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An old result…
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An example is given of a reaction, with two quarks (with non-zero mass, and valour averaged) in 
the initial state, in which non-leading infrared divergences coming from two soft gluons do not 
cancel between real and virtual diagrams. 

1. Introduction 

The Bloch-Nordsieck theorem in QED, asserting the cancellation of infrared (IR) 
divergences in suitably defined inclusive cross sections, has been proved to all orders 
of perturbation theory by a number of methods [1-3]. Some years ago, it was 
questioned [4] whether the non-abelian generalization might fail; but, subsequently, 
cancellation has been demonstrated in a number of particular cases [5], and people 
have tended to become complacent on the subject. However, no general proof of the 
non-abelian Bloch-Nordsieck theorem has been given. 

The theorem, if true, would refer to a hypothetical non-confining phase of QCD. 
But it is not of mere academic interest, since it underwrites the mass-singularity 
factorization properties [6] of QCD at high energies. 

The IR divergences of QED exponentiate [1] in a very simple way, but those of 
QCD probably do not. What is required for a non-abelian proof, therefore, is a 
method independent of exponentiation. The very general theorem of Lee and 
Nauenberg [7] is inappropriate, since it requires soft quanta in the initial as well as 
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Can we do consistent calculations with 
intrinsic massive quarks?



… which may no longer be purely academic

INTRINSIC CHARM
• MHOU ESTIMATED FROM N3LO-NNLO MATCHING DIFFERENCE

– LARGE UNCERTAINTY AT SMALL x
– NEGLIGIBLE UNCERTAINTY IN VALENCE REGION

• COMPATIBLE WITH ZERO AT SMALL x

• CLEAR EVIDENCE FOR INTRINSIC VALENCE PEAK

3FNS
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Intrinsic Charm, O(�2
s) match (PDF+MHOU) Stefano’s slide from 

yesterday



Back to the basics: (collinear) factorisation

d� =

Z
dx1dx2f(x1)f(x2)d�part(x1, x2)FJ(1 +O(⇤QCD/Q))

Q ~ 100 GeV

ΛQCD ~ 1 GeV

logarithmically insensitive to ΛQCD



A solid framework: DIS

<latexit sha1_base64="0xhVVLegpx4GcrGy4L/ZJOPcZGw="></latexit>Z
eiq·xhP |J†,µ(0)J⌫(x)|P idx
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hP |J†,µ(0)J⌫(x)|P i ⇠

X

i

ci(x)hP |Oi|P iOPE:
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� =
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dx�part(x)f(x)(1 +O(⇤2

QCD/Q
2))

twist-2

higher-twist



Hadronic collisions: more complex

A potential problem: non-
trivial (long-distance) 
interactions among 

protons / coloured objects

“Standard” collinear factorisation 
• Works at all order for simple processes, e.g. Drell-Yan [Collins, Soper, Sterman] 
• Works up to NNLO for any process and (IR-safe) observables 

• There may be issues at N3LO for complex-enough processes [Beneke,  Ruiz-
Femenia; Catani, de Florian, Rodrigo; Forshaw, Seymour, Siodmok…]

Initial-state heavy quarks: more delicate…



The simplest set-up: Drell-Yan
Is the total partonic cross-section for heavy-

quark induced Drell-Yan IR finite?

The “standard” Bloch/Nordsiek mechanism
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�virt + �real = �

1L tree+

-1/ε from loop 
integration

1/ε from integrating 
over unresolved 

parton phase-space

finite
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Warm-up: massive DY at NLO

1L

(NNLO) case and show that at NNLO there is only one potential source of non-canceling
soft singularities. In Sec. 3, we explicitly compute the infrared singular contribution to the
Drell-Yan cross section and comment on the result. We conclude in Sec. 4. The analytic
continuation of the one-loop integrals required for our analysis is discussed in the appendix.

2 Drell-Yan process with initial-state massive quarks

We begin with the discussion of the infrared structure of the process

q(p1) + q̄(p2) ! V (pV ) +X, (2.1)

where q, q̄ are massive quarks with p
2

1
= p

2

2
= m

2

q and V is a virtual photon2 with p
2

V =
m

2

V . Since there are no massless partons in the initial state of this process, no collinear
renormalization of parton distribution functions is required. The perturbative expansion
of the partonic cross section for this process reads

d� = d�LO + d�NLO + d�NNLO +O(↵3

s). (2.2)

2.1 Next-to-leading order
We start by considering next-to-leading order (NLO) QCD contributions to the cross sec-
tion of the process in Eq. (2.1). We write them as

d�NLO = d�V + d�R. (2.3)

The first term on the r.h.s. of Eq. (2.3) represents UV-renormalized contributions of one-
loop virtual corrections. It reads [22]

d�V =
↵s(µ)

2⇡

⇢
�
2CF

✏


1

2v
ln

✓
1� v

1 + v

◆
+ 1

��
d�LO + d�V,fin, (2.4)

where ✏ = (4 � d)/2 and d is the dimensionality of space-time. Also, CF = 4/3 is the
Casimir invariant of the SU(3) gauge group of QCD, v =

p
1�m4/(p1 · p2)2 and d�V,fin

is finite in the ✏ ! 0 limit. The 1/✏ pole in Eq. (2.4) is of infrared origin; it is well known
that it is canceled by a similar divergence in the real emission contribution d�R.

