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An old result...

Can we do consistent calculations with
intrinsic massive quarks?

COUNTER-EXAMPLE TO NON-ABELIAN BLOCH-NORDSIECK
CONJECTURE
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An example is given of a reaction, with two quarks (with non-zero mass, and colour averaged) in
the initial state, in which non-leading infrared divergences coming from two soft gluons do not
cancel between real and virtual diagrams.




... which may no longer be purely academic

INTRINSIC CHARM

e MHOU ESTIMATED FROM N°LO-NNLO MATCHING DIFFERENCE
— LARGE UNCERTAINTY AT SMALL x
— NEGLIGIBLE UNCERTAINTY IN VALENCE REGION

e COMPATIBLE WITH ZERO AT SMALL x
e CLEAR EVIDENCE FOR INTRINSIC VALENCE PEAK
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Back to the basics: (collinear) factorisation

Q) ~ 100 GeV

— Aqcn~ 1 GeV

do = /d$1d372f(371)f(x2)d0-part(3717 xQ)FJ(l + O(AQCD/Q))
v

logarithmically insensitive to Agcp



A solid framework: DIS

. / 107 Pl (0)J7 (2)|P) da

OPE:  (PJV#(0)J"(2)|P) ~ )  ci(z){P|O:| P)
i | twist-2
Vg

o = [ Az o (@) f()(1+ 0<Aac?/@2>>

higher-twist




Hadronic collisions: more complex

A potential problem: non-
trivial (long-distance)
Interactions among
protons / coloured objects

“Standard” collinear factorisation

* Works at all order for simple processes, e.g. Drell-Yan |Collins, Soper, Sterman|

e Works up to NNLO for any process and (IR-safe) observables

* There may be issues at N3LLO for complex-enough processes Beneke, Ruiz-

Femenia; Catani, de Florian, Rodrigo; Forshaw, Seymour, Siodmok...|

Initial-state heavy quarks: more delicate...



The simplest set-up: Drell-Yan

Is the total partonic cross-section for heavy-

quark induced Drell-Yan IR finite?

The “standard” Bloch/Nordsiek mechanism

Ovirt T Oreal = O

o 1

-1/¢ from loop 1/e from integrating
integration over unresolved
parton phase-space

» finite




Warm-up: massive DY at NLLO

s (1) 20F | 1 1 —w
VT Ton { . [21} S\ dge ) | @l T e

v=+/1—m*/(p1 - p2)?

Singularities only from the soft E; ~ 0 region

dEg dQEJS) : (4) fin
dog = / EI 167 Jim, Y (p1,p2.pvipg)| + dog




Warm-up: massive DY at NLLO

s (1) 20F | 1 1 —w
doy = — ] 1
VT Ton { . [21} "\ 15y ) T doro Fdovim

v=+/1—m*/(p1 - p2)?

Singularities only from the soft K, ~ 0 region

Soft region: etkonal approximation

Mo (p1, p2; pv s Dga) = 935“(]3’(0) (p1, P23 Pg) Mo(p1, P2; DV ),

a a_bi,
Ju’(o)(plap%pg):z:ﬂ .M )




Warm-up: massive DY at NLLO

s (1) 20F | 1 1 —w
doy = — ] 1
VT Ton { . [21} "\ 15y ) T doro Fdovim

v=+/1—m*/(p1 - p2)?

Singularities only from the soft K, ~ 0 region

Soft region: etkonal approximation

Mo (p1, p2; pv s Dga) = 935“(]3’(0) (p1, P23 Pg) Mo(p1, P2; DV ),

di : . .
dog" = Eiko(p1,p2) X dorLo, universal factor, cancels the pole in oy



Warm-up: massive DY at NLLO

o 1

Drell-Yan at NL.LO

 |R sensitivity cancels among reals and virtuals, as in the standard case

> finite

e Only relevant region: soft gluon
e No need for PDFs

e Full calculation not needed to see the cancellation

e Still, going beyond NL.O non-trivial

Is this result obvious? Yes



Massive DY@NL.O: a different approach

* Consider now 7 decay, related to DY by crossing

Cross
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Massive DY@NL.O: a different approach

* Consider now 7 decay, related to DY by crossing

Cross
S oc 9

* Optical theorem

mcg - S [MOw

* Off-shell correlator: finite — any IR sensitivity in DY must come

from non-trivial behaviour under CTrossing



Back to N1.O

> trivial under crossing

Soft region: etkonal approximation

2

a a p’L,
JM’(O)(PbPz;pg) = E T =
i—1 Pi * Pg

Eikonal current immvariant under p;i — -p;

At NLO, heavy-quark induced DY is trivially IR-insensitive




Now at NNL.O

l

VV: trivial under
Crossing

\4

RR:1n the soft limit, everything controlled by soft
currents which are homogeneous i hard momenta —
same |R structure of decay process

\4

RV: loop — non-trivial under crossing.
When gluon 1s soft: potential source for problems



Now at NNL.O

l

VV: trivial under
Crossing

\4

RR:1n the soft limit, everything controlled by soft
currents which are homogeneous i hard momenta —
same |R structure of decay process

\4

RV: loop — non-trivial under crossing.
When gluon 1s soft: potential source for problems

Note: in QFED, the soft current does not receive corrections — NNLO QFED DY is finite



The soft current at 11.

