yt-induced Hbb as a background for HH searches

Marco Zaro

Heavy Flavours at High p_T workshop

based on

(Deutschmann, Maltoni, Wiesemann, MZ, arXiv:1808.01660; Pagani, Shao, MZ, arXiv:2005.10277) Manzoni, Mazzeo, Mazzitelli, Wiesemann, MZ, arXiv:2307.09992

stituto Nazionale di Fisica Nuclea Sezione di Milano

Outline

- Hbb production in the SM and the insensitivity to y_b
- y_t-induced Hbb @NLO+PS as a background to HH
- On a possible source of double counting in 5FS simulations

- Hbb has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the Hbb final state. Which processes can contribute?

- Hbb has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the Hbb final state. Which processes can contribute?

- Hbb has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b?
- Consider the Hbb final state. Which processes can contribute?

- Hbb has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the Hbb final state. Which processes can contribute?

- Hbb has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the Hbb final state. Which processes can contribute?

- Hbb has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the Hbb final state. Which processes can contribute?

Remember: Higgs couplings ~ mass

 y_b^2 contribution most studied: 35+ references in our paper

Deutschmann, Maltoni, Wiesemann, MZ, arXiv:1808.01660

Deutschmann, Maltoni, Wiesemann, MZ, arXiv: 1808.01660

• Let us compare the y_b and y_t induced diagrams

• The latter formally enters NLO $(y_b y_t)$ and NNLO (y_t^2) corrections of the former

Deutschmann, Maltoni, Wiesemann, MZ, arXiv:1808.01660

• Let us compare the y_b and y_t induced diagrams

- The latter formally enters NLO $(y_b y_t)$ and NNLO (y_t^2) corrections of the former
- y_t^2 contribution is actually larger than y_b^2

Deutschmann, Maltoni, Wiesemann, MZ, arXiv: 1808.01660

• Let us compare the y_b and y_t induced diagrams

- The latter formally enters NLO $(y_b y_t)$ and NNLO (y_t^2) corrections of the former
- y_t^2 contribution is actually larger than y_b^2
- NLO corrections to both terms (and to the interference, negligible) are computed with MG5_aMC in the Born-improved HEFT

Deutschmann, Maltoni, Wiesemann, MZ, arXiv: 1808.01660

• Let us compare the y_b and y_t induced diagrams

- The latter formally enters NLO (y_by_t) and NNLO (y_t^2) corrections of the former
- y_t^2 contribution is actually larger than y_b^2
- NLO corrections to both terms (and to the interference, negligible) are computed with MG5_aMC in the Born-improved HEFT
- At NLO (including terms ~yt² formally N³LO for the yb² piece), the situation gets even worse

INFN

Pagani, Shao, MZ, arXiv:2005.10277

Pagani, Shao, MZ, arXiv:2005.10277

gHZZ-induced Hbb

Pagani, Shao, MZ, arXiv:2005.10277

Pagani, Shao, MZ, arXiv:2005.10277

Pagani, Shao, MZ, arXiv:2005.10277

Let us go beyond QCD-effects, and consider the Complete-NLO corrections to Hbb

 Complete-NLO corrections computed with MG5_aMC, first process in the 4FS

Pagani, Shao, MZ, arXiv:2005.10277

- Complete-NLO corrections computed with MG5_aMC, first process in the 4FS
- The α/α_s suppression is compensated by g_{HZZ}/y_b

Pagani, Shao, MZ, arXiv:2005.10277

- Complete-NLO corrections computed with MG5_aMC, first process in the 4FS
- The α/α_s suppression is compensated by g_{HZZ}/y_b
- If (at least) I b-jet is required, the g_{HZZ} contribution is almost twice as large as y_b

Goodbye y_b...

• Putting all together, asking for 1 b jet (ak_T, R=0.4, p_T>30 GeV, $|\eta|$ <2.5)

Hbb final state is only marginally sensitive to y_b This holds true in the SM, and BSM for O(1) effects on y_b If Hbb is a background, all the various channels should be taken into account

THE 4TH FILM BY QUENTIN TARANTINO

Deutschmann, Maltoni, Wiesemann, MZ, arXiv: 1808.01660

VOLUME 2 Pagani, Shao, MZ, arXiv:2005.10277

Or why not to use bbH as a probe of the bottom Yukawa

RIP $Hb\bar{b}$: how other Higgs production modes conspire to kill a rare signal at the LHC

Davide Pagani,^a Hua-Sheng Shao^b and Marco Zaro^c

yt-induced Hbb @NLO+PS as a background to HH

Manzoni, Mazzeo, Mazzitelli, Wiesemann, MZ, arXiv:2307.09992

Long-live Hbb! (as a background)

