B decays meet high-mass Drell-Yan

(and other correlations in the flavorful SMEFT and beyond)

Aleks Smolkovic

SMEFT

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \sum_{Q} \frac{C_Q}{\Lambda_Q^{[Q]-4}} Q$$

Solid QFT principles

- SM fields and symmetries
- Scale separation
- Higher-dimensional operators encode generic short-distance physics

Attractive because of current state of affairs

- No preferred BSM model-building direction
- SM works well as a low-energy limit
- Experiments headed towards the precision era

Challenge: Large number of parameters (2499 for 3 gen, flavor!) SMEFT operators will impact observables from vastly different classes

Towards a global SMEFT likelihood

Crucially relies on RGE&matching computations 1308.2627, 1310.4838, 1312.2014, 1709.04486, 1908.05295, ...

Example interplay in SMEFT

Low-energy meson decays vs high-mass Drell-Yan

1210.4553, 1605.07114, 1609.07138, 1704.09015, 1806.02370, 1809.01161, 1811.07920, 2002.05684, 2003.12421, 2008.07541, 2207.10714, 2303.07521, ...

 $\Lambda_{\rm NP} = ?$

In this talk:

How realistic is it to discover short-distance NP in a given sector, given the global data?

- 1. Choose a WET sector ($b \rightarrow s\ell\ell$ and $b \rightarrow u\ell\nu$)
- 2. Study sector in the SMEFT including correlated effects from other observables (either minimalistic, or with a flavor assumption)
- 3. Assuming perturbativity, study additional leading correlations as imposed by UV completions

Example 1: $b \rightarrow s\ell\ell$

Rare b decays meet high-mass Drell-Yan Greljo, Salko, AS, Stangl; *JHEP* 05 (2023) 087

 $pp \rightarrow \ell \ell, \ell \nu$ with all dim. 6 CIs now available in flavio <u>flav-io.github.io</u>

(light leptons for now)

Greljo, Salko, AS, Stangl; 2212.10497

Weak effective Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \sum_{q,\ell,i} V_{tb} V_{tq}^* C_i^{bq\ell\ell} O_i^{bq\ell\ell} + \text{h.c.}^{-1.0} - 0.8$$
Local operators:

$$O_g^{bq\ell\ell} = (\bar{q}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}\ell) - 0.4$$

$$O_{10}^{bq\ell\ell} = (\bar{q}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}\gamma_5\ell) - 0.4$$
observables ~ $\langle \mathcal{H}_{\text{eff}} \rangle^2$

$$O_{10}^{bq\ell\ell} = (\bar{q}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}\gamma_5\ell) - 0.4$$

$$O_{10}^{bq\ell} = (\bar{q}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}\gamma_5\ell) - 0.4$$

$$O_{10}^{bq\ell} = (\bar{q}\gamma^{\mu}P_L$$

Preference for lepton flavor universal NP

A. Smolkovic: B decays meet high-mass Drell-Yan

importantly to fully leptonic

Consider the $Q_{lq}^{(1)}$ operator + assume MFV flavor structure: $[C_{lq}^{(1)}]_{st}(\bar{l}\gamma_{\mu}l)(\bar{q}_{s}\gamma^{\mu}q_{t})$

Consider the $Q_{lq}^{(1)}$ operator + assume MFV flavor structure: $\begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{st} (\bar{l}\gamma_{\mu}l) (\bar{q}_{s}\gamma^{\mu}q_{t}) \rightarrow \begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{st} = \delta_{st} \begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{\delta} + (Y_{u}Y_{u}^{\dagger})_{st} \begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{Y_{u}Y_{u}^{\dagger}}$ flavor conserving $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Consider the $Q_{lq}^{(1)}$ operator + assume MFV flavor structure: $\begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{st} (\bar{l}\gamma_{\mu}l) (\bar{q}_{s}\gamma^{\mu}q_{t}) \rightarrow \begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{st} = \delta_{st} \begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{\delta} + (Y_{u}Y_{u}^{\dagger})_{st} \begin{bmatrix} C_{lq}^{(1)} \end{bmatrix}_{Y_{u}Y_{u}^{\dagger}}$ flavor conserving
flavor violating $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim y_{t}^{2} \begin{pmatrix} V_{td} \ ^{2} & V_{ts}V_{td}^{*} & V_{tb}V_{td}^{*} \\ V_{td}V_{ts}^{*} & V_{ts} \ ^{2} & V_{tb}V_{ts}^{*} \\ V_{td}V_{ts}^{*} & V_{ts} \ ^{2} & V_{tb}V_{ts}^{*} \end{pmatrix} b \rightarrow s\ell\ell$