Mi(pvip1,p2.pg) = gie | T2 (p1, pa; pg) Mi(pv; pr, p2)

+95J“ ) (p1, p2; pg ) Mo(pyviprsp2) |-

L
i . - P; 1
T (py, pa; py) mz T;T, ( — ) 9;; (€. 14 Pi: ;)

i =1 " Pg p]'pg

17 NLO current
— 912 €, Pg; P1, p2 CA Ja (O)“(Zh p2>pg)

% %é Pe K soft

[Explicit expressions: Catani, Grazzini (2000) + Bierenbaum, Czakon, Mitov (2012)]



The soft current at 11.: massless case

2 U H
. . . D; P; 1
J ’(1)’“(1917192;199) = 1 fabe Z Tiij ( - —J> g§j)(e,pg;pi,pj)
i =1 Pi * Dg Pj * Pg
i£]

1 a
— 9%2)(67%32?17292) CaJ 7(0)’M(plap2;pg)°

Massless case:

0 | 1 1A —r*(1+¢) (=512 — 10)
919 (€, Dg; P1,D2) = 1672 2 I'(1— 2e¢) (—S14 — 20)(—824 — 10)

* Under crossing — simple phase
*ory = 2 Re[AV ALY — drops out

e Standard cancellation of soft singularities applies

€



The soft current at 11.: massive case

Massive case more complicated. Under crossing:

gﬁ)(é,pg; —p1, —P2) = 6_2“”9%)(6,109;191,192)-

(1) _ Qs o 1 am am(1—w)
912 (P1,p2) or 9 |26 2 e ...._
/ dEg X 1
E5+4€ de Non-trivial
B massive cut —
Universal extra phase
soft pole
v
standard

“In(-s-i8)”



The soft current at 11.: massive case

Massive case more complicated. Under crossing:

g%;) (eapg; —P1, _p2) — 6—27;67Tg§;) (Eapg;phPZ)-
—‘ —
(1)( ) B g E_Qe | 1 i | . -
912 p17p2 o 27_‘_ g | 26 26 I ..._

R |95 (¢, py: —pl,—pa)} = %{gg)(e,pg;pl,pz)} +-+ @(6)} -

|

Unmatched IR contribution, lettover
from non-cancelling Coulomb phase



Massive DY@NNLO: summing it up

R |95 (¢, py: —pl,—pz)} = %{gﬁ)(e,pg;pl,pz)} +- (9(6)} -

ODYNNLO = ODY,VV + ODY,RR + ODY,RV-=

OZdec,VV + OZdec,RR + |OZdec,RV + AORV] =

finite + AORV
1 —

dO’NNLQ — A[d()’%l\‘;] —+ =

__I_...




Massive DY@NNI.O: remarks

dO'NNLQ = A[d()’dw] * =

as(u)]” 2 71 = 1 /11—
as(1)]? 2C4Cr I LAY v Qore) 4!
2T € 2v 14w v

* Derivation based on general properties of IR factorisation —

trivial to generalise (Cp - —T' - T?)

e For different masses: v — \/ 1 —mim5/(p, - pp)* —

requires two massive incommg partons

e Ao ~ mg/m{‘} — “higher twist”, and consistent with standard factorisation

arguments.
imagine target hadron H; at the origin, and hadron H moving in the z direction.
t — 1 4
Field experienced by H: F~ er(Pt = 2) o

V2HYI+ 2Bt —z2 v S



Massive DY@NNI.O: remarks

dO'NNLQ — A[d()’%l\\/[] + - =

— 2 — =

s 2 11 1 — 1 —

Qo) |7 2CaCr 11 (1m0 =) doro + -
27 € 20 1+ v

This IR sensitivity 1s only an issue for intrinsic heavy quarks

- — - - —

Perturbative HF': off-shellness acts as cut-oft (though it may
require tweaking of e.g. FONLIL....)



Massive DY@NNI.O: remarks

dO'NNLQ — A[d()’%l\\/[] ni—

— 2 2 = . - o
as(p)|”2C04CF 7 | 1 ln<1 v) 1 (1 v) Qore) & -t

27 € 20

>a{p >b< This 1s not a violation of KLL.N.
T Solution within KLLN well-known
<’W EA < (disconnected gluons, spectators,
S coherent states...)
‘;% <k' t3>> ‘é:'

Issue: interplay with collinear factorisation



Conclusions

* Even for the simplest processes, challenges for standard collinear
factorisation if two heavy quarks are present in the initial state

* Origin very simple: non trivial Coulomb phase that does not cancel

(contrary to QED and massless QCD)

* To some extent, expected. Light quark mass probes IR physics, power-
like “higher twist” behaviour m4/Q* recovered

* Not a problem for “proxy” massive 4KNS calculations, but would
require tweaking — more work needed

o [f m/QQ small but finite, could still look at first terms in the expansion
and learn something interesting. E.g. p. ~ mq << Q (see Davide’s talk
yesterday) — more work needed

e Simplest example factorisation breaking. Something more severe could
happen in the massless sector beyond NNLO... = more work needed



Thank you very much for your attention



