

Convolutional Neural Network Tutorial Leigh Whitehead

Slack channel: #deep-learning

27th October 2023

8th UK LArTPC Software and Analysis Workshop

Introduction

- This tutorial is independent from the previous days
- We will be doing everything in python
 - Python is the most popular language for deep learning and the majority of online resources use python
 - I know python will be alien to some of you...
- I don't have time to teach you python here, but I hope the code I provide is reasonably self-explanatory
 - Structures are mostly similar to C++ but with different syntax
- We will use tensorflow (via keras), but PyTorch is also a popular framework for deep learning All you need to run this tutorial is a web-browser!

Python notebooks

- Today we will work with python notebooks (also called Jupyter notebooks)
- There are a few advantages for tutorials
 - No environment to set up or packages to install on your machine
 - The code can be interspersed with text and pictures
 - Each small block of code can be executed to show intermediate output
 - Click on a block to edit it
 - Press shift + enter to execute the code
- We will run in a web-browser using Google Colab

Google Colab

- Load Google Colab: <u>https://colab.research.google.com</u>
 - A popup to load a notebook will appear
 - Click on the GitHub tab
 - Enter this GitHub URL: <u>https://github.com/lhwhitehead/TutorialDL</u>
 - Select the exercise

or search by organisation or us	er		🗹 Include priv	vate r	epos
m/lhwhitehead/TutorialDL					Q
ialDL		~	Branch: 🖸 main ~		
<u>nsorflow_CNN_tutorial_exercise.ip</u>	<u>ynb</u>			Q	

Google Colab

- Load Google Colab: <u>https://colab.research.google.com</u>
 - A popup to load a notebook will appear
 - Click on the GitHub tab
 - Enter this GitHub URL: <u>https://github.com/lhwhitehead/TutorialDL</u>
 - Select the exercise

ed	Comment	🖺 Share	\$	
		Connec	t 🕶	^
some standard image datasets. We will make use of as a PyTorch if you wanted to.	tensorflow	and its higł	n-level	
dapt it to different tasks eters in the model				

The Aim

- We don't have time to use a large neutrino dataset to classify neutrinos
 - benchmark data set
- MNIST is a collection of 70,000 handwritten digits from 0-9
- Each image is 28 x 28 pixels
- Has a target (truth) from 0-9
- Was a benchmark dataset for CNNs for a number of years

NB: This was the first use-case for a CNN! LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541-551, 1989, https://doi.org/10.1162/neco.1989.1.4.541

- We will start by using a simple convolutional neural network to classify the MNIST

Our Network

We will start with what is about the simplest CNN we can build

Our Network

We will start with what is about the simplest CNN we can build

The exercise

- Ok, now we can play with something!
- None
 - These are the parts of the code that you need to fill in
 - I've provided some descriptions, explanations and hints to help you fill in the blanks
 - I'll also cover it in these slides as we go along
- First things first
 - Get your notebook loaded in Google Colab or Binder
 - We'll get started once you've all loaded it up

You will see that the exercise notebook as a number of lines of code that just say

The exercise

- The first thing we need to do is load the required libraries

- You might see a warning / error about GPUs... ignore this
- Can think of these import statements like the *#include* statements in C++

Run the block of code by selecting the box it is in and pressing shift + enter

```
from keras.datasets import mnist, cifar10, cifar100
print('Tensorflow version:',tensorflow.__version__)
```

You will see it print out the tensor flow version just to show it has done something

