
IDKth October 2023

9th UK LArTPC Software & Analysis
Workshop

Henry Lay & Isobel Mawby
h.lay@lancaster.ac.uk &
i.mawby1@lancaster.ac.uk

#larsoft_analysis

Writing your First Analyzer

Overview & aims of this session

● Learn how to do some physics with the reconstructed events you produced
○ Don’t worry if you didn’t manage to make the files, I’ll point you to some we’ve made

● Learn how to access the reconstructed neutrino information
○ There is a generic procedure for accessing almost all of the neutrino information you

have in every file you’ve made this week

● We’ll look at:
○ Reconstruction objects produced by Pandora and downstream reconstruction
○ Associations of these objects to higher-level information
○ Take your time & try to understand everything you do

● Hopefully we’ll be able to make some plots
2

Thanks to all who
have given this tutorial
over the last few
years, these slides
have been (very
marginally) adapted
from those previous
versions.

Side note

● We have included what will probably be far too much to achieve in these
sessions

● But hopefully it’s all structured clearly enough that you can continue with
the exercises in your own time

● So please don’t worry if you don’t make it hugely far through this tutorial,
there’s supposed to be too much content

● If you are reading these slides as a PDF, you might prefer to look at the
Google Slides link explicitly, as some code blocks render better there

4

https://docs.google.com/presentation/d/19y0LIgfuK5GYgZhL5U5P8lj_KhvDPlAcVs1j-amwHxY/edit?usp=sharing

Slide Structure

5

‘New Topic’ Slide ‘Lecture’ Slide ‘Exercise’ Slide

The helpers around the room are
here to be your (less sassy) clippy…

The pink text indicates places
where you need to replace the
line with your personal version.

1. The Analyzer Skeleton

66

The skeleton analysis module

There are 2 ways of beginning your analyzer:

1. Using the command:

We will use this - It’s great for starting something brand new

2. Copying an analyzer you’ve made previously & removing anything unnecessary

This is great if you want to do something similar to a previous analyzer
e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

7

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

cetskelgen

8

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

These are optional functions which
will be added to your analyzer, we’ll
look at them in the next few slides

Choose something sensible
here, e.g. test::AnalyzeEvents

For more information, see:
https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

Let’s do it!

If you are using a fresh terminal you will need to setup again:

1. Navigate here:

2. Type the cetskelgen command:

cd $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis

cetskelgen -v -d . -e beginJob -e endJob analyzer test::AnalyzeEvents

The full stop tells cetskelgen to place the
analysis module in the current directory

source /cvmfs/sbnd.opensciencegrid.org/products/sbnd/setup_sbnd.sh
source /PATH/TO/YOUR/BUILD/AREA/localProducts*/setup
mrbslp

We’ve put the CMakeLists.txt and build.sh files here…

9

What did we create?

● You should now find a file called
AnalyzeEvents_module.cc, this is your
analyzer!

● Open this!

● The top section should look something like
the snippet on the right

(but most likely with a less ugly colour theme,
apologies…)

10

The Analyzer Structure

This is some information to explain what’s in the
file to someone who might want to use it
Or just for your forgetful, future self

These are the default headers which should
hopefully allow the empty analyzer to build
You’ll add to these later!

Setting up the class you’ve just created
You shouldn’t need to touch these

These are the functions you’re going to modify for
the analysis

11

The Analyzer Structure

Scroll down to the next chunk of
code in your analyzer module

This is the constructor, we’ll access configuration
parameters here later on

This is the analyze function, it’s called for
every event you give it in the LArSoft job

These optional functions are called once,
before and after any and all events are
analyzed

Macro to tell art that this module exists
This is used in the fcl configuration in a few
slides

12

1313

2. Obtaining Our First Analysis Information

Writing out Analysis Information

1) We’re going to create a ROOT TTree to store our analysis information

2) Then we will add to our tree, the ‘Event ID’ of our created events
https://root.cern.ch/doc/master/classTTree.html 14

https://root.cern.ch/doc/master/classTTree.html

Creating a TTree

Add relevant LArSoft & ROOT headers

Declare TTree

Create your TTree

Add relevant LArSoft & ROOT headers

Declare TTree

Create your TTree

Note: The order represents their locations in the file15

Writing Out a Variable

Note: The order represents their locations in the file

Declare event-based variables

Access our event ID from the LArSoft event we’re
analysing & fill the TTree

Add branches for the variables we want to fill

In this case, the Event ID

16

Running the analysis module

In order to be able to run the analyzer, we now need to write 2 fhicl files

● The first will configure our analysis - an include fcl
○ This is where we point the analyzer to the objects/parameters we want to access from

the input files (this will make more sense soon…)