To illustrate this, consider the real emission process3

q(p1) + q̄(p2) ! V (pV ) + g(pg), (2.5)

and write

d�R =
1

4J

Z
[dpV ][dpg]

X
|M0(p1, p2; pV , pg)|

2(2⇡)d�d(p1 + p2 � pV � pg), (2.6)

2
Our argument applies verbatim for any (massive) color-singlet final state V .

3
We only consider the corrections to the qq̄ channel, since the qg channel is infrared finite.

3

tree
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Singularities only from the soft Eg ~ 0 region

where J = p1 · p2 v is the flux factor, [dpV,g] = dd�1
pV,g/((2⇡)d�12EV,g) are the phase-space

elements of the virtual photon and the gluon, respectively, ⌃ indicates the sum (average)
over final-state (initial-state) colors and polarizations, and M0 is the tree-level scattering
amplitude for the process Eq. (2.5). When the emitted gluon becomes soft, Eg ! 0, the
matrix element |M0|

2 scales as E
�2

g , and Eq. (2.6) develops a logarithmic singularity. To
expose it, we work in the partonic center-of-mass frame, separate the integration over the
gluon energy and write

d�R =
1

4J

Z
dEg

E1+2✏
g

d⌦(d�1)

g

2(2⇡)d�1
F

(d)
g (p1, p2, pV ; pg), (2.7)

where

F
(d)
g (p1, p2, pV ; pg) =

1

4J
[dpV ]E

2

g

X
|M0(p1, p2; pV , pg)|

2 (2⇡)d�d(p1+ p2� pV � pg). (2.8)

To extract infrared divergences from Eq. (2.7), we write

d�R =

EmaxZ

0

dEg

E1+2✏
g

d⌦(3)

g

16⇡3
lim
Eg!0

⇥
F

(4)

g (p1, p2, pV ; pg)
⇤
+ d�fin

R
, (2.9)

where the second contribution is finite and the first one is divergent. We rewrite it as
EmaxZ

0

dEg

E1+2✏
g

d⌦(3)

g

16⇡3
lim
Eg!0

⇥
F

(4)

g (p1, p2, pV ; pg)
⇤
= d�div

R + · · · , (2.10)

where

d�div

R
= �

1

2✏

Z
d⌦(3)

g

16⇡3
lim
Eg!0

⇥
F

(4)

g (p1, p2, pV ; pg)
⇤
, (2.11)

and the ellipses in Eq. (2.10) stand for finite terms.
To proceed further, we recall that in the soft limit scattering amplitudes obey the

well-known factorization formula

M0(p1, p2; pV , pga) ⇡ g
2

s"
µ
J
a,(0)
µ (p1, p2; pg)M0(p1, p2; pV ), (2.12)

where "µ is the gluon polarization vector and a is its color index. The tree-level soft current
reads

J
a,(0)
µ (p1, p2; pg) =

2X

i=1

T
a
i

pi,µ

pi · pg
, (2.13)

where T
a
i is the color charge of particle i. In our case, T a

1
= t

a
21

and T
a
2
= �t

a
12

, where t
a
ij

is the matrix element of an SU(3) algebra generator in the fundamental representation.4
This immediately allows us to rewrite Eq. (2.11) as

d�div

R
= Eik0(p1, p2)⇥ d�LO, (2.14)

4
For more details on the color notation, see e.g. [23].

4
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(NNLO) case and show that at NNLO there is only one potential source of non-canceling
soft singularities. In Sec. 3, we explicitly compute the infrared singular contribution to the
Drell-Yan cross section and comment on the result. We conclude in Sec. 4. The analytic
continuation of the one-loop integrals required for our analysis is discussed in the appendix.

2 Drell-Yan process with initial-state massive quarks

We begin with the discussion of the infrared structure of the process

q(p1) + q̄(p2) ! V (pV ) +X, (2.1)

where q, q̄ are massive quarks with p
2

1
= p

2

2
= m

2

q and V is a virtual photon2 with p
2

V =
m

2

V . Since there are no massless partons in the initial state of this process, no collinear
renormalization of parton distribution functions is required. The perturbative expansion
of the partonic cross section for this process reads

d� = d�LO + d�NLO + d�NNLO +O(↵3

s). (2.2)

2.1 Next-to-leading order
We start by considering next-to-leading order (NLO) QCD contributions to the cross sec-
tion of the process in Eq. (2.1). We write them as

d�NLO = d�V + d�R. (2.3)

The first term on the r.h.s. of Eq. (2.3) represents UV-renormalized contributions of one-
loop virtual corrections. It reads [22]

d�V =
↵s(µ)

2⇡

⇢
�
2CF

✏


1

2v
ln

✓
1� v

1 + v

◆
+ 1

��
d�LO + d�V,fin, (2.4)

where ✏ = (4 � d)/2 and d is the dimensionality of space-time. Also, CF = 4/3 is the
Casimir invariant of the SU(3) gauge group of QCD, v =

p
1�m4/(p1 · p2)2 and d�V,fin

is finite in the ✏ ! 0 limit. The 1/✏ pole in Eq. (2.4) is of infrared origin; it is well known
that it is canceled by a similar divergence in the real emission contribution d�R.

To illustrate this, consider the real emission process3

q(p1) + q̄(p2) ! V (pV ) + g(pg), (2.5)

and write

d�R =
1

4J

Z
[dpV ][dpg]

X
|M0(p1, p2; pV , pg)|

2(2⇡)d�d(p1 + p2 � pV � pg), (2.6)

2
Our argument applies verbatim for any (massive) color-singlet final state V .

3
We only consider the corrections to the qq̄ channel, since the qg channel is infrared finite.

3
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(NNLO) case and show that at NNLO there is only one potential source of non-canceling
soft singularities. In Sec. 3, we explicitly compute the infrared singular contribution to the
Drell-Yan cross section and comment on the result. We conclude in Sec. 4. The analytic
continuation of the one-loop integrals required for our analysis is discussed in the appendix.