Function to load some datasets

The load dataset function has the code to load the dataset

CIFAR100 by providing an argument to the function call

<pre>def load_dataset(dataset_name='mnist'):</pre>	# Let's check the shape of the images for convenience
# MNIST, CIFAR10 and CIFAR100 are standard datasets we can load straight	print("Shape of x_train =",x_train.shape)
# from keras. The data are split between train and test sets automatically	<pre>print("Shape of x_test =",x_test.shape)</pre>
# - x_train is a numpy array that stores the training images	
# - y_train is a numpy array that stores the true class of the training images	# The y_train and y_test values we loaded also need to be modified.
# - x train is a numpy array that stores the testing images	# These values store the true classification of the images $(0-9)$ as a single
# - y train is a numpy array that stores the true class of the testing images	# number. We need to convert the single value into an array of length 10
if dataset name.lower() == 'cifar10':	# corresponding to the number of output classes. Thus values of
(x train, y train), (x test, y test) = cifar10.load data()	# y = 2 becomes y = [0,0,1,0,0,0,0,0,0]
n classes = 10	# y = 8 becomes $y = [0,0,0,0,0,0,0,0,1,0]$
elif dataset name.lower() == 'cifar100':	<pre>y_train = keras.utils.to_categorical(y_train, n_classes)</pre>
(x train, y train), (x test, y test) = cifar100,load data()	<pre>y_test = keras.utils.to_categorical(y_test, n_classes)</pre>
n classes = 100	
elif dataset name lower() == 'mnist'.	<pre>print("Shape of y_train =", y_train.shape)</pre>
(x + rain + x + rain) (x + oct + x + oct) = mnict load data()	<pre>print("Shape of y_test =", y_test.shape)</pre>
(x_crain, y_crain), (x_cest, y_cest) = minst.itau_data()	
# MNIST IS greyscale so we have to do a trick to add a depth dimension	# Let's take a look at a few example images from the training set
x_train = np.expand_dims(x_train, axis=-1)	n_plots=5
x_test = np.expand_dims(x_test, axis=-1)	<pre>fig, ax = plot.subplots(1, n_plots)</pre>
n_classes = 10	<pre>for plot_number in range (0, n_plots):</pre>
else:	<pre>ax[plot_number].imshow(x_train[plot_number])</pre>
print('Requested dataset does not exist. Please choose from mnist, cifar10 or cifar100')	
return	return (x_train, y_train), (x_test, y_test), n_classes

and the number of true classes

By default it will load the MNIST dataset, but it can also load CIFAR10 and

Returns numpy arrays of images and truth labels for training and test samples

Function to load some datasets

- The load dataset function has the code to load the dataset
 - By default it will load the MNIST dataset, but it can also load CIFAR10 and CIFAR100 by providing an argument to the function call
 - It will also print out the first five images from the dataset

These MNIST images are greyscale, but shown with a colour palette here

Function to load some datasets

- The load dataset function has the code to load the dataset
 - Now we can just call the function to get our dataset:

- The data are stored in x train and x test
- The labels are stored in y train and y test

```
# x_train is the training data, and y_train the corresponding true labels
# x_test is the testing data, and y_test the corresponding true labels
# We don't have a separate validation sample in these keras datasets
(x_train, y_train), (x_test, y_test), num_classes = load_dataset('mnist')
```


- This large block of code is used to build our CNN
 - There are lots of blanks to fill in here!
 - give you all the information that you need

I'll give some details in the following slides, but the comments in the notebook should

x = None(input_layer) # Replace None with a 2D convolution with 32 filters of size (3,3) and relu activation x = None(x) # Replace None with a MaxPooling2D layer to downsample by a factor of 2 in both dimensions

• Lets remember our network architecture...

- I have already defined the input here

```
input_layer = keras.layers.Input(x_train[0].shape)
x = None(input_layer) # Replace None with a 2D convolution with 32 filters of size (3,3) and relu activation
x = None(x) # Replace None with a MaxPooling2D layer to downsample by a factor of 2 in both dimensions
x = None(x) # Replace None with a droput layer with a fraction of 0.25
x = None(x) # Replace None with a final dense output layer with num_classes neurons
cnn_model = keras.Model(input_layer, x)
```

You need to define the first convolutional layer using keras.layers.Conv2D(...)

• Lets remember our network architecture...

