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References for Coulomb Functions

▶ M. Abramowitz, Coulomb Wave Functions, in M. Abramowitz
and I. Stegun, Handbook of Mathematical Functions, Dover
Publications (New York), 1965.

▶ I.J. Thompson, Coulomb Functions, in F.W. Olver et al.,
NIST Handbook of Mathematical Functions, Cambridge
University Press (New York), 2010.

▶ I.J. Thompson, Coulomb Functions, in F.W. Olver et al.,
NIST Digital Library of Mathematical Functions,
http://dlmf.nist.gov/.

Speaking of NIST, here is a useful website for the fundamental
physical constants: https://physics.nist.gov/cuu/Constants/

index.html.
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The Differential Equation
▶ In terms of physical parameters, a Coulomb function u in

coordinate space satisfies

− ℏ2

2µ

d2u

dr2
+

Z1Z2e
2

r
u+

ℏ2

2µ

ℓ(ℓ+ 1)

r2
u = Eu,

where r ≥ 0 is the radial coordinate, E is the center-of-mass
energy, µ is the reduced mass.

▶ We also have

Vc =
Z1Z2e

2

r
,

the repulsive Coulomb potential,
▶ and

Veff =
ℏ2

2µ

ℓ(ℓ+ 1)

r2
,

an effective repulsive potential corresponding to the
centrifugal or angular momentum barrier.
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Dimensionless Parameters

▶ In terms of the dimensionless parameters ρ and η, we have
u(ℓ, η, ρ) and this equation becomes

u′′ +

[
1− 2η

ρ
− ℓ(ℓ+ 1)

ρ2

]
u = 0,

where ρ = kr, k =
√

2µE/ℏ2, ηk = Z1Z2e
2µ/ℏ2, and ′ ≡ d/dρ.

▶ Note that ρ ∝
√
E and η ∝ 1/

√
E.

▶ For a given pair of nuclei and ℓ, one can consider Coulomb
functions to be functions of the two variables (E, r) or (η, ρ).
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The Functions

▶ Fℓ(η, ρ): the regular Coulomb function, Fℓ(η, ρ → 0) ∝ ρℓ+1

▶ Gℓ(η, ρ): the irregular Coulomb function, Gℓ(η, ρ → 0) ∝ ρ−ℓ

▶ H±
ℓ (η, ρ) = Gℓ(η, ρ)± iFℓ(η, ρ)

▶ Wronskian: F ′
ℓGℓ − FℓG

′
ℓ = 1
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Various Phases

▶ The Coulomb phase shift σℓ is also sometimes needed:

e2iσℓ =
Γ(1 + ℓ+ iη)

Γ(1 + ℓ− iη)
=

(ℓ+ iη) . . . (1 + iη)

(ℓ− iη) . . . (1− iη)
e2iσ0 .

Note that σℓ − σ0 does not require the Γ function.

▶ The asymptotic phase θℓ is defined to be

θℓ = ρ− η log(2ρ)− 1

2
ℓπ + σℓ.

▶ For ρ → ∞, we have

H±
ℓ ∼ exp(±iθℓ),

which is useful for calculating the S matrix.
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Amplitude, Phase, Penetration, and Shift

▶ The Amplitude Aℓ, Phase ϕℓ, Penetration Pℓ, and Shift Sℓ are
defined according to:

Aℓ = (F 2
ℓ +G2

ℓ )
1/2

ϕℓ = tan−1 Fℓ/Gℓ

H±
ℓ = Aℓ exp(±iϕℓ)

Pℓ =
ρ

A2
ℓ

Sℓ =
ρA′

ℓ

Aℓ
=

ρ(A2
ℓ )

′

2A2
ℓ

▶ Note that we also have Sℓ + iPℓ = ρ
H+′

ℓ

H+
ℓ

, which can be shown

using the Wronskian.
▶ In R-matrix calculations, one traditionally uses Pℓ, Sℓ, and ϕℓ

(you only need three).
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Classical Turning Radius

▶ Consider the quantity 1− 2η
ρ − ℓ(ℓ+1)

ρ2
in the differential

equation.

