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Introduction

* This lecture is designed to give an introduction to machine learning and
convolutional neural networks

- These are the most common deep learning techniques used in neutrino physics

* \We have to start with the basics:
- The simplest possible neural network

- Image recognition and convolutional neural networks

* | will give an example of neutrino classification
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Introduction

* Machine learning isn't a new field!

- Many techniques have been in use for a long time

* The name is generally applied to any approach where a large set of data is used
to train an algorithm to perform some classification task or parameter estimation

- k-Nearest-Neighbour
- Boosted Decision Tree

- Artificial Neural Network (ANN)

- Etc, etc...

 We'll consider an ANN in the following example

- You may have seen these called Multi-Layer Perceptrons (MLPs)
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A very simple example

e |Let's say that we want to classify vehicles as either a car or a motorcycle using
the value of a single variable

- Define the input data as x, which in this case is mass

- The target (truth) is given by y

Yamaha YZF-R1 0.199 tonnes

Ford C-MAX 1.550 tonnes 0

Thanks to Saul Alonso Monsalve for this example
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The architecture

* Consider the following: it corresponds to the simplest ANN we could design

- For a given x we want to make a prediction y between 0 and 1

oA N NB: this single neuron ANN is just a
L Neuron Y Y = f(”LUiL‘ T C) logistic regression unit
- Prediction depends on two other parameters ] el

- Common activation function choice:

O
on

. . 1
f(z) = sigmoid(z) =
(2) (2) = 17
___.=-—-J/ a\
The sigmoid function allows us to bound our output between 0 and 1 _6 _4 _9 0 g A 6
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Training the network

1. Randomly initialise variables w and c in the range (0,1)

2. Forward propagation
1. Select a training example
2. Calculate the predictiony

3. Calculate the loss (how close ¥ is to )

3. Backward propagation

(we call this one epoch)

Repeat for the full dataset
Repeat as necessary for n epochs

1. Compute partial derivatives of the loss

2. Update wand c

4. Stop once we can no longer improve the loss
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First forward propagation

e Assume we Initialised w=0.5and c=0.5

e Select the first training example:

1 1 1

= (0.747910066

?g — O'(”LU$ T C) — 1 -+ 6—(wa:—|—c) — 1+ 6—(0.5w—|—0.5) — 1 + e—1.0875

* Now we need a way to compare how well we have done

- This i1s where the loss function comes In
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| oss functions

* Loss functions provide us with a measure of how close our predicted value ¢ is
to the true value

- The goal is the training is to minimise the value of this loss function

* |n the case for a classification problem (like this) we use the categorical cross-
entropy loss

- Since we only have two true classes, we use the binary cross-entropy loss

L(y,y)=—(yhg+(1-y)In(1—-79))
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First forward propagation

e Assume we Initialised w=0.5and c=0.5

e Select the first training example:

1 1 1

= (0.747910066

?g — O'(”LU$ T C) — 1 -+ 6—(wa:—|—c) — 1+ 6—(0.5w—|—0.5) — 1 + e—1.0875

* Using our binary cross-entropy loss, we get

L(y,9)=—(yIng+ (1 —y)In(l —yg))
— —(0 x In(0.7479) + 1 x In(1 — 0.7479)) = 1.378

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 9




First backward propagation

* Firstly, let's simplify things as for this training example y =0
£(0,9) =L(y) = —In(1—7)
1
L(z) =—1n (1 " ) = z+In(1+4+¢e %)

L(w,c) =wzx + c+ In (1 - e_(warC))

* Now take the partial derivatives

—(wx+c)
oL(w.c) _ (- _° — (0.8788
Ow 1 4+ e—(wz+c)
OL(w. 0 o~ (ko
o =1 [ o —(watd) 0.7479
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First backward propagation

* Now, let's update our w and c values

This is a very important parameter. It is the learning rate and must be positive. Let's set it equal to 0.1 in this example.