● The second will be used to run our analysis - a run/job fcl
○ This links together the configuration file and the analysis module

17

Fhicl 1: Configuring the analyzer. Create a file, e.g. analysisConfig.fcl & fill it with this:

Your chosen name for this
parameter set Links the fhicl file to the analysis

module using the name you gave
your analyzer class

See what this does (and
more best practices) here17

https://indico.fnal.gov/event/11857/sessions/1051/attachments/6785/8812/LArSoftUsability_workshop_June2016_knoepfel.pdf

Fhicl 2: Running the module

18

Include your analyzer configuration fhicl

Name this process
Must not include any underscores

Tell it to expect a ROOT input file

Output filename
This is a default, and can be changed on the command line

ana sets our module analyzeEvents as part of the
workflow
Note, this matches the name in the configuration fcl file

Create another file, e.g.
run_analyzeEvents.fcl

& fill it with this:

1919

Let’s try running it…

Pre-made reconstructed events

Haven’t made a reconstruction file? Don’t panic!

There is a pre-made reconstruction file which can be found here:

/home/share/october2023/reconstruction/output_detsim_numu_like_Reco1Reco2.root

20

Compiling and running your code

First, we need to compile what you’ve written so far
From the $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis directory:

Then (when successful) run your analyzer!

Open the file in ROOT to investigate our output file...

21

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10

source build.sh

root -l analysisOutput.root

This has each build command in one place, have a look to make
sure you’re comfortable with what it does before using it

Let’s just run over 10 events while we
make sure things build.

We’ll run on the whole sample later

Looking at the output in ROOT

22

Here you can see that the name you gave to the
analyzer in the fhicl run script is the name of your
directory (ana): Open it with cd

You can see the output (T)Tree that we created,
use Scan to view its contents (can also use
Show(entryNumber), a TBrowser etc…)

Your tree exists and contains the eventIDs!
Success! (hopefully)

23

A quick aside on how to access our reconstruction information,
so we can obtain some cooler analysis information!

23

3. Accessing Data Products

Accessing products from our files (1)

● Currently, just focused on EventID, but how do we access the information that we’ve
added to the ‘simulation/data’ files e.g. in the Pandora stage?

● There are two ways the information is stored in these files:

1) As a vector of objects:

e.g. a vector of all PFParticles created
by Pandora

std::vector<art::Ptr<recob::PFParticle>>

{PFP_A, PFP_B, PFP_C}

{PFP_A → Vtx_B,
 PFP_B → Vtx_A,
 PFP_C → Vtx_C}

2) As associations:

e.g. links between PFParticles and
their associated reconstructed vertex

24

● We can use eventdump.fcl to see what data products are saved in our
‘simulation/data’ files

lar -c eventdump.fcl whateverYourSimulationOrDataFileIsCalled.root -n 1

Accessing products from our files (2)

The process_name set
in the fcl

The name of the
producer that was run

The type of products
that were created

The number of each
product created

PFParticle vector PFParticle → SpacePoint association

25

Accessing Vectors (the technical details)

● In our analyzer, let’s say that we want to obtain the vector of slices

● We first need to set up the data object handle, consider this to be the link between your code and
the object vector in the simulation/data files

the type of object we’re after the name of the producer that
created it (see previous slide)

● After we check that our handle is valid, we can now retrieve the vector in our code

26

Accessing Associations (Technical Details)

● Say that, in our analyser, we want to obtain the vector of PFParticles connected to a given slice

● We first initialise a FindManyP object, consider this to be a link between your code and the
associations of a given object vector (in this case, the vector in which our considered slice lives)

‘Considered Object’ ‘Associated Object Vector’Some Isobel Jargon:

our handle to the object vector the name of the
producer that created

the association

Slice → PFParticle Vector

27

Accessing Associations (Technical Details)

● To get the PFParticles associated to a particular slice, in this case the first slice in sliceVector

● We then do:

HEY ISOBEL/HENRY! What’s
that key function about?

28

What’s the key function about?