2 Drell-Yan process with initial-state massive quarks

We begin with the discussion of the infrared structure of the process

q(p1) + q̄(p2) ! V (pV ) +X, (2.1)

where q, q̄ are massive quarks with p
2

1
= p

2

2
= m

2

q and V is a virtual photon2 with p
2

V =
m

2

V . Since there are no massless partons in the initial state of this process, no collinear
renormalization of parton distribution functions is required. The perturbative expansion
of the partonic cross section for this process reads

d� = d�LO + d�NLO + d�NNLO +O(↵3

s). (2.2)

2.1 Next-to-leading order
We start by considering next-to-leading order (NLO) QCD contributions to the cross sec-
tion of the process in Eq. (2.1). We write them as

d�NLO = d�V + d�R. (2.3)

The first term on the r.h.s. of Eq. (2.3) represents UV-renormalized contributions of one-
loop virtual corrections. It reads [22]

d�V =
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where ✏ = (4 � d)/2 and d is the dimensionality of space-time. Also, CF = 4/3 is the
Casimir invariant of the SU(3) gauge group of QCD, v =

p
1�m4/(p1 · p2)2 and d�V,fin

is finite in the ✏ ! 0 limit. The 1/✏ pole in Eq. (2.4) is of infrared origin; it is well known
that it is canceled by a similar divergence in the real emission contribution d�R.

To illustrate this, consider the real emission process3

q(p1) + q̄(p2) ! V (pV ) + g(pg), (2.5)

and write

d�R =
1

4J

Z
[dpV ][dpg]

X
|M0(p1, p2; pV , pg)|

2(2⇡)d�d(p1 + p2 � pV � pg), (2.6)

2
Our argument applies verbatim for any (massive) color-singlet final state V .

3
We only consider the corrections to the qq̄ channel, since the qg channel is infrared finite.

3
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(NNLO) case and show that at NNLO there is only one potential source of non-canceling
soft singularities. In Sec. 3, we explicitly compute the infrared singular contribution to the
Drell-Yan cross section and comment on the result. We conclude in Sec. 4. The analytic
continuation of the one-loop integrals required for our analysis is discussed in the appendix.

2 Drell-Yan process with initial-state massive quarks

We begin with the discussion of the infrared structure of the process

q(p1) + q̄(p2) ! V (pV ) +X, (2.1)

where q, q̄ are massive quarks with p
2

1
= p

2

2
= m

2

q and V is a virtual photon2 with p
2

V =
m

2

V . Since there are no massless partons in the initial state of this process, no collinear
renormalization of parton distribution functions is required. The perturbative expansion
of the partonic cross section for this process reads

d� = d�LO + d�NLO + d�NNLO +O(↵3

s). (2.2)

2.1 Next-to-leading order
We start by considering next-to-leading order (NLO) QCD contributions to the cross sec-
tion of the process in Eq. (2.1). We write them as

d�NLO = d�V + d�R. (2.3)

The first term on the r.h.s. of Eq. (2.3) represents UV-renormalized contributions of one-
loop virtual corrections. It reads [22]
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where ✏ = (4 � d)/2 and d is the dimensionality of space-time. Also, CF = 4/3 is the
Casimir invariant of the SU(3) gauge group of QCD, v =

p
1�m4/(p1 · p2)2 and d�V,fin

is finite in the ✏ ! 0 limit. The 1/✏ pole in Eq. (2.4) is of infrared origin; it is well known
that it is canceled by a similar divergence in the real emission contribution d�R.

To illustrate this, consider the real emission process3

q(p1) + q̄(p2) ! V (pV ) + g(pg), (2.5)

and write

d�R =
1

4J

Z
[dpV ][dpg]

X
|M0(p1, p2; pV , pg)|

2(2⇡)d�d(p1 + p2 � pV � pg), (2.6)

2
Our argument applies verbatim for any (massive) color-singlet final state V .

3
We only consider the corrections to the qq̄ channel, since the qg channel is infrared finite.

3

Soft region: eikonal approximation

where J = p1 · p2 v is the flux factor, [dpV,g] = dd�1
pV,g/((2⇡)d�12EV,g) are the phase-space

elements of the virtual photon and the gluon, respectively, ⌃ indicates the sum (average)
over final-state (initial-state) colors and polarizations, and M0 is the tree-level scattering
amplitude for the process Eq. (2.5). When the emitted gluon becomes soft, Eg ! 0, the
matrix element |M0|

2 scales as E
�2

g , and Eq. (2.6) develops a logarithmic singularity. To
expose it, we work in the partonic center-of-mass frame, separate the integration over the
gluon energy and write

d�R =
1

4J

Z
dEg

E1+2✏
g

d⌦(d�1)

g

2(2⇡)d�1
F

(d)
g (p1, p2, pV ; pg), (2.7)
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Warm-up: massive DY at NLO

1L

(NNLO) case and show that at NNLO there is only one potential source of non-canceling
soft singularities. In Sec. 3, we explicitly compute the infrared singular contribution to the
Drell-Yan cross section and comment on the result. We conclude in Sec. 4. The analytic
continuation of the one-loop integrals required for our analysis is discussed in the appendix.