\ OL(w, c)

— _ — 0.4121
Y=o a Ow W=
oL
C1 = Co — (w, ¢) = 0.4252
dc o

NB: these equations are for stochastic gradient descent

e Now we can compute our new prediction: y; = 0.7129

We have gone from a prediction of 0.7479 to 0.7129 in one iteration.
Closer to our target of y = 0! Now repeat for the entire dataset!
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Optimisers

* |n reality we don't have to calculate these gradients ourselves

 Some of these different algorithms

The optimiser does the back propagation and updates the network weights

Typically versions of stochastic gradient descent

Goal: find the global minimum of the loss function

try to improve on SGD

They use modified equations to
update the weights

Find the global minimum

Converge quickly

L(w)]

=
e Some of the most used algorithms:
- Adam, Adadelta, RMSProp, etc
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Quick Aside on Learning Rate

* Now let's think about the learning rate

- Recall that the learning rate controls the updating of the network parameters after
each iteration

0L
w1 = W gg; ) _w, = 04121
C=—Cp
0L
C1 = Co (;C}’ ) g = 0.4202
C=Cp

 The larger the learning rate, the bigger steps we take to find the minimum of the
loss function
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Quick Aside on Learning Rate

* We can get problems if the learning rate is:

- Too large - can fail to converge on the minimum

N

L(w) A
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Quick Aside on Learning Rate

* We can get problems if the learning rate is:
- Too large - can fail to converge on the minimum

- Too small - can be very slow and find a local minimum

L(w) A

w
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Quick Aside on Learning Rate

* Once thing we can try is learning rate decay

- Start with a large rate and reduce with iterations

L(w)]

—
- NB: this isn’'t always necessary, but something useful to know about
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(Going deeper

* ANNSs consist of a number of neurons organised in layers

%
(= DG (o

i Sy o
=

Each neuron here is just the same as in the simple example

Output of previous . ,
neuron a '@ > (wza + Cz)
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(Going deeper

* ANNSs consist of a number of neurons organised in layers

N

“
%o

Ve

* Deep Learning refers to the use of deep neural networks - networks with many
hidden layers

The layers that are not the
iInputs or outputs are called

hidden layers
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Training networks

* Typically use three data samples:

* Training sample:
- These are the events that the network learns from via the forward- and back-
propagation
e Validation sample:

- After each epoch the validation sample is used to measure the network performance

* Jesting sample:

- Once the network has finished learning, the test set provides a way to test the network
generalisation
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Overtraining

e A common concern is that networks can eventually learn fine details of training events that
prevents generalisation to unseen events

- This is known as overtraining

 Causes:
- Too few training examples
- Training set is not representative of the entire sample

- Training for too long

* Potential solutions
- Get more training data
- Stop the training once the validation sample loss stops reducing

- Look at techniques such as dropout...
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Overtraining

A common concern is that networks can eventually learn fine details of training
events that prevents generalisation to unseen events

- This is known as overtraining Encourages information to flow through
multiple pathways, hence reducing the chance

0 | of fine tuning on specific inputs

A=
>

* Dropout: randomly ignore a given fraction of neurons each iteration
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Image Recognition

* There has been a lot of work in the last couple of decades on automated image
recognition

* There are many examples of where it is required and used

e Self driving cars are a good example

- Need to be able to automatically recognise road signs and instructions as well as
unexpected obstacles, pedestrians etc

- The techniques have to be robust and reliable since cars can be very dangerous
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Image Recognition

* Whichever algorithm is used, the goal is the same: to extract features from the
images that allow you to classify them in some way

Picture from https://towardsdatascience.com/how-do-self-driving-cars-see-13054aee2503
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to -

extract features

- The filters are learned during ~ o
training and not predefined T
]
] //
e Will use the example from - LT
DUNE neutrino event gEg=

classification here ;//
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to

extract features -
. . //

- The filters are learned during p= —
training and not predefined - —
/// — ;
e Will use the example from - LT
DUNE neutrino event gEg=

classification here -

|
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to
extract features

- The filters are learned during
training and not predefined

AN

\

\ A\

 Will use the example from
DUNE neutrino event
classification here

A

/
/
/

AR

/
/
/

AN
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:

apply filters to images to —
extract features T
]
- The filters are learned during j /§/\\ o
training and not predefined ///§></// j;/;
] | |
* Will use the example from /%/\;/ﬁ/;
DUNE neutrino event gy =
classification here ;//
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to -
extract features —

\
\

- The filters are learned during = B —
training and not predefined ;///g\/ - —
" ]

