation factor $\chi_{1,H}$
 - $\Lambda_{QCD} \ll m \sim k_T$: used light-quark twist expansion and combined it matching collinear FFs onto bHQET to identify relevant bHQET matrix elements
 - use HQ symmetry to prove relations between TMD FFs within in the same spin multiplet \rightarrow hold point by point in k_T
- towards phenomenology
 - expect TMD-sensitive samples at current $e^+e^- \rightarrow HHX$ and SIDIS
- Outlook: numerous follow up projects → Stay tuned!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE).

European Research Council

Established by the European Commission

lightcone momenta

• write momenta in terms of lightlike vectors n^{μ} , \bar{n}^{μ} with $n^2 = \bar{n}^2 = 0$ and $n \cdot \bar{n} = 2$:

$$p^{\mu} = ar{n} \cdot p \, rac{n^{\mu}}{2} + n \cdot p \, rac{ar{n}^{\mu}}{2} + p^{\mu}_{\perp} \equiv p^{-} rac{n^{\mu}}{2} + p^{+} rac{ar{n}^{\mu}}{2} + p^{\mu}_{\perp} \equiv (p^{-}, p^{+}, p_{\perp})$$

- always take $p_{\perp}^2 \equiv p_{\perp} \cdot p_{\perp} < 0$, and denote their magnitude by $p_T = \sqrt{-p_{\perp}^2}$ Important quantities
 - heavy quark Q fragmenting into heavy hadron H that contains Q and carries momentum

$$P_{H}^{\mu}=P_{H}^{-}\frac{n^{\mu}}{2}+\frac{M_{H}^{2}}{P_{H}^{-}}\frac{\bar{n}^{\mu}}{2}\,,\quad\text{where}\quad P_{H}^{-}\gg P_{H}^{+}=M_{H}^{2}/P_{H}^{-}$$

- k_{\perp} : transverse momentum of the heavy quark
- $b = (0, b^+, b_\perp)$: spatial separation between quark fields
- z_H: fraction of quarks lightcone momentum retained by hadron

Heavy TMD FFs.

Results for the Collins TMD FF

$$H^{(1),\perp}_{1,H/Q}(z_H,b_T) \propto \chi^\perp_{1,H}(b_T) = rac{1}{2} \operatorname{tr} \Bigl[rac{b_\perp}{b_T}
ot\!\!\!\!
abla F_H(b_\perp) \Bigr]$$

- encodes correlation between $S_{q\perp}^{ ext{initial}}$ and k_{\perp}
- naive expectation from HQ symmetry: Collins TMD FF should be suppressed by 1/m

Light quarks:

- correlation directly from non-perturbative dynamics of $\mathcal{L}_{\mathbf{QCD}}$

Heavy quarks:

- the angle between S_{Q⊥} and S_{ℓ⊥} determines which hadron in the spin symmetry multiplet is produced
- reconstructing this information induces a correlation between $S_{Q\perp}$ and $S_{\ell\perp}$
- S_{ℓ⊥} and k_⊥ are correlated by nonperturbative dynamics of L_{QCD}

Results for the Collins TMD FF

$$H^{(1),\perp}_{1,H/Q}(z_H,b_T) \propto \chi^\perp_{1,H}(b_T) = rac{1}{2} \operatorname{tr} \Bigl[rac{b_\perp}{b_T}
ot\!\!\!/ \, F_H(b_\perp) \Bigr]$$

- encodes correlation between $S_{q\perp}^{ ext{initial}}$ and k_\perp
- naive expectation from HQ symmetry: Collins TMD FF should be suppressed by 1/m

Results for the Collins TMD FF

$$H^{(1),\perp}_{1,H/Q}(z_H,b_T) \propto \chi^{\perp}_{1,H}(b_T) = rac{1}{2} \operatorname{tr} \Bigl[rac{b_{\perp}}{b_T}
ot\!\!\!
ot\!\!
ot\!\!
ot\!\!
ot\!\!