Next, define the pooling layer using keras.layers.MaxPooling2D(...)

```
input_layer = keras.layers.Input(x_train[0].shape)
x = None(input_layer) # Replace None with a 2D convolution with 32 filters of size (3,3) and relu activation
x = None(x) # Replace None with a MaxPooling2D layer to downsample by a factor of 2 in both dimensions
x = None(x) # Replace None with a droput layer with a fraction of 0.25
x = None(x) # Replace None with a final dense output layer with num_classes neurons
cnn_model = keras.Model(input_layer, x)
```


• Lets remember our network architecture...

Next, define the dropout using keras.layers.Dropout(...)

```
input_layer = keras.layers.Input(x_train[0].shape)
x = None(input_layer) # Replace None with a 2D convolution with 32 filters of size (3,3) and relu activation
x = None(x) # Replace None with a MaxPooling2D layer to downsample by a factor of 2 in both dimensions
x = None(x) # Replace None with a droput layer with a fraction of 0.25
x = None(x) # Replace None with a final dense output layer with num classes neurons
cnn_model = keras.Model(input_layer, x)
```


• Lets remember our network architecture...

- I've added the Flatten layer that takes the 2D tensor and makes it 1D
- Now you need to add the final output layer: keras.layers.Dense(...)
 - This layer needs to have a softmax activation

```
input_layer = keras.layers.Input(x_train[0].shape)
x = None(input layer) # Replace None with a 2D convolution with 32 filters of size (3,3) and relu activation
x = None(x) # Replace None with a MaxPooling2D layer to downsample by a factor of 2 in both dimensions
x = None(x) # Replace None with a droput layer with a fraction of 0.25
x = None(x) # Replace None with a final dense output layer with num_classes neurons
cnn_model = keras.Model(input_layer, x)
```


- Once you've filled in the blanks and ran the code block you should see:
- Give a summary of the model:
 - Shows each layer:
 - Number of parameters
 - Shape of the data output
 - The total number of parameters -

Model: "model"			
Layer (type) ====================================	Output Shape	Param # =======	
input_1 (InputLayer)	[(None, 28, 28, 1)]	0	
conv2d (Conv2D)	(None, 26, 26, 32)	320	
max_pooling2d (MaxPooling2 D)	(None, 13, 13, 32)	0	
dropout (Dropout)	(None, 13, 13, 32)	0	
flatten (Flatten)	(None, 5408)	0	
dense (Dense)	(None, 10)	54090	
Total params: 54410 (212.54 KB) Trainable params: 54410 (212.54 KB)			
Non-trainable params: 0 (0.0	O Byte)		

Defining some useful variables

- The next block of code defines some useful variables
 - See that some of these are hyper parameters like the learning rate

- As before, run it by pressing shift + enter
- There isn't any output for this block of code

er of images that are processed simultaneously to train the network for gradient descent)

Training your CNN

- We need to tell the model how it should train
 - Which loss function? Which optimiser?

use categorical crossentropy loss loss_function = keras.losses.categorical_crossentropy # algorithms, but Adam is one of the more popular ones optimiser = keras.optimizers.Adam(learning_rate=learning_rate) # Now we compile the model with the loss function and optimiser

- For n-category classification tasks we use categorical crossentropy loss
- In this example, we will use the Adam optimiser
- Finally, we compile the model and it is ready to train

Training your CNN

- Now we train the CNN
 - Train on the training sample and use the testing sample for validation

Fill in the required arguments using the clues given above

- Fill in the blanks with the variables we defined in the exercise
- When finished, hit shift + enter and you'll see it start to train
- It should just take a few minutes to train for five epochs
- You can watch the loss (hopefully) decrease as it trains

```
# Train the model using the training data with the true target outputs.
cnn_model.fit(x = None, y = None, batch_size = None, epochs = None,
              validation_data = (None, None), verbose = 1)
```


Running inference

- Now we are getting to the real way that your CNN will be used
- We want to classify images without knowing the truth information We do this with the **model.predict(...)** function

incorrectly classified images

• To make it a little more interesting, we will use model.predict as we search for