" "
o Will use the example from - g —
|

DUNE neutrino event
classification here

AR
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to —

//

extract features - -
- The filters are learned during pEgh e
training and not predefined T T < T
_— P P "
* Will use the example from e === g
DUNE neutrino event T T

classification here P
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to
extract features

- The filters are learned during
training and not predefined

 Will use the example from
DUNE neutrino event
classification here

A

7
]
"
]

\

VAN

\
A\
\
\
\
\
\

A\

A\

AR

_—
—
]
—
]
"

=

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 30

e
"
"

A~
"
—




Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to
extract features

VN
\ N\
VAN

- The filters are learned during
training and not predefined

NAVANRAN

 Will use the example from
DUNE neutrino event
classification here

AR

/\\\\\
y

\

\

\

) \/
WA
T
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Convolutional Neural Networks

* Convolutional neural networks are designed for image recognition tasks

- They have been the best performing class of algorithm for the last ~10 years

e Conceptually quite simple:
apply filters to images to

//
extract features T
"
]
- The filters are learned during ;/ = e
training and not predefined T gt
= 1 |~
// //\/ ////
* Will use the example from //\:/;
. |
DUNE neutrino event T
classification here ;/
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Convolutional Neural Networks

e How do we apply a convolution in 2D

- Slide the filter over the image and perform element-wise multiplications

0 0 0

0 0 0 77 0?7 7
0 0 O O = 77 7 7
o0 of VY THTe 2 2 0
0 0 O 0 = 77 7 7
0 0 0 ] )
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Convolutional Neural Networks

e How do we apply a convolution in 2D

- Slide the filter over the image and perform element-wise multiplications

0 0 O
000 [7]2 2 7
0 0 0 7?7 7 7
T 1.1 0 0 0]" |7 7 7 2
0 0 0 70?7 7 7
0 0 0 ) )

/ 3*(1*"1 +1*0+-1*1)=0
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Convolutional Neural Networks

e How do we apply a convolution in 2D

- Slide the filter over the image and perform element-wise multiplications

OO O O O O

0

0 o[?]? 7
0 ? 7 77
0| " B R A
0 77 7 7
0 _ _

3*(1*1+10+1*-1)=0
3*(1*"1+1*0+0*-1)=3
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Convolutional Neural Networks

e How do we apply a convolution in 2D

- Slide the filter over the image and perform element-wise multiplications

\D

?
(?
‘?

o O O
oSO O

o O O
o O O

O =0 =0 w

|
O o) =0 O
I'\D o~ °~ \D

IOOOOOOI

3*(1*1+10+1*-1)=0
3*(1*"1+1*0+0*-1)=3
3*(1*1+00+0*-1)=3
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Convolutional Neural Networks

e How do we apply a convolution in 2D

- Slide the filter over the image and perform element-wise multiplications

0 0 0

00 0 0 3 3|[7]
0 0 0 2 7 77
0 0 0" — |7 7 7 2
0 0 0 7?77 7
0 0 0 )

3*(1*1+10+1*-1)=0
3*(1*1+1*0+0*-1)=3
3*(1*1+00+0*-1)=3
3*(1*1+1*0+1*-1)=0
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Convolutional Neural Networks

e How do we apply a convolution in 2D

- Slide the filter over the image and perform element-wise multiplications

Lo W W W
Lo W W W
o O O O

OO0 O OO
OO0 O OO
OO0 OO
x
O OO
|
|
OO OO

- The filter gives a response where the vertical edge in our image is
- This filter is a vertical edge finder
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Convolutional Neural Networks

e How do we apply a convolution in 2D

- Slide the filter over the image and perform element-wise multiplications

0 0 0
0 0 0 - - Joo 0 0
ooo*ééé_oooo
o0 of |5 T S| |0000
0 0 of L oo o0 o0
0 0 0

- Let's check what happens with a horizontal edge finder

- The filter produces no response since there are no horizontal edges
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Convolutional Neural Networks

e Let's have a look at some maths

- Assume we have a very simple (and unrealistic) network:

(includes single constant ¢

true class y and activation function )
(includes activation function f°)
X00 | Xo1 | X02 Woo Wo1 Wo2
/\
X10 | X11 | X12 W10 W11 W12 E—— E——
X20 | X21 | X22 W20 W21 W22