● Every art::Ptr<...> has a key function

● It returns the index of the ‘pointed to’ object in the vector in which it lives, and is used to identify the
connected associations

Consider:

Then:

So, to get the PFParticle vector associated with sliceC, we’d do:

29

3030

4. Investigating our Neutrino Hierarchy

Obtaining the Neutrino Hierarchy

31

● In an experiment with background cosmic rays (like SBND), our reconstruction output will consist of
slices, some containing cosmic-like hierarchies, others neutrino-like hierarchies.

● IN OUR OPINION, the best way to obtain the PFParticles of a neutrino hierarchy is:

Pandora will set the PDG code of the
neutrino PFP as either 12 or 14, NEVER use

this for nue/numu separation

The Neutrino Hierarchy in LArSoft

32

COW!

Implementing Neutrino Hierarchy Variables (1)

● Let’s ‘calculate’ some neutrino hierarchy variables, and add them to our tree!

1) First, we’ll need some new includes:

2) Create new member variables, and connect them to our (T)Tree

33

3) Calculate the neutrino
hierarchy variables

Initialise our neutrino hierarchy
variables to zero at the start of every
event

Get the reconstructed slices in the
event and the PFParticle associations

Loop through the slices until we find the
neutrino PFParticle (here, we assume
that, across all slices, there is only one
neutrino candidate - this isn’t normally
the case!)

Fill the neutrino hierarchy variables, and
note the neutrino ID (and the neutrino
slice ID)

This statement comes from our assumption
that there is only one neutrino hierarchy, in a
more sophisticated analysis you would want to
consider all neutrino candidates.

34

Implementing Neutrino Hierarchy Variables (4)
HARD CODING MODULE NAMES IS A VERY VERY VERY BAD IDEA!

Save module names as
member variables instead!

We’ll see how to do this in the next few slides…35

Implementing Neutrino Hierarchy Variables (4)

● We pass module names into our analyzer through the analysisConfig.fcl file:

In your analyzer: In analysisConfig.fcl:

36

Fhicl configuration file linking & running

37

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10

source build.sh

root -l analysisOutput.root

Compile changes

Run analyzer

Check output

37

What our output looks like now

● Our (T)Tree should now have 2 new branches

● By viewing the tree, we can check that
everything looks sensible…

nPFParticles tells us how many particle
we have reconstructed

nPrimaryChildren is the number of
primary particles (children of the neutrino)

we have reconstructed

38

3939

5. Adding Track Information

Let’s have a look at the length of our muon/proton tracks

● The association we are after is:

recob::PFParticle → recob::Track

● But first, we’ll need to get the PFParticle handle so that we can initialise our FindManyP object

pandora

pandoraTrack

pandoraShower

recob::PFParticle

recob::Track

recob::Shower

In the SBND workflow, all PFParticles are fitted
as both tracks and showers

40

In analysisConfig.fcl

The details (bitty part)

In the configuration file add the label of
the track producer, we’ll also need the
PFParticle label too (because.. LArSoft)

In analyzeEvents_module.cc
Add a new output to store the lengths of
the reconstructed tracks

Add a new field to store the TrackLabel
and PFParticleLabel that we set in the
fcl above

Initialise PFParticle/TrackLabel from the
configuration

41

Creating the output

beginJob()

analyze(…)

Reset the values stored in the vector for
each event

Add a new branch to the TTree using
the vector defined on the previous slide

42

The details, in analyze

We need to get the handle to our
PFParticles so that we can get the
PFParticle -> Track associations

Checking that the parent of the
current PFParticle is the neutrino

Get the vector of Track objects
associated to the current PFParticle
There should be only a single track
associated with each PFParticle

Now fill the vector of Track lengths
we declared earlier

43

4444

Another way to view our analysis results…

Let’s look at the track lengths

Firstly, run over all your events by removing -n 10 from the command like this:

Open the output file and draw the track lengths! (using treeName->Draw(“branch name”))

45

You can also use -n -1

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root

root -l analysisOutput.root

root[0] ana->cd()
root[1] tree->Draw(“childTrackLengths”)

On the terminal

In the root terminal

What do you see?

46

muons!

protons!You can almost make
out what is likely to be

separate muon and
proton distributions!

Probably with some amount
of contamination

4747

6. Associations: Going a little deeper

Particle Ionisation

 [2007.06722] First results on ProtoDUNE-SP....