2 Drell-Yan process with initial-state massive quarks

We begin with the discussion of the infrared structure of the process

q(p1) + q̄(p2) ! V (pV ) +X, (2.1)

where q, q̄ are massive quarks with p
2

1
= p

2

2
= m

2

q and V is a virtual photon2 with p
2

V =
m

2

V . Since there are no massless partons in the initial state of this process, no collinear
renormalization of parton distribution functions is required. The perturbative expansion
of the partonic cross section for this process reads

d� = d�LO + d�NLO + d�NNLO +O(↵3

s). (2.2)

2.1 Next-to-leading order
We start by considering next-to-leading order (NLO) QCD contributions to the cross sec-
tion of the process in Eq. (2.1). We write them as

d�NLO = d�V + d�R. (2.3)

The first term on the r.h.s. of Eq. (2.3) represents UV-renormalized contributions of one-
loop virtual corrections. It reads [22]

d�V =
↵s(µ)

2⇡

⇢
�
2CF

✏


1

2v
ln

✓
1� v

1 + v

◆
+ 1

��
d�LO + d�V,fin, (2.4)

where ✏ = (4 � d)/2 and d is the dimensionality of space-time. Also, CF = 4/3 is the
Casimir invariant of the SU(3) gauge group of QCD, v =

p
1�m4/(p1 · p2)2 and d�V,fin

is finite in the ✏ ! 0 limit. The 1/✏ pole in Eq. (2.4) is of infrared origin; it is well known
that it is canceled by a similar divergence in the real emission contribution d�R.

To illustrate this, consider the real emission process3

q(p1) + q̄(p2) ! V (pV ) + g(pg), (2.5)

and write

d�R =
1

4J

Z
[dpV ][dpg]

X
|M0(p1, p2; pV , pg)|

2(2⇡)d�d(p1 + p2 � pV � pg), (2.6)

2
Our argument applies verbatim for any (massive) color-singlet final state V .

3
We only consider the corrections to the qq̄ channel, since the qg channel is infrared finite.

3

tree
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Soft region: eikonal approximation

where J = p1 · p2 v is the flux factor, [dpV,g] = dd�1
pV,g/((2⇡)d�12EV,g) are the phase-space

elements of the virtual photon and the gluon, respectively, ⌃ indicates the sum (average)
over final-state (initial-state) colors and polarizations, and M0 is the tree-level scattering
amplitude for the process Eq. (2.5). When the emitted gluon becomes soft, Eg ! 0, the
matrix element |M0|

2 scales as E
�2

g , and Eq. (2.6) develops a logarithmic singularity. To
expose it, we work in the partonic center-of-mass frame, separate the integration over the
gluon energy and write
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and the ellipses in Eq. (2.10) stand for finite terms.
To proceed further, we recall that in the soft limit scattering amplitudes obey the

well-known factorization formula

M0(p1, p2; pV , pga) ⇡ g
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µ
J
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where "µ is the gluon polarization vector and a is its color index. The tree-level soft current
reads
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, (2.13)

where T
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i is the color charge of particle i. In our case, T a
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21

and T
a
2
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12

, where t
a
ij

is the matrix element of an SU(3) algebra generator in the fundamental representation.4
This immediately allows us to rewrite Eq. (2.11) as

d�div
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= Eik0(p1, p2)⇥ d�LO, (2.14)

4
For more details on the color notation, see e.g. [23].
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universal factor, cancels the pole in σV



Warm-up: massive DY at NLO

Drell-Yan at NLO 
• IR sensitivity cancels among reals and virtuals, as in the standard case 

• Only relevant region: soft gluon 

• No need for PDFs 

• Full calculation not needed to see the cancellation 

• Still, going beyond NLO non-trivial

Is this result obvious? Yes

1L tree+
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Massive DY@NLO: a different approach
•Consider now Z decay, related to DY by crossing
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•Off-shell correlator: finite → any IR sensitivity in DY must come 
from non-trivial behaviour under crossing



Back to NLO

1L trivial under crossing

tree
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dEg

E1+2✏
g

d⌦(3)

g

16⇡3
lim
Eg!0

⇥
F

(4)

g (p1, p2, pV ; pg)
⇤
+ d�fin

R
, (2.9)

where the second contribution is finite and the first one is divergent. We rewrite it as
EmaxZ

0

dEg

E1+2✏
g

d⌦(3)

g

16⇡3
lim
Eg!0

⇥
F

(4)

g (p1, p2, pV ; pg)
⇤
= d�div

R + · · · , (2.10)

where

d�div

R
= �

1

2✏

Z
d⌦(3)

g

16⇡3
lim
Eg!0

⇥
F

(4)

g (p1, p2, pV ; pg)
⇤
, (2.11)

and the ellipses in Eq. (2.10) stand for finite terms.
To proceed further, we recall that in the soft limit scattering amplitudes obey the

well-known factorization formula

M0(p1, p2; pV , pga) ⇡ g
2

s"
µ
J
a,(0)
µ (p1, p2; pg)M0(p1, p2; pV ), (2.12)

where "µ is the gluon polarization vector and a is its color index. The tree-level soft current
reads

J
a,(0)
µ (p1, p2; pg) =

2X

i=1

T
a
i

pi,µ

pi · pg
, (2.13)

where T
a
i is the color charge of particle i. In our case, T a

1
= t

a
21

and T
a
2
= �t

a
12

, where t
a
ij

is the matrix element of an SU(3) algebra generator in the fundamental representation.4
This immediately allows us to rewrite Eq. (2.11) as

d�div

R
= Eik0(p1, p2)⇥ d�LO, (2.14)