Input image 3x3 filter Neuron Prediction

* The convolution here returns a single number since the image and filter are the
same size. It is an element-wise matrix multiplication

af( meijwij —|—C)
_7: ’] -
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Convolutional Neural Networks

e Let's have a look at some maths

- Assume we have a very simple (and unrealistic) network:

(includes single constant ¢

true class y and activation function )
(includes activation function f°)
X00 | Xo1 | X02 Woo Wo1 Wo2
/\
X10 | X11 | X12 W10 W11 W12 E—— E——
X20 | X21 | X22 W20 W21 W22

Input image 3x3 filter Neuron Prediction

 We then propagate this activation a through the single neutron

g=f (wa+c)=f|w'f szijwij +c| 4+
g
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Convolutional Neural Networks

e Let's have a look at some maths

- Assume we have a very simple (and unrealistic) network:

(includes single constant ¢

true class y and activation function )
(includes activation function f°)
X00 | Xo1 | X02 Woo Wo1 Wo2
/\
X10 | X11 | X12 W10 W11 W12 EE— EE—
X20 | X21 | X22 W20 W21 W22
Input image 3x3 filter Neuron Prediction

* Again, there is no magic here, just maths!

- | won't write down the back propagation here, but you just need to do chain-rule
differentiation from right to left

e Once for each of the twelve parameters!
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Convolutional Neural Networks

 Each element of the filter is basically like the single neuron that we saw earlier

- S0 we have nine weights in a 3x3 filter plus a constant ¢

- These are the weights that are learned during the training
- Thus, we do not tell the CNN which filters to use

- It learns which filters it needs to extract the information that it needs to solve the
problem
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Convolutional Neural Networks

* The output from each filter then forms the basis of the next layer which can
include further filters

L1 TS

Input image Filters Pooling Filters Pooling Fully Output
(Merge neighbouring connected
pixels) layers

* Different architectures can be considerably more complex than the above toy
example
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Deep Learning in LArTPCs

* LArTPCs have fine detalil of interactions and lend themselves to image
recognition techniques

 Things we could classify
- Type of neutrino that interacted
- Individual particle types

- Individual hits... is this pixel part of a
track- or shower-like energy deposit?

 Things to measure (regression tasks)

- The neutrino energy Example from the DUNE Simulation

- Interaction vertex location, etc
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Neutrino Interaction Images

* Build images using reconstructed hits in the (wire number, time) parameter space

e The TPC has three readout views, so we make three images (we could use one
image with red / green / blue channels)

DUNE Far Detector Simulation CC ve interaction
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Neutrino Interaction Images

By eye you can easily see features that would help you to identify this event as
an electron neutrino interaction

* \We can see there is an electromagnetic shower emanating from the primary

vertex DUNE Far Detector Simulation CC ve interaction

Electron Electron Electron
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Neutrino Interaction Images

o Similarly, you can tell that this is a background interaction - a neutral current
event producing a neutral pion

* We can see two electromagnetic showers not emanating from the primary vertex

DUNE Far Detector Simulation NC110 interaction
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Neutrino Interaction Images

o Similarly, you can tell that this is a background interaction - a neutral current
event producing a neutral pion

* We can see two electromagnetic showers not emanating from the primary vertex

DUNE Far Detector Simulation NC110 interaction

, 0 decay N
photons - photons 0 decay
(overlapped) - photons

0 decay

Charge
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Convolutional Neural Networks

* CNNs are used to classify images by applying filters to small patches of the
Image (using a convolution)

 Scans over the image with a number of N x N pixel filters

e Each filter extracts some
feature from the image

NB: This is just a visual example. Filters typically have sizes of 3x3 or 7x7, much smaller than in this demonstration
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Convolutional Neural Networks

* CNNs are used to classify images by applying filters to small patches of the
Image (using a convolution)

 Scans over the image with a number of N x N pixel filters

e Each filter extracts some
feature from the image

e For example, filter one
might find tracks

NB: This is just a visual example. Filters typically have sizes of 3x3 or 7x7, much smaller than in this demonstration
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Convolutional Neural Networks

* CNNs are used to classify images by applying filters to small patches of the
Image (using a convolution)