48

A plot from ProtoDUNE-SP LArTPC
showing the 2D dE/dx vs. residual
range distributions for Muons and
Protons produced in a test beam at
CERN.

The theoretical distributions for each
particle type are given by the lines.

Good separation between Muons &
Protons due the large difference in
mass.

https://arxiv.org/abs/2007.06722

More associations!

49

Slice

"pandora"

PFParticle

"pandora"

Earlier we looked at the association between recob::Slices and recob::PFParticles

More details can be found in the doxygen entry.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations!

50

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Earlier we looked at the association between recob::Slices and recob::PFParticles

…and then between recob::PFParticles and recob::Tracks.

More details can be found in the doxygen entry.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations!

51

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

Earlier we looked at the association between recob::Slices and recob::PFParticles

…and then between recob::PFParticles and recob::Tracks.

…we can now make use of another association to get hold of the energy deposition
information we need to to recreate that ProtoDUNE plot.

This time we need the anab::Calorimetry object…

Notice I have drawn in a different colour to indicate it lives in a different namespace to
the other objects we’ve been looking at so far (anab not recob)

More details can be found in the doxygen entry.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations!

52

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

Earlier we looked at the association between recob::Slices and recob::PFParticles

…and then between recob::PFParticles and recob::Tracks.

…we can now make use of another association to get hold of the energy deposition
information we need to to recreate that ProtoDUNE plot.

This time we need the anab::Calorimetry object…

Notice I have drawn in a different colour to indicate it lives in a different namespace to
the other objects we’ve been looking at so far (anab not recob)

More details can be found in the doxygen entry.

We have at least one separate calorimetry object for each of
the three planes

The object contains vectors of dQ/dx, dE/dx, Residual Range
etc values. Each entry corresponds to a trajectory point.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

These steps should feel familiar:

1. Add the relevant header for the anab::Calorimetry object
2. Add the module label to your configuration file and access it in the constructor
3. Add any declarations & branches for new variables you want to push to your tree
4. Access the list of anab::Calorimetry objects from a list of recob::Track

objects using art::FindManyP
5. Fill your tree variables with information from your anab::Calorimetry object.

Try making a start on this and we’ll go through it in more detail in a few minutes…

Accessing Calorimetry

53

Accessing Calorimetry (1)

54

 1. Add the relevant header for the anab::Calorimetry object

 2. Add the module label to your configuration file and access it in the constructor

 3. Add any declarations & branches for new variables you want to push to your tree

Accessing Calorimetry (1)

55

 1. Add the relevant header for the anab::Calorimetry object

 2. Add the module label to your configuration file and access it in the constructor

 3. Add any declarations & branches for new variables you want to push to your tree

Try to remember where
each line goes…

Accessing Calorimetry (2)

56

 4. Access the list of anab::Calorimetry objects from a list of recob::Track objects
 using art::FindManyP

 5. Fill your tree variables with information from your anab::Calorimetry object.

Accessing Calorimetry (2)

57

 4. Access the list of anab::Calorimetry objects from a list of recob::Track objects
 using art::FindManyP

 5. Fill your tree variables with information from your anab::Calorimetry object.

Remember, there are separate
calorimetry objects for each plane, let’s
only consider the collection plane.

Accessing Calorimetry (2)

58

 4. Access the list of anab::Calorimetry objects from a list of recob::Track objects
 using art::FindManyP

 5. Fill your tree variables with information from your anab::Calorimetry object.

We can insert the whole vectors in one go!

Histogram time!

You should be pretty familiar with rebuilding & running your analyzer now…

You can now use your calorimetry branches to make a 2D histogram in ROOT.

59

root[0] ana->cd()

root[1] TH2D *h = new TH2D("h","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[2] tree->Draw("childTrackdEdx:childTrackResRange>>h", "", "colz")

You should see something like this!

What do you find most interesting about the distribution?

60

Try playing around with the axis labels/style
options using the GUI.

You can save the plot at the end too!

6161

7. A very simple PID

Finding the longest track

62

● Since we have generated a single muon and proton with defined momenta, we
can be reasonably confident that they will be very different lengths in each event.

● We can harness this as a very simple particle identification technique for our
sample.

● Let’s loop through our neutrino children to find which track was the longest track in
each neutrino hierarchy. We should do this in a separate loop before the main
analysis loop.