 F_H(b_{\perp}) \Bigr]$$

- Collins TMD FF is not suppressed by mass!
- example $s_\ell = 1/2\,,\ s_H = 0$

$$\chi^{\perp}_{1,H}(b_T) = rac{1}{4} ig[
ho_{\ell,-+}(b_{\perp}) -
ho_{\ell,+-}(b_{\perp}) ig]$$

• sum over all hadrons within same spin multiplet M_{ℓ} (identical light spin and falvor state ℓ)

$$\sum_{H \in M_{\ell}} \chi_{1,H}^{\perp}(b_T) = 0 \quad o \quad H_{1,\Lambda_c/c}^{\perp} = 0, \quad H_{1,D/c}^{\perp} = -H_{1,D^*/c}^{\perp}, \quad ...$$

Heavy quark limit lets us sum rule point by point in q_T!

[Previously shown in bare case. Requires sum over all hadrons and integration of z_H and k_T . Schäfer and Teryaev '00, Meissner, Metz and Pitonyak '10]

Heavy TMD FFs.

numerical model

- at LL: TMD FFs completely specified by $\chi_{1,H}$, $\chi_{1,H}^{\perp}$ and TMD evolution
- assume simple Gaussian models

$$\chi_{1,H}(b_T,\mu_0,
ho_0)=\chi_H \exp\Bigl(-\kappa_H^2 b_T^2\Bigr)$$

Heavy TMD PDFs.

numerical model

• unpolarized and helicity are linear in small k_T region, worm-gear L quadratic (after including Jacobian)

- unpolarized rises much more rapidly for small $m{x}$
 - \blacktriangleright expected from smaller gluon polarized fraction at small x

- need for resummation of subleading-power threshold logs of 1-x

Towards Phenomenology: SIDIS at future EIC.

cross section

- compare cross sections D and B mesons
- broader peak for B because of different size of phase space
- very small dependence on parameter κ_H

November 30 2023

Charm continuum production

• absolute sign of Collins effect lost in Collins effect strength:

$$R_{\cos(2\phi_0)}(Q^2,q_T) = rac{H_1^{\perp(1)}\otimes H_1^{\perp(1)}}{D_1\otimes D_1}$$

• **but**: can extract relative factor between *D* and *D** Collins function

$$R^{Dar{D}}_{\cos(2\phi_0)}=-rac{1}{3}R^{D^*ar{D}}_{\cos(2\phi_0)}=-rac{1}{3}R^{Dar{D}^*}_{\cos(2\phi_0)}=+rac{1}{9}R^{D^*ar{D}^*}_{\cos(2\phi_0)}$$

• for parameters $(\kappa_H, \kappa_{H,\perp}, \lambda_{H,\perp})$ of $\mathcal{O}(\Lambda_{QCD})$: expect Collins effect of several percent

Towards Phenomenology: SIDIS at future EIC.

SIDIS kinematics

- electron-nucleon collisions $e^-(\ell) + N(P) \rightarrow e^-(\ell') + H(P_H) + X$
- scattering mediated by an off-shell photon with $q=\ell-\ell'$ and $Q^2\equiv-q^2>0$
- SIDIS cross section depends on: $x = Q^2/(2P \cdot q), y = (P \cdot q)/(P \cdot \ell), z_H = (P \cdot P_H)/(P \cdot q)$
- estimate sample at EIC:

$\sigma(eN o eHX)~[{ m pb}]$	c, x > 0.01	c, x > 0.1	b, x > 0.01	b, x > 0.1
$q_T < 2{ m GeV}, Q > 4{ m GeV}$	84	3.47	18	0.65
$q_T < 4{ m GeV}, Q > 10{ m GeV}$	16	1.45	4.9	0.42

acceptance cuts: $0.01 < y < 0.95\,, \quad W^2 = \Big(rac{1}{x} - 1\Big)Q^2 > 100\,{
m GeV}^2$

Towards Phenomenology: SIDIS at future EIC.

Collins effect

get access to the sign of the Collins via spin asymmetry

 $A_{UL}^{\sin(2\phi_H)}(Q^2,x,q_T)=h_{1L}^\perp\otimes H_1^\perp/f_1\otimes D_1$

resolving the sign should be possible within expected statistics at EIC!

November 30 2023