‘*“$ = 4 44

P CAMBRIDGE

Convolutional Neural Network

Tutorial
Leigh Whitehead

27th October 2023

8th UK LArTPC Software and Analysis Workshop

Slack channel: #deep-learning

Introduction

* This tutorial is iIndependent from the previous days

 We will be doing everything in python

- Python is the most popular language for deep learning and the majority of online
resources use python

- | know python will be alien to some of you...

| don't have time to teach you python here, but | hope the code | provide is
reasonably self-explanatory

- Structures are mostly similar to C++ but with different syntax

* We will use tensorflow (via keras), but PyTorch is also a popular framework for

deep learnin . .
P J All you need to run this tutorial is a web-browser!
Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 2

Python notebooks

* Today we will work with python notebooks (also called Jupyter notebooks)

* There are a few advantages for tutorials
- No environment to set up or packages to install on your machine
- The code can be interspersed with text and pictures

- Each small block of code can be executed to show intermediate output
e Click on a block to edit it

e Press shift + enter to execute the code

 We will run in a web-browser using Google Colab

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 3

Google Colab

* Load Google Colab: https://colab.research.google.com
- A popup to load a notebook will appear

- Click on the GitHub tab
- Enter this GitHub URL.: https://qgithub.com/Ihwhitehead/TutorialDL

- Select the exercise

Open notebook

Examples > Enter a GitHub URL or search by organisation or user Include private repos

Repository: 4

Google Drive Ihwhitehead/TutorialDL

GitHub

Upload

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 4

https://colab.research.google.com
https://github.com/lhwhitehead/TutorialDL

Google Colab

e Load Google Colab: https://colab.research.google.com

- A popup to load a notebook will appear
- Click on the GitHub tab
- Enter this GitHub URL.:

- Select the exercise

~C) N tensorflow CNN tutorial_exercise.ipynb v«
o«

B Comment &% Share £ (L
File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text Connect ~ A

Welcome to this notebook to write a simple CNN to classify some standard image datasets. We will make use of tensorflow and its high-level
APl xeras . You could also do this in other frameworks such as a pyTorch if you wanted to.

Aims:

1. Write your first CNN using keras

2. Consider how to make the model more complex and adapt it to different tasks
3. See how different layers change the number of parameters in the model

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 5

https://colab.research.google.com
https://github.com/lhwhitehead/TutorialDL

The AIm

* \WWe don't have time to use a large neutrino dataset to classify neutrinos

- We will start by using a simple convolutional neural network to classify the MNIST

benchmark data set
ol/ =1z [v]s| 4]z s]s

e MNIST is a collection of 70,000 B EEIFAREvEE
handwritten digits from 0-9 PINEISARARRED
ol /1213]14]5]¢]7]1¢]14

e Each image is 28 x 28 pixels FMNEICENRVIEE
N EAH B EFFE]

* Has a target (truth) from 0-9 LIAHASREAVIRA
BHBREIREANERD

 Was a benchmark dataset for CNNs ENEEERANEAE
for a number of years EIAEEINEAKEE

NB: This was the first use-case for a CNN! LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4), 541-551, 1989, https://doi.org/10.1162/neco.1989.1.4.541

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 6

https://psycnet.apa.org/doi/10.1162/neco.1989.1.4.541

Our Network

 We will start with what is about the simplest CNN we can build

28 x 28 pixel 32 (3x3) pixel (2x2) max 10
iInput image filters pooling Outputs

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 7

Our Network

 We will start with what is about the simplest CNN we can build

Output layer has one output for each true class
It is a fully-connected (or dense) layer

28 x 28 pixel 32 (3x3) pixel (2x2) max 10 Outputs that
input image filters pooling sum to one

Convolutional layer

This layer performs downsampling of
factor 2 in the two image dimensions

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 8

The exercise

* Ok, now we can play with something!

* You will see that the exercise notebook as a number of lines of code that just say
None

- These are the parts of the code that you need to fill in
- |'ve provided some descriptions, explanations and hints to help you fill in the blanks

- I'll also cover it in these slides as we go along

* First things first
- Get your notebook loaded in Google Colab or Binder

- We’'ll get started once you've all loaded it up

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 9

The exercise

* The first thing we need to do is load the required libraries

- Run the block of code by selecting the box it is in and pressing shift + enter

import tensorflow
from tensorflow import keras
from keras.datasets import mnist, cifarl0, cifarl1l00

import numpy as np
import matplotlib.pyplot as plot

print('Tensorflow version:',tensorflow. version)

Tensorflow version: 2.13.0

- You will see it print out the tensor flow version just to show it has done something