4
For more details on the color notation, see e.g. [23].

4

Eikonal current invariant under pi → -pi 

At NLO, heavy-quark induced DY is trivially IR-insensitive



Now at NNLO

2L + 1L

<latexit sha1_base64="sUT8wa1YyyJTIMS9V32g8zK4moM=">AAAB63icdVDLSgNBEOyNrxhfUY9eBoPgadkNruYY9OIxgnlAsoTZyWwyZGZ2mZkVQsgvePGgiFd/yJt/42wSwWdBQ1HVTXdXlHKmjee9O4WV1bX1jeJmaWt7Z3evvH/Q0kmmCG2ShCeqE2FNOZO0aZjhtJMqikXEaTsaX+V++44qzRJ5ayYpDQUeShYzgk0u9Zg0/XLFc6teLQgC9Jv4rjdHBZZo9MtvvUFCMkGlIRxr3fW91IRTrAwjnM5KvUzTFJMxHtKupRILqsPp/NYZOrHKAMWJsiUNmqtfJ6ZYaD0Rke0U2Iz0Ty8X//K6mYlr4ZTJNDNUksWiOOPIJCh/HA2YosTwiSWYKGZvRWSEFSbGxlOyIXx+iv4nrarrn7vBzVmlfrmMowhHcAyn4MMF1OEaGtAEAiO4h0d4coTz4Dw7L4vWgrOcOYRvcF4/AJJLjp4=</latexit>Z
tree

<latexit sha1_base64="sUT8wa1YyyJTIMS9V32g8zK4moM=">AAAB63icdVDLSgNBEOyNrxhfUY9eBoPgadkNruYY9OIxgnlAsoTZyWwyZGZ2mZkVQsgvePGgiFd/yJt/42wSwWdBQ1HVTXdXlHKmjee9O4WV1bX1jeJmaWt7Z3evvH/Q0kmmCG2ShCeqE2FNOZO0aZjhtJMqikXEaTsaX+V++44qzRJ5ayYpDQUeShYzgk0u9Zg0/XLFc6teLQgC9Jv4rjdHBZZo9MtvvUFCMkGlIRxr3fW91IRTrAwjnM5KvUzTFJMxHtKupRILqsPp/NYZOrHKAMWJsiUNmqtfJ6ZYaD0Rke0U2Iz0Ty8X//K6mYlr4ZTJNDNUksWiOOPIJCh/HA2YosTwiSWYKGZvRWSEFSbGxlOyIXx+iv4nrarrn7vBzVmlfrmMowhHcAyn4MMF1OEaGtAEAiO4h0d4coTz4Dw7L4vWgrOcOYRvcF4/AJJLjp4=</latexit>Z
+

VV: trivial under 
crossing

RR: in the soft limit, everything controlled by soft 
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same IR structure of decay process
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When gluon is soft: potential source for problems
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The soft current at 1L

Figure 1: Diagrams contributing to the one-loop soft current. i and j are hard eikonal
lines, pg and k are soft, see text for details.

3 The one loop soft current and its crossing

In this section, we study one-loop corrections to soft gluon emission. More precisely,
following the discussion in the previous section, we investigate whether additional infrared
divergences can be generated by crossing the one-loop decay amplitude M1(pV ; p1, p2, pg)
into the amplitude M1(p1, p2; pV , pg) that describes the production process.

Similar to the tree-level case Eq. (2.12), the one-loop amplitude M1 also factorizes in
the soft limit7

M1(pV ; p1, p2, pg) ⇡ g
2

s"
µ


J
a,(0)
µ (p1, p2; pg)M1(pV ; p1, p2)

+g
2

sJ
a,(1)
µ (p1, p2; pg)M0(pV ; p1, p2)

�
.

(3.1)

We stress that M1 in the above equation is the scattering amplitude of the decay process
and we intend to get the production amplitude by crossing.

The tree-level current J
a,(0)
µ is given in Eq. (2.13); as discussed in Sections 2.1, 2.2 it

leads to the same infrared divergences in the production and decay cases. Hence, we only
need to focus on the second term on the right hand side of Eq. (3.1) that describes the
one-loop correction to the soft current.

To compute the one-loop soft current Ja,(1)
µ , one needs to consider the non-abelian part

of the diagrams shown in Fig. 1, in the limit where both virtual and real gluons are soft [25].
The result reads

J
a,(1),µ(p1, p2; pg) = ifabc

2X

i,j=1

i 6=j

T
b
i T

c
j

✓
p
µ
i

pi · pg
�

p
µ
j

pj · pg

◆
g
(1)

ij (✏, pg; pi, pj)

= g
(1)

12
(✏, pg; p1, p2) CA J

a,(0),µ(p1, p2; pg).

(3.2)

where fabc are the SU(3) structure constants and g
(1)

ij is a function that will be specified
later. We stress that J

a,(1)
µ is purely non-abelian. This feature is expected because in an

7
In this equation, gs is the bare strong coupling. Since we are interested in infrared effects, we do not

discuss renormalization.
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Figure 1: Diagrams contributing to the one-loop soft current. i and j are hard eikonal
lines, pg and k are soft, see text for details.
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into the amplitude M1(p1, p2; pV , pg) that describes the production process.
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We stress that M1 in the above equation is the scattering amplitude of the decay process
and we intend to get the production amplitude by crossing.

The tree-level current J
a,(0)
µ is given in Eq. (2.13); as discussed in Sections 2.1, 2.2 it

leads to the same infrared divergences in the production and decay cases. Hence, we only
need to focus on the second term on the right hand side of Eq. (3.1) that describes the
one-loop correction to the soft current.