Two UV parameters: $[C_{lq}^{(1)}]_{\delta}$ and $[C_{lq}^{(1)}]_{Y_{u}Y_{u}^{\dagger}}$

Consider the $Q_{lq}^{(1)}$ operator + assume MFV flavor structure: $[C_{lq}^{(1)}]_{st}(\bar{l}\gamma_{\mu}l)(\bar{q}_{s}\gamma^{\mu}q_{t}) \to [C_{lq}^{(1)}]_{st} = \delta_{st}[C_{lq}^{(1)}]_{\delta} + (Y_{u}Y_{u}^{\dagger})_{st}[C_{lq}^{(1)}]_{Y_{u}Y_{u}^{\dagger}}$ 0.03flavio 0.020.01flavor violating $\big[C^{(1)}_{lq}\big]_{Y_uY^\dagger_u}$ 0.00 SM -0.01-0.02-0.03 $-0.03 \quad -0.02 \quad -0.01$ 0.00 0.01 0.02 0.03 $[C_{lq}^{(1)}]_{\delta}$ flavor conserving

If there is (LFU) NP in $b \rightarrow s\ell\ell$, what could it be?

Systematic approach: start with leading effects, tree-level models

Then RGE, loop, etc.

But models imply further correlations

(simplified) models in a nutshell

Can easily be LFU (e.g. $U(1)_{B-L}$), stringent complementary constraints (there is wiggle room) [2211.11766, 2212.10497, 2306.08669, ...]

Not that easily LFU because of stringent cLFV constraints, can be done if LQ e.g. lepton-flavored [1503.01084,1706.08511,2212.10497,2307.15117,...]

RG effect, connection with $R_{D^{(*)}}$ with τ , also possible through 4q operator [1109.1826, 1701.09183, 1712.01919, 1807.02068, 1809.08447,1903.09578, 1910.12924, 2210.13422, 2304.07330, 2308.00034, 2309.01311, 2309.07205, ...]

Example 2: $b \rightarrow u\ell\nu$

SMEFT restrictions on exclusive $b \rightarrow u\ell\nu$ decays Greljo, Salko, AS, Stangl; *JHEP* 11 (2023) 023

Is there room for NP in $b \rightarrow u\ell\nu$?

Step 1: WET - Limited amount of flavor data available (Belle&BaBar)

Is there room for NP in $b \rightarrow u\ell \nu$?

Greljo, Salko, AS, Stangl; 2306.09401

Step 2: SMEFT

Is there room for NP in $b \rightarrow u\ell \nu$?

Greljo, Salko, AS, Stangl; 2306.09401

Step 2: SMEFT

Is there room for NP in $b \rightarrow u\ell\nu$?

Greljo, Salko, AS, Stangl; 2306.09401

Important complementary constraints, DY, neutral currents

Is there room for NP in $b \rightarrow u\ell \nu$?

Greljo, Salko, AS, Stangl; 2306.09401

Interesting scenario: $(Q_{lq}^{(1)}, Q_{lq}^{(3)}, Q_{\phi ud})$, in line with (C_{V_L}, C_{V_R}) tension

 $[(C_{\phi q}^{(1)}, C_{\phi q}^{(3)})]$ case dominated by complementary constraints]

Is there room for NP in $b \rightarrow u\ell \nu$?

Greljo, Salko, AS, Stangl; 2306.09401

Step 3: Tree-level mediators

New scalar, fermionic, or vector mediators, with renormalizable couplings to SM fields