- ggF (yt-induced) Hbb has a very large share of Hbb production
- As a background, usually simulated via inclusive/multi-jet merged ggH samples (NNLOPS in ATLAS), in the 5FS, with 100% uncertainty NNLOPS: Hamilton et al, 1501.04637
- This provided only LO-accurate predictions for Hbb production
- We performed the first simulation of y_t-induced Hbb at NLO+PS, using the 4FS

5FS: b's from ME or PS 4FS: b's (mostly) from ME

- MG5_aMC was employed for the event generation
- The $HH \rightarrow b\overline{b}\gamma\gamma$ phase-space was considered

anti- k_T , $R = 0.4 \ p_T(j) > 25 \,\text{GeV} \ |\eta(j)| < 2.5$ $80 \,\text{GeV} < m(b_1, b_2) < 140 \,\text{GeV}$

 $105 \,\text{GeV} < m(\gamma_1, \gamma_2) < 160 \,\text{GeV}, \quad |\eta(\gamma_i)| < 2.37, \quad -\frac{1}{n}$

$$\frac{p_T(\gamma_1)}{n(\gamma_1, \gamma_2)} > 0.35, \quad \frac{p_T(\gamma_2)}{m(\gamma_1, \gamma_2)} > 0.25$$

similar cuts as in ATLAS HH search, 2112.11876

Some results

Total rates: dominated by y_t, with exceptions at very low scales y_t shows much harder spectra

NLO corrections to y_t part: >100% increase on top of LO Still sizeable scale uncertainty (30-50%)

Rather small matching/shower uncertainties O(10-20%) between different PS: HW7 vs PY8 and matching schemes: standard MC@NLO vs MC@NLO-Δ* Bands are due to shower-scale variations only

More results

Marco Zaro, 01-12-2023

On a possible source of double counting in 5FS simulations

Comparison with the 5FS

- In a 4FS simulation, two b-quarks are always present at the matrixelement level
- In a 5FS simulation stemming from an inclusive prediction (like NNLOPS, used by ATLAS), b-quarks can either be generated by the PS or at the ME-level
 - Given the hierarchy between ggH (50 pb) and Hbb (0.5 pb), assuming O(1%) of events with b quarks from the PS, the two effects are of the same order

80.00	Cut	Contr.	Run	LO	NLO	$\delta\mu_{R,F}$	δQ_{sh}	$ \begin{array}{ c c } \text{NNLOPS} \\ (y_t^2 \text{ LO}) \end{array} $	HH signal
tole 1			PY8	3.15	4.22	$+15\% \\ -15\%$	$^{+10\%}_{-4\%}$		
		y_b^2	PY8- Δ		4.75	1070	$+0\% \\ -2\%$		
			HW7	2.59	4.08		+8% -12%	29.9 ME	+PS ~1.7*4FS
9999^{t} t b's from ME or PS	Fid. cuts	y_t^2	PY8	8.24	18.1	$+58\% \\ -34\%$	$^{+10\%}_{-7\%}$		
			PY8- Δ		19.2	0 1 / 0	$+3\% \\ -1\%$	g→bb:	22.7
			HW7	6.83	16.6		$^{+4\%}_{-5\%}$	17.2 M	E only ~4FS

Ideally, the two kinds should fill different regions of phase-space

Comparison with the 5FS

 At the level of cross sections and distributions, the following trend seems to hold: 4FS ~ 5FS (ME-only) ~0.5 5FS (ME+PS)

(Non-)interplay between PS and ME

- The PS should fill soft/collinear regions, and leave the rest to the ME
- Are b <u>quarks/hadrons</u> from the PS soft/collinear?

• PS fills all over the mass range; it is not limited to soft-collinear

Comments/Thoughts

(see also Davide's talk yesterday)

- In the vast majority of events, there is only I bb pair
- The shower scale is typically O(m_H). Is it a surprise that we see m(BB)~120 GeV?
- Keep in mind that b quarks are not generated in the first steps of the evolution, so they should naturally go at lower scales
- There may be non trivial interplay between different multiplicities described at different perturbative orders. What happens if also H+2jet is NLO-accurate?
- Also, the upper bound for $m(b_1b_2)$ can have an effect
- Does the same happen for other processes with b quarks+X?

Conclusions

- Hbb production receives huge contributions insensitive to y_b in the SM
- They must be accounted for whenever Hbb is a background
- The yt² contribution was never studied in the 4FS at NLO+PS
- At NLO+PS, dominant uncertainties from MHO. PS/matching uncertainties seem under control
- Such a description improves on the NNLOPS modelling previously used by experiments (with 100% uncertainty)
- Besides, the NNLOPS simulation seems affected by double counting, which are absent in a 4FS description
- It is possible (in principle) to improve the 4FS in the regions mostly sensitive to logs Hoeche et al, 1904.09382
- Studying b quarks looks easy at the beginning, but leads to many surprises