To compute the one-loop soft current Ja,(1)
µ , one needs to consider the non-abelian part

of the diagrams shown in Fig. 1, in the limit where both virtual and real gluons are soft [25].
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Figure 1: Diagrams contributing to the one-loop soft current. i and j are hard eikonal
lines, pg and k are soft, see text for details.

3 The one loop soft current and its crossing

In this section, we study one-loop corrections to soft gluon emission. More precisely,
following the discussion in the previous section, we investigate whether additional infrared
divergences can be generated by crossing the one-loop decay amplitude M1(pV ; p1, p2, pg)
into the amplitude M1(p1, p2; pV , pg) that describes the production process.

Similar to the tree-level case Eq. (2.12), the one-loop amplitude M1 also factorizes in
the soft limit7
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(3.1)

We stress that M1 in the above equation is the scattering amplitude of the decay process
and we intend to get the production amplitude by crossing.

The tree-level current J
a,(0)
µ is given in Eq. (2.13); as discussed in Sections 2.1, 2.2 it

leads to the same infrared divergences in the production and decay cases. Hence, we only
need to focus on the second term on the right hand side of Eq. (3.1) that describes the
one-loop correction to the soft current.

To compute the one-loop soft current Ja,(1)
µ , one needs to consider the non-abelian part

of the diagrams shown in Fig. 1, in the limit where both virtual and real gluons are soft [25].
The result reads

J
a,(1),µ(p1, p2; pg) = ifabc
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where fabc are the SU(3) structure constants and g
(1)

ij is a function that will be specified
later. We stress that J

a,(1)
µ is purely non-abelian. This feature is expected because in an
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In this equation, gs is the bare strong coupling. Since we are interested in infrared effects, we do not

discuss renormalization.
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pg, k soft

[Explicit expressions: Catani, Grazzini (2000) + Bierenbaum, Czakon, Mitov (2012)]

NLO current



The soft current at 1L: massless case

Figure 1: Diagrams contributing to the one-loop soft current. i and j are hard eikonal
lines, pg and k are soft, see text for details.

3 The one loop soft current and its crossing

In this section, we study one-loop corrections to soft gluon emission. More precisely,
following the discussion in the previous section, we investigate whether additional infrared
divergences can be generated by crossing the one-loop decay amplitude M1(pV ; p1, p2, pg)
into the amplitude M1(p1, p2; pV , pg) that describes the production process.

Similar to the tree-level case Eq. (2.12), the one-loop amplitude M1 also factorizes in
the soft limit7

M1(pV ; p1, p2, pg) ⇡ g
2

s"
µ


J
a,(0)
µ (p1, p2; pg)M1(pV ; p1, p2)

+g
2

sJ
a,(1)
µ (p1, p2; pg)M0(pV ; p1, p2)

�
.

(3.1)

We stress that M1 in the above equation is the scattering amplitude of the decay process
and we intend to get the production amplitude by crossing.

The tree-level current J
a,(0)
µ is given in Eq. (2.13); as discussed in Sections 2.1, 2.2 it

leads to the same infrared divergences in the production and decay cases. Hence, we only
need to focus on the second term on the right hand side of Eq. (3.1) that describes the
one-loop correction to the soft current.

To compute the one-loop soft current Ja,(1)
µ , one needs to consider the non-abelian part

of the diagrams shown in Fig. 1, in the limit where both virtual and real gluons are soft [25].
The result reads

J
a,(1),µ(p1, p2; pg) = ifabc

2X

i,j=1

i 6=j

T
b
i T

c
j
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p
µ
i

pi · pg
�

p
µ
j

pj · pg
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(1)

ij (✏, pg; pi, pj)
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(1)
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(✏, pg; p1, p2) CA J

a,(0),µ(p1, p2; pg).

(3.2)

where fabc are the SU(3) structure constants and g
(1)

ij is a function that will be specified
later. We stress that J

a,(1)
µ is purely non-abelian. This feature is expected because in an

7
In this equation, gs is the bare strong coupling. Since we are interested in infrared effects, we do not

discuss renormalization.
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abelian theory the tree-level soft current does not receive corrections. Since, as we argued
at the beginning of this section, Eq. (3.2) provides the only source of non-canceling soft
singularities for the process qq̄ ! V + X with massive initial particles, we recover the
classic result that in the abelian (e.g. QED) case the NNLO cross-section for the collision

of two massive partons is infrared-finite.

We continue with the non-abelian case. Following the argument of Sec. 2.2, we investi-
gate whether Eq. (3.2) leads to the same infrared structure for the decay and production
processes. Since J

a,(0),µ is invariant under p1,2 ! �p1,2, any potential difference must come
from the crossing of g(1)

12
. It is easy to see that, at NNLO, only the real part of g(1)

12
con-

tributes to the cross section; for this reason we investigate the behavior of <
⇥
g
(1)

12

⇤
under

p1,2 ! �p1,2 transformation.
It is instructive to consider first the case of massless quarks. For mq = 0, the function

g
(1)

12
reads [25]

g
(1)

12
(✏, pg; p1, p2) = �

1

16⇡2

1

✏2

�3(1� ✏)�2(1 + ✏)

�(1� 2✏)


(�s12 � i�)

(�s1g � i�)(�s2g � i�)

�✏
, (3.3)

with sij = 2pi · pj. This implies

<

h
g
(1)

12
(✏, pg;�p1,�p2)

i
= <

h
g
(1)

12
(✏, pg; p1, p2)

i
. (3.4)