Operator	Mediator	Operator	Mediator	But these imply directions
$[Q_{lq}^{(3)}]_{\ell\ell 13}$	$egin{aligned} &\omega_1 \sim ({f 3},{f 1},-rac{1}{3})_S \ &\zeta \sim ({f 3},{f 3},-rac{1}{3})_S \ &{\cal W} \sim ({f 1},{f 3},0)_V \end{aligned}$	$[Q_{ledq}]_{\ell\ell 31}$	$arphi \sim ({f 1},{f 2},rac{1}{2})_S \ {\cal U}_2 \sim ({f 3},{f 1},rac{2}{3})_V \ {\cal Q}_5 \sim ({f 3},{f 2},-rac{5}{6})_V$	e.g. $q_1 \xrightarrow{y_1} \ell$
	$egin{aligned} \mathcal{U}_2 &\sim ({f 3},{f 1},rac{2}{3})_V \ \mathcal{X} &\sim ({f 3},{f 3},rac{2}{3})_V \ U &\sim ({f 3},{f 1},rac{2}{3})_F \end{aligned}$	$[Q_{lequ}^{(1)}]_{\ell\ell 31}$	$egin{aligned} arphi \sim (1,2,rac{1}{2})_S \ \omega_1 \sim (3,1,-rac{1}{3})_S \ \Pi_7 \sim (3,2,rac{7}{6})_S \end{aligned}$	$q_3 - \frac{\omega_1}{y_3} \ell$
$[Q_{\phi q}^{(3)}]_{13}$	$D \sim (3, 1, -\frac{1}{3})_F$ $T_1 \sim (3, 3, -\frac{1}{3})_F$	$[Q_{lequ}^{(3)}]_{\ell\ell31}$	$\omega_1 \sim (3, 1, -\frac{1}{3})_S$ $\Pi_7 \sim (3, 2, \frac{7}{6})_S$	$C_{1}^{(1)} = -C_{1}^{(3)} = \frac{y_{1}^{*}y_{3}}{1-y_{1}^{*}}$
	$T_2 \sim (3, 3, rac{2}{3})_F$ $\mathcal{W} \sim (1, 3, 0)_V$	$[Q_{\phi ud}]_{13}$	$egin{aligned} Q_1 &\sim (3,2,rac{1}{6})_F \ \mathcal{B}_1 &\sim (1,1,1)_V \end{aligned}$	lq lq $4M_{\omega_1}^2$

Notation and matching from 1711.10391

Is there room for NP in $b \rightarrow u\ell\nu$?

Exclusive semileptonic $b \rightarrow u \ell \nu$ (significantly) sensitive to only a handful of UV mediators - modulo cancellations

Is there room for NP in $b \rightarrow u\ell \nu$?

Greljo, Salko, AS, Stangl; 2306.09401

(also consistent with the rest of the smelli global likelihood, e.g. EWPT, β -decays, ...)

Summary

- <u>Model-independent approach to heavy NP</u>
 -> tools for global analyses indispensable
 -> more can be done in terms of reporting exp. analyses
- Complicated data analyses done in the SMEFT parameter space
 -> relative importance of data can be assessed
 -> efficient reinterpretation in concrete heavy NP models possible
 -> e.g. tree-level completions imply interesting directions
- High complementarity between observables from different sectors
 -> e.g. low-energy flavor observables and high-mass DY, also EWPT, APV, LEP, ...
 - -> more can be done, e.g. inclusion of b-tagged jets, study dijets, etc

Thank you

Additional slides

NP is expected to have some kind of flavor protection, e.g. MFV

Observable

With a **flavour assumption** we correlate various SMEFT Wilson coefficients and decrease the number of free parameters

Minimal flavour violation:

all the flavor structure is contained in $Y_{u,d}$ also beyond the SM

Then we can decompose coefficients with spurion insertions:

$$[C_{lq}^{(1)}]_{iist}\bar{L}_{i}\gamma_{\mu}L_{i}\bar{Q}_{s}\gamma^{\mu}Q_{t} \rightarrow [C_{lq}^{(1)}]_{iist} = \delta_{st}[C_{lq}^{(1)}]_{\delta} + (Y_{u}Y_{u}^{\dagger})_{st}[C_{lq}^{(1)}]_{Y_{u}Y_{u}^{\dagger}}$$
(and similar for other operators involving $\bar{Q}Q$)
$$\sim y_{t}^{2}\begin{pmatrix} V_{td} & V_{ts}V_{td}^{*} & V_{tb}V_{td}^{*} \\ V_{td}V_{ts}^{*} & V_{ts}^{*} & V_{tb}V_{ts}^{*} \\ V_{td}V_{tb}^{*} & V_{ts}V_{tb}^{*} & V_{tb}^{*} \end{pmatrix}$$

$b \rightarrow d, s \text{ in WET}$

Greljo, Salko, AS, Stangl; 2212.10497

$$\begin{split} O_9^{bq\ell\ell} &= (\bar{q}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}\ell) \\ O_{10}^{bq\ell\ell} &= (\bar{q}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}\gamma_5\ell) \end{split}$$

 $B \rightarrow \pi$ FFs from 2102.07233

Also e.g. R. Bause et al (2209.04457), M. Ciuchini et al (2212.10516)

Greljo, Salko, AS, Stangl; 2212.10497

LFU Z'

$$J^{\mu} = J^{\mu}_{B-L} + \frac{1}{3} \epsilon_{ij} \bar{q}_i \gamma^{\mu} q_j$$
$$\epsilon_{ij} = -\kappa V_{ts} (\delta_{i2} \delta_{j3} + \delta_{i3} \delta_{j2})$$

LFU LQ

E.g. doublet of scalar S_3 LQs: $S^{\alpha} \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$

$$\mathscr{L} \supset -(\lambda_i \bar{q}_i^c l_\alpha S^\alpha + \mathbf{h.c.})$$

 $[(C_{\phi q}^{(1)}, C_{\phi q}^{(3)})$ case dominated by complementary constraints]

Greljo, Salko, AS, Stangl; 2306.09401

Why high-mass Drell-Yan?