- You might see a warning / error about GPUs... ignore this

- Can think of these import statements like the #include statements in C++

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 10

Function to load some datasets

* The load dataset function has the code to load the dataset

- By default it will load the MNIST dataset, but it can also load CIFAR10 and
CIFAR1OO by providing an argument to the function call

lef load dataset(dataset name='mnist'):

print("Shape of x tr -
print("Shape of x_test =”,x est.shape

if dataset name.lower() == 'cifarl0’':
(x_train, y_train), (x_test, y test) = cifarl0.load_data()
n_classes = 10 .
elif dataset name.lower() == 'cifarl00': el = keras.utils.to_categ l(y 5
(x_train, y train), (x test, y test) = cifarl00.load data() WIS = LR alie) ate) EEREE l(y LSSt /RIECIgBEes
n_classes = 100) . C
elif dataset name.lower() == 'mnist’: pr%n:("ziape Oi y_train_: ! yttrt sha S
(x_train, y_train), (x_test, y test) = mnist.load data() s SPEOF Y_RESE T o 5
Xx_train = np.expand dims(x train, axis=-1)
x_test = np.expand dims|(x_test, axis=—1ﬂ
n_classes = 10

else:
print ('Requested dataset does not exist. Please choose fro nis cifar or cifar ‘

n_plots=5

fig, ax = plot.subplots(1l, n_plots)

for plot number in range (0, n_plots):
ax[plot_number].imshow(x_train[plot_number

return return (X _train, y train), (x test, y test), n _classes

Returns numpy arrays of images and truth labels for training and test samples
and the number of true classes

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 11

Function to load some datasets

* The load dataset function has the code to load the dataset

- By default it will load the MNIST dataset, but it can also load CIFAR10 and
CIFAR100 by providing an argument to the function call

- It will also print out the first five images from the dataset

0

10

20
0 20 0 20 0 20 0 20 0 20

* These MNIST images are greyscale, but shown with a colour palette here

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 12

Function to load some datasets

* The load dataset function has the code to load the dataset

- Now we can just call the function to get our dataset:

(x train, y train), (x test, y test), num classes = load dataset(mnist')

- The data are stored In x train and x test

- The labels are stored iny train and y test

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 13

Building the CNN

* This large block of code is used to build our CNN
- There are lots of blanks to fill in here!

- I'll give some detalils in the following slides, but the comments in the notebook should
give you all the information that you need

[] # Define our simplest model first
input layer = keras.layers.Input(x train[0].shape)
None(input layer) # Replace None with a 2D convolution with 32 filters of size
None(x) # Replace None with a MaxPooling2D layer to downsample by a £
None(x) # Replace None with a ¢

keras.layers.Flatten() (x)

None(x) # Replace None with a final dense output layer with num classes neurons
cnn model = keras.Model(input layer, Xx)

cnn_model.summary()

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 14

Building the CNN

e | ets remember our network architecture...

[] |
input layer = keras.layers.Input(x_train[0].shape)
® X = None(input layer)
X = None(Xx)

X = None(Xx)

X = keras.layers.Flatten() (Xx)

32 (3x3) (2x2) max 10 x = None(x)
pixel pooling OUtpUtS cnn_model = keras.Model(input layer, Xx)
filters

cnn_model.summary ()

* | have already defined the input here

* You need to define the first convolutional layer using keras.layers.Conv2D(...)

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 15

Building the CNN

e | ets remember our network architecture...

input layer = keras.layers.Input(x_train[0].shape)

® X = None(input layer)
X = None(Xx)
X = None(Xx)
X = keras.layers.Flatten() (x)
32 (3x3) (2x2) max 10 x = None(x)

piXG' pOOIing OUtpUtS cnn_model = keras.Model(input layer, Xx)

filters

cnn_model.summary ()

* Next, define the pooling layer using keras.layers.MaxPooling2D(...)

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 16

Building the CNN

e | ets remember our network architecture...

input layer = keras.layers.Input(x_train[0].shape)

® X = None(input layer)
X = None(Xx)
X = None(Xx)
X = keras.layers.Flatten() (x)
32 (3x3) (2x2) max 10 x = None(x)

piXG' pOOIing OUtpUtS cnn_model = keras.Model(input layer, Xx)

filters

cnn_model.summary ()

* Next, define the dropout using keras.layers.Dropout(...)

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 17

Building the CNN

e | ets remember our network architecture...

input layer = keras.layers.Input(x_train[0].shape)

® X = None(input layer)
X = None(Xx)
X = None(Xx)
X = keras.layers.Flatten() (Xx)
32 (3x3) (2x2) max 10 x = None(x)

piXG' pOOIing OUtpUtS cnn_model = keras.Model(input layer, Xx)

filters

cnn_model.summary ()

* |'ve added the Flatten layer that takes the 2D tensor and makes it 1D

* Now you need to add the final output layer: keras.layers.Dense(...)