▶ When it is > 0, the Coulomb functions are oscillatory.

▶ When it is < 0, the Coulomb functions are exponential.

▶ It = 0 for ρtr = η + [η2 + ℓ(ℓ+ 1)]1/2.

▶ Classical Turning Radius, rtr: krtr = ρtr.

▶ The location of rtr relative to the nuclear surface strongly
impacts the physics. In particular, if rtr is well outside the
nuclear surface, the reaction probability will be strongly
reduced by Coulomb and/or angular momentum barriers.
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An Example Plot
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Interestingly, both Aℓ and ϕℓ are monotonic functions of r, for 0 ≤ r < ∞.
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Limiting Forms for Small and Large ρ

quantity ρ → 0 ρ → ∞

H+
ℓ

[ρℓ(2ℓ + 1)Cℓ(η)]
−1 + . . . + i

[
ρℓ+1Cℓ(η) + . . .

]
exp(iθℓ)

[
1 + η

2ρ
+ i

η2+ℓ(ℓ+1)
2ρ

+ . . .

]
A2

ℓ [ρℓ(2ℓ + 1)Cℓ(η)]
−2 +. . . 1 + η

ρ
+

3η2+ℓ(ℓ+1)

2ρ2
+ . . .

ϕℓ ρ2ℓ+1(2ℓ + 1)C2
ℓ (η) +. . . θℓ +

η2+ℓ(ℓ+1)
2ρ

+ . . .

Pℓ ρ2ℓ+1[(2ℓ + 1)Cℓ(η)]
2 +. . . ρ − η − η2+ℓ(ℓ+1)

2ρ
+ . . .

Sℓ −ℓ +. . . − η
2ρ

− 2η2+ℓ(ℓ+1)

2ρ2
+ . . .

See C.R. Brune, G.M. Hale, and M.W. Paris, Monotonic properties of the shift and penetration factors,
Phys. Rev. C 97, 024603 (2018), https://doi.org/10.1103/PhysRevC.97.024603

The Gamow factor is defined to be

Cℓ(η) =
2ℓe−πη/2 [Γ(ℓ+ 1 + iη)Γ(ℓ+ 1− iη)]

1/2

Γ(2ℓ+ 2)
,

which for ℓ = 0 becomes

C0 =

[
2πη

exp(2πη)− 1

]1/2
.
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Low-Energy Limit
▶ For E → 0, with radius fixed, we have

Fℓ → C0

2η

x

2
I2ℓ+1(x)

Gℓ → x

C0
K2ℓ+1(x),

where x = (8ηρ)1/2 is independent of energy and ∝ √
r, and

I2ℓ+1(x) and K2ℓ+1(x) are the regular and irregular Modified
Bessel Functions, respectively.

▶ See J. Humblet, Bessel functions expansions of Coulomb wave
functions, J. Math. Phys. 26, 656-659, 1985
https://doi.org/10.1063/1.526602.

▶ This implies

Pℓ →
π exp(−2πη)

4K2
2ℓ+1(x)

.
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Negative Energies
▶ For negative energies, we need the exponentially-decaying

Whittaker function:

W−ηb,ℓ+1/2(2κbr),

where κb =
√

−2µE/ℏ2 and ηbκb = Z1Z2e
2µ/ℏ2.

▶ It is proportional to the analytic continuation of H+
ℓ to

negative energies.
▶ For E < 0, we have Pℓ = 0 and

Sℓ =
r

W

dW

dr
.

▶ Sℓ(E) is continuous across E = 0, with a value of

Sℓ(0) = −ℓ− xK2ℓ(x)

K2ℓ+1(x)
.

▶ In practice, ϕℓ is not needed for E < 0.
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The Tail a Bound State
▶ Using the differential equation, it can be shown that

ℏ2

2µ

[
W 2

r

dS

dE

]
r=a

=

∫ ∞

a
W 2 dr,

see Eq. (A.29) in the appendix of Lane and Thomas.