 Scans over the image with a number of N x N pixel filters

e Each filter extracts some
feature from the image

e For example, filter one
might find tracks

NB: This is just a visual example. Filters typically have sizes of 3x3 or 7x7, much smaller than in this demonstration
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Convolutional Neural Networks

* CNNs are used to classify images by applying filters to small patches of the
Image (using a convolution)

 Scans over the image with a number of N x N pixel filters

e Each filter extracts some
feature from the image

e For example, filter one
might find tracks

e Filter two might look for
showers

NB: This is just a visual example. Filters typically have sizes of 3x3 or 7x7, much smaller than in this demonstration
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Convolutional Neural Networks

* CNNs are used to classify images by applying filters to small patches of the
Image (using a convolution)

e Scans over the image with N x N pixel filters

* Then move onto the next patch of the image and repeat the process
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Workflow using LArSoft

e The workflow can be a little convoluted, this is the one we use in DUNE for the
CVN (a neutrino event classifier):

Extract training data

Develop network
architecture

from LArSoft Read in to Python

Load network Into
LArSoft tensorflow or y
PyTorch interface

Save trained network Train final network
file version

Run inference on LArSoft C++
your events Python
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Workflow using LArSoft

* Write some sort of analysis module to extract the training data you require:
- CNNs typically use 2D hits for each wire plane in the format of wire vs time images

- One could also use natively 3D techniques such as graph neural networks and
extract the 3D space points instead

 Forthe DUNE CVN we save this as a type of compressed file that we can easily
load into python software

 Our whole development cycle takes place in python
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Workflow using LArSoft

 Once we are happy with our trained network then we export the trained
architecture as a tensorflow .pb file

e \We wrote a C++ tensorflow interface inside LArSoft where we load this network

- We can then pass the data (that we previously extracted) directly into tensorflow to
obtain the results for each event

* An equivalent interface for PyTorch also exists

- There Is one In Pandora

 Development in python lets us do things much more quickly and in a light-weight
environment
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Summary

Deep learning techniques are widespread in HEP and neutrino physics

- Typically using CNNs that came from image recognition
Field is rapidly advancing and taking advantage of progress in computer science

Many other techniques becoming popular
- Sparse CNNs
- Graph neural networks

- Generative Adversarial Networks

| ots of resources available online
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Selected CNN Highlights

e Some examples that you can investigate:

- NOVA
 Neutrino ID CNNIlwas the first CNN used in neutrino physics

o Particle identification!?!

-  MicroBooNE:

« Example of semantic segmentation to select neutrino eventsli3l

o Particle identificationl4!

- DUNE neutrino ID CNN/3!

 Very powerful classifier based on the SE-ResNet®.7] architecture

[1] NOVA Collaboration, A convolutional neural network neutrino event classifier, JINST 11 09 P09001, 2016

[2] NOVA Collaboration, Context-enriched identification of particles with a convolutional network for neutrino events, Phys. Rev. D 100 073005, 2019

[3] MicroBooNE Collaboration, Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber, JINST 12 03 P03011, 2017

[4] MicroBooNE Collaboration, Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber, Phys. Rev.
D 99 092001, 2019

[5] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 092003, 2020

[6] H. Kaiming et al., Deep residual learning for image recognition, CoRR, arXiv 1512.03385, 2015

[7] J. Hu et al., Squeeze-and-Excitation Networks, arXiv 1709.01507, 2017
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Example CC ve event

T =y

Example NC 110 event

Plane

techniques

20
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Selected CNN Highlights - NOVA

* Trailblazed the use of CNNs in neutrino physics

Scintillator detector that is less fine-grained than LArTPCs

00]
o

100

Cumulative Efficiency

Cumulative Purity

Cumulative Efficiency x Purity

| I | | |

| I | | |

0.2

0.4
v, CC Classifie

0.6
r Output

* Achieved a large performance increase (~40% in efficiency) over their traditional




Selected CNN Highlights - MicroBooN

 Use CNNs to select regions of interest (semantic segmentation) and classify the

selected events

Selects the neutrino from within the cosmic background

MicroBooNE

Simulation + Data Overlay

—
W
o1

O
N
8}

Events (Area Normalized)

© ©o o0

o
92

o
w
()