5 flavors in the proton

Why high-mass Drell-Yan?

Many operators contribute, especially sensitive to contact interactions

Sensitivity of DY to Cls

Bound saturates at bins of ~TeV

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch; 2207.10714

Charm Physics Confronts High-pT Lepton Tails

Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez; 2003.12421

Rare $c \rightarrow u\ell\ell$ decays

Probing LFV in Meson Decays with LHC Data

Descotes-Genon, Faroughy, Plakias, Sumensari; 2303.07521	Observable	LHC (140 fb^{-1})	HL-LHC (3 ab^{-1})	Exp. limit		
Comparing $nn \rightarrow \ell \ell$ (CMS 140 fb-1)	$\mathcal{B}(B^0 o \mu^{\pm} \tau^{\mp})$	8×10^{-4}	$1.7 imes 10^{-4}$	1.4×10^{-5}		
Companing $pp \rightarrow c_i c_j$ (CIVIS, 140 ID ¹)			$\mathcal{B}(B^+ \to \pi^+ \mu^\pm \tau^\mp)$	1.1×10^{-4}	$2 imes 10^{-5}$	$9.4 imes 10^{-5}$
to LFV meson decays			$\mathcal{B}(B_s \to K^0_S \mu^{\pm} \tau^{\mp})$	4×10^{-5}	$8 imes 10^{-6}$	_
e e	nstraint		$\mathcal{B}(B^0 \to \rho \mu^{\pm} \tau^{\mp})$	$7 imes 10^{-5}$	$1.5 imes 10^{-5}$	_
$p \left(\right) q \qquad \ell_i \qquad \text{if it is }$			$\mathcal{B}(B_s \to \mu^{\pm} \tau^{\mp})$	8×10^{-3}	1.7×10^{-3}	4.2×10^{-5}
J J J J J J J J J J J J J J J J J J J			$\left \mathcal{B}(B^+ \to K^+ \mu^\pm \tau^\mp) \right $	9×10^{-4}	$1.9 imes 10^{-4}$	$3.9 imes 10^{-5}$
cor		-	$\left \mathcal{B}(B^0 \to K^{*0} \mu^{\pm} \tau^{\mp}) \right.$	4×10^{-4}	$1.0 imes 10^{-4}$	_
$p \bigvee_{q'} \ell_j \qquad \qquad$			$\mathcal{B}(B_s o \phi \mu^{\pm} \tau^{\mp})$	$5 imes 10^{-4}$	$1.0 imes10^{-4}$	_
			$\mathcal{B}(B^0 \to e^{\pm} \tau^{\mp})$	1.7×10^{-3}	4×10^{-4}	2.1×10^{-5}
			$\mathcal{B}(B^+ \to \pi^+ e^\pm \tau^\mp)$	2×10^{-4}	5×10^{-5}	9.8×10^{-5}
			$\left \mathcal{B}(B_s \to K_S e^{\pm} \tau^{\mp}) \right $	8×10^{-5}	$1.7 imes 10^{-5}$	_
q ℓ_i			$\mathcal{B}(B^0 \to \rho e^{\pm} \tau^{\mp})$	$1.4 imes 10^{-4}$	3×10^{-5}	_
	/ CO		$\mathcal{B}(B_s \to e^{\pm} \tau^{\mp})$	1.8×10^{-2}	4×10^{-3}	$7.3 imes 10^{-4}$
$\frown \ell_j$	only		$\left \mathcal{B}(B^+ \to K^+ e^{\pm} \tau^{\mp}) \right $	2×10^{-3}	4×10^{-4}	$3.9 imes 10^{-5}$
	Ŷ		$\left \mathcal{B}(B^0 \to K^{*0} e^{\pm} \tau^{\mp}) \right $	1.1×10^{-3}	$2 imes 10^{-4}$	_
See also 2002.05684			$\mathcal{B}(B_s \to \phi e^{\pm} \tau^{\mp})$	1.2×10^{-3}	$2 imes 10^{-4}$	_

Drell-Yan Tails Beyond the Standard Model

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch; 2207.10714

See also 1609.07138

 $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

Released HighPT Mathematica package (2207.10756, github.com/HighPT)

A. Smolkovic: B decays meet high-mass Drell-Yan

Dominated by $b \rightarrow c \tau \nu$