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2Introduction

• So far, we’ve looked predominantly at general deep learning concepts

• Now we’ll look at some more specific architectures and application to LArTPCs
• Introduction to semantic segmentation

• Pandora’s vertex finding network in DUNE

• ResNets



3U-Nets for semantic segmentation

• U-Net concept introduced in 2015 for biomedical 
image segmentation

• The name comes from the conceptual structure of 
the network
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Recall: Pooling merges neighbouring pixels: MaxPool picks the largest pixel from a group
DropOut randomly turns off weights during training to reduce over-fitting

We’ll briefly discuss 
BatchNorm and ReLU
later

https://arxiv.org/abs/1505.04597


4U-Nets for semantic segmentation

• Down-sampling and feature extraction is 
performed via a Convolutional Neural Network 
(CNN) in the left arm of the U

• Result of each intermediate convolution block is 
retained for use in skip connections
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5What are skip connections?

• The final output of a U-Net needs to be the same 
size as the original input.

• Repeatedly down-sampling means we have to get 
back to high resolution from very low resolution

• Skip connections provide a means to augment up-
sampled images with higher-resolution activations 
from earlier network layers
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6U-Nets for semantic segmentation

• Up-sampling and image augmentation is 
performed via transpose convolutions (discussed 
later) in the right arm of the U

• Intermediate results from down-sampling are 
added to the up-sampled images via skip 
connections to “fill in the gaps” from up-sampling
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7U-Nets for semantic segmentation

• The base of the U is known as the bridge
• Performs additional feature extraction

• Ensures matching tensor sizes between down-sampling 
and up-sampling arms
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8U-Nets for semantic segmentation

• Key goal of the U structure is to classify every pixel
from the input image
• Track versus shower

• Particle ID

• …
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9

• Multiple input pixels map to one output 
pixel

• Each layer increases number of kernels to 
build more complex features

• Stride 2 (sliding the convolution filter 2 
pixels) down-samples to reduce 
computational overhead

Convolution versus transpose convolution

Up-sampleDown-sample

• Each input pixel maps to multiple output 
pixels

• Effective stride 1/2 up-samples to return to 
original image size

• Higher-resolution activations from down-
sampling layer can then be added to the 
up-sampled images

Credit: V. Dumoulin & F. Visin Credit: T. Lane

https://github.com/vdumoulin/conv_arithmetic
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8
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• Why normalise?
• Input data changes with each batch/epoch, so input 

distribution can vary and these variations build up deep in 
the network

• Small/large gradients can vanish/explode as they are 
multiplied in deep networks

• Batch normalisation ensures each batch has zero mean 
and unit variance, giving consistent input distributions 
and avoiding gradient problems, but also scales and shifts 
to avoid loss of representational power

• Why ReLU?
• Non-linear activations have high representational power

• It’s fast. Simple gradient calculation (0 or 1)

• Doesn’t squash activations with repeated activation 
(unlike sigmoid)

Normalisation and activation function

ො𝑥𝑖 =
𝑥𝑖 − 𝜇𝐵
𝜎𝐵

𝑦𝑖 = 𝛾ො𝑥𝑖 + 𝛽

Batch normalisation
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11Intermediate activations

• Determining what the network is doing can be 
extremely challenging

• Ultimately however, it is just a set of activations in 
different layers that variously accentuate or 
attenuate features of the inputs

• Here we have a set of activations for randomly 
selected filters at different depths of the U-Net
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Network classification

Using semantic segmentation in Pandora

• Semantic segmentation forms the basis of Pandora’s vertex finding algorithm for 
DUNE

• Why would you use a classification network to find an interaction vertex?
• Regression for vertex finding in LArTPCs is hard

• You ask a network to learn a single (or small set of) target location(s) in a complex image

• Semantic segmentation treats the whole image as a target to learn

• Classify each pixel according to its distance from the estimated vertex location
• Adjacent pixels are obviously correlated, so context helps learning

• The network doesn’t return a vertex location

• How do we extract the vertex?
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Image from a single wire plane

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from one classified pixel
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Heat map from one classified pixel

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from two classified pixels
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Heat map from two classified pixels

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from three classified pixels
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Heat map from 3 classified pixels

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from all classified pixels



17A brief aside on TorchScript

• Currently, LArSoft expects PyTorch networks to be C++-based and CPU-bound for 
inference

• This will hopefully change in time, but until it does, if you have a deep neural 
network you’d like to use in, Pandora, for example, you need to know about 
TorchScript

• Pandora’s vertex finding network was trained using Python on GPUs, but you can’t 
run that in Pandora, you need to convert it

device = torch.device('cpu')

model = load_model(filename, device)   # custom code to load your specific model

sm = torch.jit.script(model)

sm.save(output_filename)

• TorchScript can take a model defined using standard PyTorch code and convert it to 
a format that can be run on a CPU

• Such a network can now be used in Pandora (you’ll need to manage the inputs and 
outputs of course, but we won’t cover that today)



18ResNet

• We’ll now return to take a brief look at probably the most famous CNN for 
classification, ResNet

• Like semantic segmentation, ResNet was introduced in 2015
• There are a lot of neat ideas introduced in this paper, but the key one is the introduction of the 

residual (the Res in ResNet) shortcut connection

• This innovation allowed networks to get much deeper and still train effectively

• Instead of learning the mapping from input to output, you learn the residuals that 
get you from input to output

• e.g, if the optimal mapping is the identity, it’s easier to push the residuals to zero 
than to relearn the identity
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https://arxiv.org/abs/1512.03385


19Getting some practical experience

• Having briefly introduced the ResNet, it’s now time to use one to classify some 
neutrino interactions…
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