- This layer needs to have a softmax activation

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 18

Building the CNN

* Once you've filled in the blanks and ran the code block you should see:

* Give a summary of the model: Model: fmodel”

Output Shape

- ShOWS eaCh Iayer input 1 (InputLayer) [(None, 28, 28, 1)]

conv2d (Conv2D) (None, 26, 26, 32)

® Number Of parameters max pooling2d (MaxPooling2 (None, 13, 13, 32)

D)

dropout (Dropout) (None, 13, 13, 32)

e Shape of the data output

flatten (Flatten)

- The total number of parameters e

Total params: 54410 (212.54 KB)
Trainable params: 54410 (212.54 KB)
Non-trainable params: 0 (0.00 Byte)

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 19

Defining some useful variables

e The next block of code defines some useful variables

- See that some of these are hyper parameters like the learning rate

[] W S
batch size = 128

epochs = 5

learning rate = 0.001

- As before, run it by pressing shift + enter

- There isn't any output for this block of code

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 20

Training your CNN

e We need to tell the model how it should train

- Which loss function? Which optimiser?

loss function = keras.losses.categorical crossentropy

optimiser = keras.optimizers.Adam(learning rate=learning rate)

cnn model.compile(loss=loss function, optimizer=optimiser, metrics=['accuracy'])

- For n-category classification tasks we use categorical crossentropy loss

- |In this example, we will use the Adam optimiser

* Finally, we compile the model and it is ready to train

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 21

Training your CNN

* Now we train the CNN

- Train on the training sample and use the testing sample for validation

cnn model.fit(x = None, y = None, batch size = None, epochs = None,

validation data = (None, None), verbose = 1)

- Fill in the blanks with the variables we defined in the exercise
- When finished, hit shift + enter and you'll see it start to train
- It should just take a few minutes to train for five epochs

- You can watch the loss (hopefully) decrease as it trains

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 22

Running inference

* Now we are getting to the real way that your CNN will be used

 \We want to classify images without knowing the truth information
- We do this with the model.predict(...) function

* To make it a little more interesting, we will use model.predict as we search for
incorrectly classified images

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 23

Running inference

* Now we are getting to the real way that your CNN will be used

 \We want to classify images without knowing the truth information
- We do this with the model.predict(...) function

incorrect_indicés = []
° You Wi” need to jUSt n_images_to_chéck =x_tes£.shape[0]
supply the correct iy
images to the predict it you changed [l mumber of inages &
function R St it s L
* See the hint on the e n

a [: b] nOtatiOn tO g et the prediction = np.argmax(raw_predictions[i])
first b elements of a it predicuion 1 tcatnr

incorrect indices.append([i,prediction,truth])

print('Number of images that were incorrectly classified =',len(incorrect indices))

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 24

Checking the incorrect images

e The next block of code will visualise these failures

im = 0

image to plot = x test[incorrect indices[im][0]]

fig, ax = plot.subplots(1l, 1)

print('Incorrect classification for image',incorrect indices[im][0],
't predicted =',incorrect indices[im][1],
'with true =',incorrect indices[im][2])

ax.imshow(image to plot)

Incorrect classification for image 321 : predicted = 7 with true = 2
<matplotlib.image.AxesImage at 0x7d4bbfb0d4d540>

- You'll see an image alongside some information

- Change the value of im to see different images

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 25

A slightly tougher task

e Let's move on to the CIFAR10 dataset

- This contains (very) low resolution colour images with 10 categories:

Lorry Lorry Deer 0 Aeroplane 5 Dog
""""""""""" { Ccar | 6 Frog
""""""""""" > Brd | 7 Horse
""""""""""" 3 ca | 8 shp
""""""""""" 4 Deer | 9 Llomy

Do you notice any change in the architecture summary?

e How well does it perform compared to MNIST?

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 26

Have some fun and play around a bit

* There are lots of things you can do to add complexity to the model and see how
well the classification works

- Add more filters to the convolutional layer
- Add a second (third, etc) convolutional layer

- Add a dense layer with more neurons before the output?

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 27

Loading and saving models

 This isn't part of today's tutorial, but just for reference...

* To use our network in a realistic way we need to save it
- You can use the model.save(<filename>) function for this
- Similarly, model.load(<filename>) allows you to load a model

e For more information on all of the model functions:

- https://www.tensorflow.org/api_docs/python/ti/keras/Model

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 28

https://www.tensorflow.org/api_docs/python/tf/keras/Model

Summary

* S0, this brings me to the end of the tutorial

- Use the File menu to save / download your finished exercise

 There are many things that | couldn’'t show you, but | hope this small introduction
can help you get started with deep learning

- There are lots of tutorials and resources online these days

* The other big framework is PyTorch

- Some things are better supported in PyTorch as custom libraries

e Graph neural networks (torch _geometric)
e SparseCNNs (MinkowskiEngine by Nvidia, Facebook’'s SparseConvNet (less maintained))

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 29

Some thoughts (1)

 There aren’t really any solid rules about what architecture is best for a certain job

* Hyperparameters are very important

- The learning rate is probably the most important of all

e |f the network learns but doesn’t reach good accuracy it is possible that it is too
simple and needs more layers or filters

e |f your training accuracy is much higher than the validation accuracy then your
network is likely overtrained... maybe add more dropout?

* Normalising your input parameters from (0,1) typically helps a lot to keep values
“sensible” in the network (we didn’t do this in the tutorial)

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 30

Some thoughts (2)

* Deep learning is not a replacement for brain power!

- You need to think and try to understand why a certain approach will work for a given
task

- There isn’t a golden architecture that will work for all use cases

* There are lots of resources online, so do some research when you have defined
a problem that you want to solve

 Don't just start using CNNs for everything!

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 31