-
N
()

— -
o

Ul

MicroBooNE
Simulation + Data Overlay

B Neutrino
I Cosmic

0.2 0.4 0.6 0.8
Neutrino Classification Score

1.0
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Selected CNN Highlights - DUNE

e The DUNE network has multiple outputs

Flavour classification and particle counting: protons, pions (charged + neutral) and

neutrons

Performance of the CNN electron neutrino interaction
classifier and the corresponding selection efficiency
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Selected CNN Highlights - Pandora

* Andy C. has been working on semantic segmentation to identify track- and shower-like
hits in Pandora

Input ~ Network
' ~ classification T
b rd pd
ol a
. P i
Here, the truth is: / ; S
Track-like: muon, proton, pion A o s
Shower-like: gammas / ' : / '
\ - .
LS "__,.f-;:f . Y ~<€ :
’?: . - &Q nlis? B
N S
‘. S 4
. s
Prediction: Track-like Shower-like

* \WWe can leverage deep learning in many places!
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Selected CNN Highlights

e Note that CNNs don’t have to be two dimensional

* | wrote a particle ID algorithm that uses 1D convolutions applied to the dE/dx
profile of particles

* Other examples include signal processing o = o

and region-of-interest finding o (Yo e

-
-
o”©

Rate (TPR)

0.6 - ss==== Charge Integration

-  Example from SoLiD: S
https://arxiv.org/abs/1807.06853 o

0.0 0.2 04 0.6 0.8 1.0
False Positive Rate (FPR)

3D CNNSs can be used for classification of video (which is just a time sequence of
images)

Dr Leigh Whitehead - 8th UK LArTPC Software and Analysis Workshop 65



https://arxiv.org/abs/1807.06853

Sparse CNNSs

* The images | have shown have lots of empty pixels so computational effort is
wasted.

 Sparse CNNs get around this by (cleverly) avoiding calculations on the zero
value elements

- Much more computationally efficient

- They often work slightly better too
since they avoid smearing

All dark blue pixels are empty and contain
no information at all

... and there are a lot of them!
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Graph Neural Networks

* Quite often you might find your data is difficult to format as an image

- Likely better to use a Graph Neural Network instead of shoe-horning it into an image

 Each detector element is a node in the graph

- Various features can be attached to nodes: charge, time, efc...

 Nodes are connected by “edges”

- Can be defined by adjacency, or hits from the same particle etc

e |ceCube used a GNN for event classification!!]

Worked on a project to use a GNN to remove ghost hitsl4]

[1] N. Choma, et al., Graph Neural Networks for IceCube Signal Classification, 2018 17th ICMLA, Orlando, FL, 2018, pp. 386-391, doi: 10.1109/1CMLA.2018.00064
[2] S. Alonso Monsalve, et al., Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors, Phys.Rev.D 103 (2021) 3, 032005
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Generative Adversarial Networks

* GANSs are a type of neural network composed of two different networks

- Typically one is known as the generator and the other, the discriminator
- Invented by lan Goodfellow in 2014 (arXiv:1406.2661)

 They are typically used for generating images

Real Generated
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Generative Adversarial Networks

* They have come a long way in the last few years

-
. .
X'

lan Goodfellow, NIPS 2056 Tutorial: Generative
Adversarial Networks

https://twitter.com/goodfellow ian/status/1084973596236144640

2018
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Generative Adversarial Networks

e Simulations in HEP are generally very time consuming

- There is a lot of appetite to make faster simulations

e (Generative Adversarial Networks have two neural networks, one of which tries to
trick the other. In this use case:

- Discriminator tries to separate simulated and generated data
- Generator tries to trick the discriminator into thinking its data are true

- In this way, the generator learns to mimic the (complex) simulation

* Quite a few physics examples now, mostly in collider physics

Shameless plug: S. Alonso-Monsalve and L. H. Whitehead, "Image-Based Model Parameter Optimization Using Model-Assisted Generative Adversarial Networks," in IEEE
Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2020.2969327
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Transfer Learning

* Transfer learning makes use of previously trained networks
- Allows you to fine tune a pre-trained network for your task
- Can be useful if you don’'t have much data

- The idea dates back to the early days of perceptronsl’]