The argument of Sec. 2.2 then allows us to reproduce the standard result that for massless
quarks the cross section for the process q+ q̄ ! V is free from soft singularities at NNLO.8

We continue with the case mq 6= 0. In this case, we follow Ref. [26] and write g
(1)

12
as

g
(1)

12
(✏, pg; p1, p2) =

3X

i=1

fi(pg; p1, p2)Mi(✏, pg; p1, p2), (3.5)

where Mi are defined as

M1(✏, pg; p1, p2) =

Z
d
d
k

(2⇡)d
1

[k2 + i�][(k + pg)2 + i�][�2p2 · k + i�]
,

M2(✏, pg; p1, p2) =

Z
d
d
k

(2⇡)d
1

[k2 + i�][2p1 · k + 2p1 · pg + i�][�2p2 · k + i�]
, (3.6)

M3(✏, pg; p1, p2) =

Z
d
d
k

(2⇡)d
1

[k2 + i�][(k + pg)2 + i�][2p1 · k + 2p2 · pg + i�][�2p2 · k + i�]
,

and fi are rational functions of pi · pj, pi · pg. Since g
(1)

12
has to be computed using eikonal

vertices [25], it follows that

f1(pg;�p1,�p2) = �f1(pg; p1, p2), f2,3(pg;�p1,�p2) = f2,3(pg; p1, p2). (3.7)
8
To remove initial-state collinear singularities, one still needs to redefine parton distribution functions

in the case of massless particles collisions.

9

Massless case:

• Under crossing → simple phase 

•σRV = 2 Re[A0 A1,*] → drops out 

• Standard cancellation of soft singularities applies



The soft current at 1L: massive case
Massive case more complicated. Under crossing:

The explicit form of fi can be found in Ref. [26], but it is not needed for our argument.
Using Eqs (3.5, 3.6, 3.7) one can show by analytic continuation of the Mj integrals that

the function g
(1)

12
changes in the following way

g
(1)

12
(✏, pg;�p1,�p2) = e

�2i✏⇡
g
(1)

12
(✏, pg; p1, p2). (3.8)

This is worked out explicitly in Appendix A. To proceed further, we write the (decay)
function g

(1)

12
as

g
(1)

12
(✏, pg; p1, p2) =

↵s

2⇡
E

�2✏
g

1X

k=�2

[rk + i · ik] ✏
k
, (3.9)

with r and i real and i�2 = 0, see Appendix A. Using Eqs (3.8, 3.9) we can then write the
difference between the real parts of the functions g12 required to describe the production
and the decay processes as

<


g
(1)

12
(✏, pg;�p1,�p2)

�
�<


g
(1)

12
(✏, pg; p1, p2)

�

=
↵s

2⇡

����
s12

s1gs2g

����
✏ ⇥

� 2⇡2
· r�2 + 2⇡ · i�1 +O(✏)

⇤
.

(3.10)

Since the real part of g(1)
12

at order O(✏0) contributes to divergences of the cross section or
decay rate at order 1/✏, the argument presented in Sec. 2.2 implies that the second line of

Eq. (3.10) gives rise to a non-canceling infrared divergence in the NNLO cross section for

the q + q̄ ! V process with massive quarks in the initial state.
This non-canceled singularity is controlled by the coefficients r�2 and i�1. They can be

immediately obtained by matching Eq. (3.1) to the universal expression for the infrared
poles of one-loop amplitudes [22]. We obtain

r�2 = �
1

2
, i�1 = ⇡

✓
1

2v
� 1

◆
, (3.11)

with v defined immediately after Eq. (2.4). We work in the center of mass frame of the
two quarks and rewrite Eq. (3.10) as

<


g
(1)

12
(✏, pg;�p1,�p2)

�
= <


g
(1)

12
(✏, pg; p1, p2)

�
+

↵s

2⇡
E

�2✏
g

✓
1� v

v

◆
⇡
2 +O(✏)

�
. (3.12)

To find the contribution of the last term in Eq. (3.12) to the cross section, we note that
the soft current at one loop is proportional to the tree-level one, cf. Eq. (3.2). As a
consequence, we can read off the required result directly from Eq. (2.16) that describes the
NLO calculation.9 Therefore, we write the real-virtual contribution to the decay process
as

d�decay

RV
= Eik1(p1, p2)⇥ d�decay

LO
+ · · · , (3.13)

9
Note that the additional E�2✏

g factor in Eq. (3.12) would give rise to an extra factor 1/2 compared to

the NLO case. This is compensated however by the factor of 2 in 2<[M0M
⇤
1].

10
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g(1)12 (p1, p2) =
↵s
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E�2✏

g


� 1

2✏
� i⇡
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+

i⇡

2✏

(1� v)

v
+ ...