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop

23

Running inference

- Now we are getting to the real way that your CNN will be used
- We want to classify images without knowing the truth information
 - We do this with the **model.predict(...)** function
- You will need to just supply the correct images to the predict function
- See the hint on the a[:b] notation to get the first b elements of a


```
# Make a list of incorrect classifications
incorrect_indices = []
# Let's look at the whole test dataset, but you can reduce this to 1000 or so
# if you want run more quickly
n_images_to_check = x_test.shape[0]
# Use the CNN to predict the classification of the images. It returns an array
# containing the 10 class scores for each image. It is best to write this code
# using the array notation x[:i] that means use all values of x up until
# the index i, such that if you changed the number of images above then it all
<u># still works efficiently</u>
raw_predictions = cnn_model.predict(x = None, batch_size = None)
for i in range(0,n_images_to_check):
 # Remember the raw output from the CNN gives us an array of scores. We want
 # to select the highest one as our prediction. We need to do the same thing
 # for the truth too since we converted our numbers to a categorical
  # representation earlier. We use the np.argmax() function for this
 prediction = np.argmax(raw predictions[i])
  truth = np.argmax(y_test[i])
 if prediction != truth:
    incorrect_indices.append([i,prediction,truth])
print('Number of images that were incorrectly classified =',len(incorrect_indices))
```


Checking the incorrect images

• The next block of code will visualise these failures

You can change the value of im to look at different failures im = 0image_to_plot = x_test[incorrect_indices[im][0]] fig, ax = plot.subplots(1, 1) print('Incorrect classification for image', incorrect_indices[im][0], ': predicted =', incorrect_indices[im][1], 'with true =',incorrect_indices[im][2]) ax.imshow(image_to_plot)

- You'll see an image alongside some information
- Change the value of im to see different images

```
# Now you can modify this part to draw different images from the failures list
```


A slightly tougher task

- Let's move on to the CIFAR10 dataset
 - This contains (very) low resolution colour images with 10 categories:

- Do you notice any change in the architecture summary?
- How well does it perform compared to MNIST?

ar	0	Aeroplane	5	Dog
20	1	Car	6	Frog
	2	Bird	7	Horse
	3	Cat	8	Ship
	4	Deer	9	Lorry

Have some fun and play around a bit

- There are lots of things you can do to add complexity to the model and see how well the classification works
 - Add more filters to the convolutional layer
 - Add a second (third, etc) convolutional layer
 - Add a dense layer with more neurons before the output?

Loading and saving models

- This isn't part of today's tutorial, but just for reference...
- To use our network in a realistic way we need to save it
 - You can use the model.save(<filename>) function for this
 - Similarly, model.load(<filename>) allows you to load a model
- For more information on all of the model functions:
 - https://www.tensorflow.org/api docs/python/tf/keras/Model

Summary

- So, this brings me to the end of the tutorial
 - Use the File menu to save / download your finished exercise
- There are many things that I couldn't show you, but I hope this small introduction can help you get started with deep learning
 - There are lots of tutorials and resources online these days
- The other big framework is PyTorch
 - Some things are better supported in PyTorch as custom libraries
 - Graph neural networks (torch geometric)
 - SparseCNNs (MinkowskiEngine by Nvidia, Facebook's SparseConvNet (less maintained))

Some thoughts (1)

- Hyperparameters are very important The learning rate is probably the most important of all
- If the network learns but doesn't reach good accuracy it is possible that it is too simple and needs more layers or filters
- If your training accuracy is much higher than the validation accuracy then your network is likely overtrained... maybe add more dropout?
- Normalising your input parameters from (0,1) typically helps a lot to keep values "sensible" in the network (we didn't do this in the tutorial)

• There aren't really any solid rules about what architecture is best for a certain job

Some thoughts (2)

- Deep learning is not a replacement for brain power!
 - You need to think and try to understand why a certain approach will work for a given task
 - There isn't a golden architecture that will work for all use cases
- There are lots of resources online, so do some research when you have defined a problem that you want to solve
- Don't just start using CNNs for everything!