Finding the longest track (1)

63

Within the loop we check
whether this track replaces
our current longest.

We make some variables to
track which track was longest
and what that length was.

Then we loop through the
PFPs and get their associated
tracks, just like we do in the
main analysis loop.

Finding the longest track (2)

64

In our main loop we can then add
a variable which is a boolean
(true/false) describing whether
this track is the longest or not.

Finding the longest track (2)

65

In our main loop we can then add
a variable which is a boolean
(true/false) describing whether
this track is the longest or not.

What else do we need
to add? I’ve left some

stuff out!

Finding the longest track (2)

66

In our main loop we can then add
a variable which is a boolean
(true/false) describing whether
this track is the longest or not.

What else do we need
to add? I’ve left some

stuff out!

Once you think you have included all the necessary
additions you will, as usual, need to recompile your
analyzer and run it over your reconstruction file again…

More plots, YAY!

Now we know which tracks are the longest, and which tracks are just
common garden tracks. We can use this to split our plots up…

Let’s open our file again, this time making two versions of our dE/dx vs.
Residual Range histogram.

67

root[0] ana->cd()

root[2] TH2D *hShort = new TH2D(“hShort”,“dE/dx vs. Residual Range”, 200, 0, 50, 200, 0, 30)

root[1] TH2D *hLong = new TH2D(“hLong”,“dE/dx vs. Residual Range”, 200, 0, 50, 200, 0, 30)

More plots, YAY!

68

root[3] tree->Draw("childTrackdEdx:childTrackResRange>>hLong", "childTrackIsLongest", "")

root[4] tree->Draw("childTrackdEdx:childTrackResRange>>hShort", "!childTrackIsLongest", "same")

This time we need to include our condition on the draw command…

root[5] hLong->SetMarkerColor(kMagenta+2)

root[6] hShort->SetMarkerColor(kOrange+2)

We need to tell the two apart… Let’s draw them in different colours!

root[6] c1->Modified()

Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html

Tell the canvas (default c1) to implement these changes and redraw the canvas

https://root.cern.ch/doc/master/classTColor.html

More plots, YAY!

69

root[3] tree->Draw("childTrackdEdx:childTrackResRange>>hLong", "childTrackIsLongest", "")

root[4] tree->Draw("childTrackdEdx:childTrackResRange>>hShort", "!childTrackIsLongest", "same")

This time we need to include our condition on the draw command…

root[5] hLong->SetMarkerColor(kMagenta+2)

root[6] hShort->SetMarkerColor(kOrange+2)

We need to tell the two apart… Let’s draw them in different colours!

root[6] c1->Modified() Tell the canvas (default c1) to implement these changes and redraw the canvas

Why don’t you try this
for the track length plot

too?

Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html

https://root.cern.ch/doc/master/classTColor.html

7070

Some final plots…

Track lengths

You should’ve seen that there
were two clearly separated
distributions for the longest
track compared to the other
tracks.

Why is this?

71

Energy deposition

By plotting our dE/dx vs. Residual
Range separately curve based on
which track was longer we see a clear
difference between the distributions.

This results from the fact that the
proton is more highly ionising than the
muon as it moves through the argon.

72

73

arXiv:1205.6747v2
[physics.ins-det] 5 Jun 2012

This ArgoNeuT plot shows the
theoretical separating power of
the average dE/dx vs. residual

range distributions. The
overlaid black data points show

a single stopping track in the
ArgoNeuT detector.

Energy distributions

74

arXiv:1205.6747v2 [physics.ins-det] 5 Jun 2012

This ArgoNeuT plot shows the theoretical separating power of the average
dE/dx vs. residual range distributions. The overlaid black data points show a
single stopping track in the ArgoNeuT detector.

It shows us that our longest track distribution fits the theoretical
distribution for muons, and the others for protons!

If you have some spare
time, try to work out

what is going on down
here!

7575

8. Recovering t0

Detector system associations

76

We have previously looked at associations between reconstructed quantities for the purpose
of accessing geometry and calorimetry information about the particles in our events.

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

Detector system associations

77

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

OpT0FinderResult

"opt0finder"

We can also look at
associations between the
different detector systems:

TPC, PDS & CRT

In this scenario we are going
to use the precision timing of
the PDS to set the t0 of the

TPC reconstruction and thus
the relative x-position.