�

Universal 
soft pole
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The soft current at 1L: massive case
Massive case more complicated. Under crossing:
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Since the real part of g(1)
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at order O(✏0) contributes to divergences of the cross section or
decay rate at order 1/✏, the argument presented in Sec. 2.2 implies that the second line of

Eq. (3.10) gives rise to a non-canceling infrared divergence in the NNLO cross section for

the q + q̄ ! V process with massive quarks in the initial state.
This non-canceled singularity is controlled by the coefficients r�2 and i�1. They can be

immediately obtained by matching Eq. (3.1) to the universal expression for the infrared
poles of one-loop amplitudes [22]. We obtain
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with v defined immediately after Eq. (2.4). We work in the center of mass frame of the
two quarks and rewrite Eq. (3.10) as
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To find the contribution of the last term in Eq. (3.12) to the cross section, we note that
the soft current at one loop is proportional to the tree-level one, cf. Eq. (3.2). As a
consequence, we can read off the required result directly from Eq. (2.16) that describes the
NLO calculation.9 Therefore, we write the real-virtual contribution to the decay process
as

d�decay

RV
= Eik1(p1, p2)⇥ d�decay

LO
+ · · · , (3.13)

9
Note that the additional E�2✏

g factor in Eq. (3.12) would give rise to an extra factor 1/2 compared to

the NLO case. This is compensated however by the factor of 2 in 2<[M0M
⇤
1].
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σDY,NNLO = σDY,VV + σDY,RR + σDY,RV= 

                         σZdec,VV + σZdec,RR + [σZdec,RV + ΔσRV] = 

                  finite + ΔσRV

where the ellipses stand for finite contributions. The real-virtual contribution to the pro-
duction process is given by

d�RV = Eik1(�p1,�p2)⇥ d�LO = Eik1(p1, p2)⇥ d�LO +�[d�div

RV
] + · · · . (3.14)

The second term in the r.h.s. of Eq. (3.14) is the additional divergent contribution to the
production cross section caused by a non-trivial analytic continuation of soft loop integrals
upon crossing. It reads
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Thanks to the argument presented in Sec. 2.2, we conclude that the cross section for
qq̄ ! V + X with massive quarks in the initial state contains non-canceling infrared
divergence given by �[d�div
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]. Therefore,
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where the ellipses stand for finite contributions to the NNLO cross section. Eq. (3.16)
describes the violation of Bloch-Nordsieck cancellations [27] in the case when two massive
quarks collide. It coincides with the expression derived in Refs. [17–19].

We now comment on the result Eq. (3.16). First, we note that in the massless case
v ! 1 and the divergence disappears. A simple generalization of this result to the collision
of two quarks with unequal masses shows that Eq. (3.16) remains valid provided that
v =

p
1�m

2

1
m

2

2
/(p1p2)2. It follows that the divergence in Eq. (3.16) disappears if only

one quark in the initial state is massive.
Moreover, Eq. (3.15) implies that the non-canceling infrared divergences in cross sec-

tions with massive quarks in the initial state are power-suppressed
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m
4
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◆
d�LO. (3.17)

This behavior is compatible with classic arguments about factorization, see e.g. Ref. [28]
for a review. In fact, a small mass of the quark in the initial state probes the sensitivity
of the partonic cross section to long-distance physics. The result Eq. (3.17) then informs
us that at the level of logarithmic sensitivity to long-distance effects, the partonic cross
section is certainly infrared finite. The non-cancellation of infrared divergences at the level
of power corrections , as indicated in Eq. (3.17), simply shows that an understanding of fac-
torization for higher-twist or, in general, power corrections is required to make calculations
with massive partons self-consistent.
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Perturbative HF: off-shellness acts as cut-off (though it may 
require tweaking of e.g. FONLL…)
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This is not a violation of KLN. 
Solution within KLN well-known 
(disconnected gluons, spectators, 

coherent states…)

Issue: interplay with collinear factorisation
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5 LN diagrams obtained by cutting fig 3d They each have one outgoing gluon, but they have 
varying numbers of lngomg gluons. 

For fig. 5b we complete the k6 contour in the lower half-plane, where there are 
two poles. The residue from the gluon pole cancels fig. 5e, and the residue from the 
quark pole (k6 - K '  + le)-1 cancels (22). Thus the six graphs in fig. 5 cancel (in the 
eikonal approximation). 

We close this section with two remarks about LN cancellation. The first remark is 
that, in some of the examples given in ref. [4], a naive application of Feynman rules 
leads to denominators that are identically zero; so a more careful limiting procedure 
is necessary. In the present examples, however, thanks to the presence of the extra 
Coulomb interaction, no such complication arises; so they afford a rather straight- 
forward illustration of LN. 

The second remark is about the completeness of the class of diagrams considered. 
We have included fig. 4b but not fig. 6a. This new diagram is clearly of the same 
order as fig. 4b, and, in fact, is easily shown to give an identical contribution [eq. 
(18)]. So what cancels fig. 6a in LN? The answer is the graph in fig. 6b, which has 
two disconnected gluon lines (as fig. 4b and fig. 6a each have one disconnected line). 
But there are other graphs of this sort, and so one encounters an infinite series of 
graphs (each of order ~2) with more and more disconnected parts. In this series there 
are an infinite number of terms equal to (18) in magnitude but with alternating 
signs. The series, therefore, is dtvergent. The content of the LN theorem in this case 
seems to be just the formal statement that there is a way of pairing off the terms in 
this series so that they cancel (for instance, by classing them according to Kinoshita 
diagrams as in figs. 4 and 5). 



Conclusions
• Even for the simplest processes, challenges for standard collinear 

factorisation if two heavy quarks are present in the initial state 

• Origin very simple: non trivial Coulomb phase that does not cancel 
(contrary to QED and massless QCD) 

• To some extent, expected. Light quark mass probes IR physics, power-
like “higher twist” behaviour m4/Q4 recovered 

• Not a problem for “proxy” massive 4FNS calculations, but would 
require tweaking → more work needed 

• If m/Q small but finite, could still look at first terms in the expansion 
and learn something interesting. E.g. pt ~ mq << Q (see Davide’s talk 
yesterday) → more work needed 

• Simplest example factorisation breaking. Something more severe could 
happen in the massless sector beyond NNLO… → more work needed
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