" " Eur. Phys.J.C  (2022) 82:1099 THE E M)
* | will discuss a recer)t study By o L ¢ ok
we performed on using transfer Regular Arice - Experimental Physics
learning in neutrino event

Application of transfer learning to neutrino interaction

classification classification

Andrew Chappell>*®, Leigh H. Whitehead "

I Department of Physics, University of Cambridge, Cambridge CB3 OHE, UK
2 Department of Physics, University of Warwick, Coventry CV4 7AL, UK

https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6

[1] S. Bozinovski, A. Fulgosi, The influence of pattern similarity and transfer learning upon the training of a base perceptron b2. In: Proceedings of Symposium Informatica, Bled, Slovenia (1976) p. 3—1215.
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Transfer Learning in LArTPCs

e Can we use transfer learning to reduce the number of training examples?

- Simulations are time consuming and GPUs need a lot of power

 Conveniently, LArTPC detectors, such as DUNE, have three readout planes
- We get three images of a given interaction

- Photographic images have depth three (red, green and blue channels)

e Can we use a network trained on photographs for our event classification”?
- There are plenty of networks trained on photograph-based challenges

- Use these networks as a starting point and fine tune the weights
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TL: Event Sample

* GENIE neutrino events: / CC Ve NC
- CC vy, CC veand NC ewde S——

- 50,000 of each type CC vy

 Events passed through simple LArTPC simulation

- Outputs three images of each event

200—

100[—

- Three projections of the (y,z) plane

Drift Position (cm)
o

CC vy event with the three views ____—> .= = o
overlaid as RGB channels ool
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TL: Architecture and lraining

* \We chose to use the Pytorch implementation of ResNet18

- Small depth was chosen since this study involved training over 1000 networks

 The pre-trained version of ResNet18 was trained on ImageNet (224x224 pixels)
- We had to change the final layer from 1000 to 3 classes: CC v, CC ve and NC

* Trained a series of networks with:
- Kaiming (He) randomly initialised weights
- Weights from the pre-trained ImageNet network
- Various numbers of training events from 1,000 to 100,000

- Trained each network 25 times to give an estimate of the uncertainty
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Results: TF vs random initialisation

e Compared the F1 score from the transfer-learned networks fine-tuned with 1k to
100k images against the Kaiming-initialised network with 50k and 100k events

* Transfer-learned network out-
performs the Kaiming-initialised
network with 100k training images

- For 7k training images and above

* Event fine-tuning just the final
layer works surprising well

F1 score =0.79

0.9 z
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- T z
| L 3
- I =
-
0.85— ¥
— £ Kaiming initialisation with 100k training images
i Kaiming initialisation with 50k training images
0.8 ‘I—
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n -
Vi -
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O 65 B ] ] ] | ] ] ] | ] ] ] | ] ] ] | ] ] ] | ]
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Number of training images (x1000)
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Transfer Learning in LArTPCs

1

o Better performance is seen in all classes -
- It wasn’t just helping in specific types of P .o : ;
events o8 1 S T S
- LIl
. € o
* Performance increase seems to be § VH,
acrOSS the WhOIe Sample 0.6:_‘_ Transfer Learnin Kaiming Initialisation
i —— CCv, Y —-—CngM
0.55E BERo B
I
O'4O_|||2|OIII4|OIII6|O|||8|OIII1(|)OI

Number of training images (x1000)
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Transfer Learning in LArTPCs

* \We also looked for potential biases between classes and a function of energy
- See reduced bias in both cases using transfer learning

- Plots show examples from training with 100k events
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Transfer Learning in LArTPCs

* Also looked at the effect of freezing different layer weights
- Layers 1 to 4 here correspond to the ResNet blocks

- As a minimum we have to train the classifier (dense layer)

- The difference between Layer 1 and All
Weights is the first convolutional layer

0.92
0.9

L

 No difference in performance is seen when
the first layer weights can be fine-tuned

0.88

0.86

Accuracy

e The initial layer feature extraction from
photographic images does extract what we
need for neutrino interactions! 0.82

0.8

0.84

' More weights available for fine-tuning
o R S S S .l

Classifier Only + Layer 4 + Layer 3 + Layer 2 + Layer 1 All Weights
Trainable Weights

0.78
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