▶ Normalization condition:

N +
∑
c

C2
c

∫ ∞

ac

W 2
c drα = 1

Cc =
(2µαac)

1/2

ℏWℓ(ac)
N1/2γc

N

[
1 +

∑
c

γ2c
dSc

dE

∣∣∣∣
ER

]
= 1

▶ dS
dE can be computed by a continued fraction technique.
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Computer Codes

▶ I.J. Thompson and A.R. Barnett, COULCC: A
continued-fraction algorithm for Coulomb functions of
complex order with complex arguments, Computer Physics
Communications 36, 363-372 (1985),
https://doi.org/10.1016/0010-4655(85)90025-6,
fortran90-ish, verson 36, code available from
http://www.ianthompson.org/computation.htm

▶ N. Michel, Precise Coulomb wave functions for a wide range
of complex ℓ, η and z, Computer Physics Communications
176, 232-249 (2007),
https://doi.org/10.1016/j.cpc.2006.10.004,
c++, code available from CPC Program Library
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Computer Codes, continued

▶ GNU Scientific Library (GSL),
https://www.gnu.org/software/gsl/, c

▶ A.R. Barnett, COULFG: Coulomb and Bessel functions and
their derivatives, for real arguements, by Steed’s method,
Computer Physics Communications 27, 147-166 (1982),
https://doi.org/10.1016/0010-4655(82)90070-4, fortran,
c version is available from the LLNL github:
https://github.com/LLNL/fudge

▶ I will refer to these as coulcc, cwfcomp, gsl, and coulfg,
respectively.
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Comparisons

▶ For the comparisons, I have considered 12C+ α, a = 5.5 fm,
ℓ = 2 and varied the energy from near zero to 10 MeV.

▶ The radius is typical of the channel radius that one would
utilize for an R-matrix analysis of this system.

▶ This energy range spans from far below to above the Coulomb
and angular momentum barriers.
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Caveats

▶ This study is only looking at a limited region of parameter
space.

▶ Just because two codes agree, that does not mean they are
correct.

▶ In the case of cwfcomp, I have used the default computational
parameters (also the AZURE2 default):

precision = 1E− 10

sqrt precision = 1E− 5.

Decreasing these values brings the cwfcomp results closer to
coulcc, and increases the computational time.
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Shift Function
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Penetration
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Phase
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Computational Time
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Findings

▶ coulcc and cwfcomp agree reasonably well for all energies
considered.

▶ gsl agrees with the other codes for very low energies and
energies above 3 MeV.

▶ gsl shows significant disagreements with the other codes for
0.3 < E < 3 MeV.

▶ coulfg agrees will with coulcc and cwfcomp, except for very
low energies.

▶ There are significant differences in computational speeds:
gsl is the fastest, followed by coulfg, then by coulcc, and
finally cwfcomp.
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What is going on with gsl?

▶ It turns out that gsl uses a WKB approximation when
1.2 ≤ ρ < 2η. For ρ < 1.2, the power series are used. For
ρ ≥ 2η, continued fractions are used. Note that ρ = 2η
corresponds to the classical turning radius for ℓ = 0.

▶ The range 1.2 ≤ ρ < 2η corresponds to 0.3 < E < 3 MeV for
12C+ α at 5.5 fm, which is a critical region of parameter
space for this case. The WKB approximation is just not very
accurate.

▶ Besides not being particularly accurate, the gsl Coulomb
functions are not continuous functions of energy and radius.
This may cause problems for parameter search algorithms in
phenomenological R-matrix applications.

▶ User beware!
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What about coulfg?

▶ It is fast and works very well, except for very low energies.

▶ The issue here is a loss of accuracy in the continued fraction
method when P ≪ S, which is a known issue. Other codes
use different method in this regime.

24 / 26



Conclusions

▶ There are significant differences in the accuracy and
computational speed of four commonly used codes for
computing Coulomb functions.

▶ I believe there is room for a new code that optimizes speed
and accuracy for ρ and η real and positive.

▶ However, if computational speed is a truly limiting factor,
other approaches, such as interpolation from pre-computed
tables, should be considered.
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Thank you for your attention.

26 / 26