We have previously looked at associations between reconstructed quantities for the purpose
of accessing geometry and calorimetry information about the particles in our events.

Flash Matching

We have previously looked at associations between reconstructed quantities for
the purpose of accessing geometry and calorimetry information about the particles
in our events.

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

OpT0FinderResult

"opt0finder"

We can also look at
associations between the
different detector systems:
TPC, PDS & CRT.

In this scenario we are going
to use the precision timing of
the PDS to set the t0 of the
TPC reconstruction and thus
the relative x-position.

78

Img: M. del Tutto

We try and match the charge image we saw in the TPC to the light
image we saw with the PDS, if they agree we can use the PDS’ much
more precise timing to adjust the timing (x-position) of our TPC slice.

Adding Flash Matching Information

We’re going to leave you to try and add this one on your own. The object is called
sbn::OpT0Finder and lives here. You will need to:

- Add the relevant header
- Add the module label to the fcl file and access it in the analyzer
- Use the association to access the object
- Sometimes there are multiple OpT0Finder results per slice, you should pick

the one with the largest score variable.
- Save the time variable from the object to your tree.

79

We will go through all of this in a moment so
don’t worry if you get stuck, this is hard!

https://github.com/SBNSoftware/sbnobj/blob/develop/sbnobj/Common/Reco/OpT0FinderResult.h

Adding OpT0Finder

Add the relevant header

80

Add the module label to the fcl file and access it in the analyzer

Use the association to access the object

Accessing OpT0Finder

81

● Sometimes there are multiple OpT0Finder results per slice, you should pick the one
with the largest score variable.

● Save the time variable from the object to your tree.

82

A few noteworthy points…

1. This uses our slice object so needs to happen in the slice loop.

2. You may well have found the top scoring object in a different way. Many approaches are
legitimate.

83

A few noteworthy points…

3. We need to have defined fOpT0 and added it as a branch too.

T0 Results

Remember way back in the simulation tutorial? You defined t0 to be 1600ns.

84

● Your OpT0 results should give you values
close to that original simulated time.

● Last year we discovered this number to be
off and it took us a long time and asking
other experts to understand why.

● Worth remembering that all of us still have
to ask questions all the time, so never
worry about reaching out with questions!

8585

Final notes

ROOT Workflows

● These tutorials focus on using ROOT via a VNC connection

● Trying to open root files (or any visualisation) via a standard ssh connection will
result in bad times

● You can often set up a VNC over an ssh connection (e.g. to the Fermilab GPVMs)

● You can also copy root files to your local machine and run root macros locally (the
TTree files are much smaller than the art files and root can be compiled on a
laptop fairly easily with minimal dependencies)

86

https://wiki.dunescience.org/wiki/DUNE_Computing/Using_VNC_Connections_on_the_dunegpvms

Documentation and additional information

87

The documentation for each art object/tool we have looked at lives here:

● recob::PFParticle - https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html
● art::FindManyP - https://nusoft.fnal.gov/larsoft/doxsvn/html/classart_1_1FindManyP.html
● recob::Track - https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1Track.html
● anab::Calorimetry - https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

Remember you can look at all of the objects and their corresponding producers in
any reco file by looking at an event dump:

lar -c eventdump.fcl -s /path/to/reco/file.root -n 1

https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classart_1_1FindManyP.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1Track.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

Some important file locations

Our version of the code lives here:

88

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/AnalyzeEvents_module.cc

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/analysisConfig.fcl

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/run_analyzeEvents.fcl

Type ls -a in the directories to see hidden files and directories

Previous tutorials (SBND-based)

Ed Tyley & Rhiannon Jones’ tutorial from 2022 is here:
https://indico.ph.ed.ac.uk/event/130/contributions/1747/

Ed Tyley & Rhiannon Jones’ tutorial from 2021 is here:
https://indico.ph.ed.ac.uk/event/91/contributions/1417/

Owen Goodwin’s tutorial from 2020 is here:
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=12&sessionId=4&resId=0&materialId=slides&confId=5856

Rhiannon Jones’ tutorial from 2019 is here:
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544

Leigh Whitehead’s tutorial from 2018 is here:
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372

89

https://indico.ph.ed.ac.uk/event/91/contributions/1417/
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=12&sessionId=4&resId=0&materialId=slides&confId=5856
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372

