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Parameter Space

Can exchange integrals over loop momenta for integrals over parameters 
  
Feynman Parametrisation 

 

 homogeneous polynomials of degree  and  

Lee-Pomeransky Parametrisation 

 

I(s) =
Γ(ν − LD/2)
∏e∈G Γ(νe) ∫

∞

0
[dα] ανδ (1 − H(α)) [𝒰(α)]ν−(L+1)D/2

[ℱ(α; s)]ν−LD/2

𝒰, ℱ L L + 1

I(s) =
Γ(D/2)

Γ ((L + 1) D/2 − ν)∏e∈G Γ(νe) ∫
∞

0
[dx] xν (𝒢(x, s))−D/2

𝒢(x; s) = 𝒰(x) + ℱ(x; s)

[dα] = ∏
e∈G

dαe

αe

αν = ∏
e∈G

ανe
e

Lee, Pomeransky 13
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Sector Decomposition in a Nutshell

  

Singularities 

1. UV/IR singularities when some  simultaneously  Sector Decomposition 

2. Thresholds when  vanishes inside integration region  Contour Deformation 

Sector decomposition 
Find a local change of coordinates for each singularity that factorises it (blow-up)

I ∼ ∫ℝN+1
≥0

[dx] xν [𝒰(x)]N−(L+1)D/2

[ℱ(x, s) − iδ]N−LD/2
δ(1 − H(x))

x → 0 ⟹

ℱ ⟹
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Sector Decomposition in a Nutshell

  

 

Normal vectors incident to each extremal vertex define a local change of variables* 

  

  

*If , need triangulation to define variables (simplicial normal cones  )

I ∼ ∫ℝN
≥0

[dx] xν (ci xri)t

𝒩(I) = convHull(r1, r2, …) = ⋂
f∈F

{m ∈ ℝN ∣ ⟨m, nf⟩ + af ≥ 0}

xi = ∏
f∈Sj

y⟨nf ,ei⟩
f

I ∼ ∑
σ∈ΔT

𝒩

|σ | ∫
1

0
[dyf] ∏

f∈σ

y⟨nf ,ν⟩−taf
f ci∏

f∈σ

y⟨nf ,ri⟩+af
f

t

|Sj | > N σ ∈ ΔT
𝒩

Singularities Finite

Kaneko, Ueda 10
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Method of Regions

Consider expanding an integral about some limit: 
  ,    or   for  

Issue: integration and series expansion do not necessarily commute 

Method of Regions 

  

1. Split integrand up into regions ( ) 
2. Series expand each region in  
3. Integrate each expansion over the whole integration domain 
4. Discard scaleless integrals (= 0 in dimensional regularisation) 
5. Sum over all regions 

p2
i ∼ λQ2 pi ⋅ pj → λQ2 m2 ∼ λQ2 λ → 0

I(s) = ∑
R

I(R)(s) = ∑
R

T (R)
t I(s)

R
λ

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; … 
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Finding Regions

Assuming all  have the same sign we rescale  

 

Normal vectors w/ positive  component define change of variables  

  

Example 
 

Original integral  may then be approximated as  

ci s → λωs

I ∼ ∫ℝN
≥0

[dx] xν (ci xri)t → ∫ℝN
≥0

[dx] xν (ci xriλri,N+1)t → 𝒩N+1

λ nf = (v1, …, vN,1)

x = λnf y , λ → λ

p(x, λ) = λ + x + x2

I I = ∑
f∈F+

I( f ) +…

Pak, Smirnov 10; Semenova, 
A. Smirnov, V. Smirnov 18

1,2 ∈ F+

3 ∉ F+

(0, 1)

(1, 0) (2, 0)
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n

n

n

si → λωisi
Newton Polytope
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Additional Regulators/ Rapidity Divergences

MoR subdivides   new (internal) facets  

New facets can introduce spurious singularities not regulated by dim reg 

Lee Pomeransky Representation: 

If  have  need analytic regulators 

𝒩(I) → {𝒩(IR)} ⟹ Fint.

f ∈ Fint af = 0 ν → ν + δν

𝒩(I(R)) = ⋂
f∈F

{m ∈ ℝN ∣ ⟨m, nf⟩ + af ≥ 0}

I ∼ ∑
σ∈ΔT

𝒩

|σ | ∫ℝN
≥0

[dyf] ∏
f∈σ

y⟨nf ,ν⟩+ D
2 af

f ci∏
f∈σ

y⟨nf ,ri⟩+af
f

− D
2

Heinrich, Jahn, SJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21; Schlenk 16



Can split integral into two subdomains  and  then remap 

 :     (for first domain) 

Before split: only hard region found  
After split: also potential region found 

α1 ≤ α2 α2 ≤ α1
α1 = α′�1/2
α2 = α′�2 + α′�1/2

ℱbub,1 →
q2

4
α′ �22 + y(α′�1 + α′ �2)2

(α1 ∼ y0, α2 ∼ y0)
(α1 ∼ y0, α2 ∼ y1/2)

10

Regions due to Cancellation

Jantzen, A. Smirnov, V. Smirnov 12

What happens if  have different signs?ci

Consider a 1-loop massive bubble at threshold y = m2 − q2/4 → 0

  

 

I = Γ(ϵ)∫ dα1dα2
δ(1 − α1 − α2)(α1 + α2)−2+2ϵ

(ℱbub(α1, α2; q2, y))
ϵ

ℱbub =
q2

4
(α1 − α2)2 + y(α1 + α2)2

q
→
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Regions due to Cancellation

Various tools attempt to find such re-mappings using linear changes of variables 

ASY/FIESTA 

Check all pairs of variables ( ) which are part of monomials of opposite sign 

For each pair, try to build linear combination  s.t negative 
monomial vanishes 

Repeat until all negative monomials vanish or warn user 

ASPIRE 

Consider Gröbner basis of  (i.e.  and Landau equations) 

Eliminate negative monomials with linear transformations  

This is not enough to straightforwardly expose all regions in parameter space

α1, α2

α1 → bα′�1, α2 → α′�2 + bα′�1

{ℱ, ∂ℱ/α1, ∂ℱ/α2, …} ℱ

α1 → bα′�1, α2 → α′�2 + bα′�1

Jantzen, A. Smirnov, V. Smirnov 12

Ananthanarayan, Pal, Ramanan, Sarkar 18; B. Ananthanarayan, Das, Sarkar 20



Integrals with Pinch Singularities
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Landau Equations

Polynomials  can vanish (gives singularities) for some  (end-point) 

Additionally, due to signs in  it can vanish due to cancellation of terms 

Avoid poles on real axis by deforming contour (roughly speaking…): 

  

  

If  and  simultaneously, contour will vanish exactly 
where the deformation is required, above conditions are just the Landau equations 

Landau Equations (parameter space): 

 

Leading:  

Solutions are pinched surfaces of the integral where IR divergences may arise

𝒰, ℱ αi → 0

ℱ

αk → αk − iεk(α)

ℱ(α; s) → ℱ(α; s) − i∑
k

εk
∂ℱ(α; s)

∂αk
+ 𝒪(ε2)

ℱ(α; s) = 0 ∂ℱ(α; s)/∂αj = 0 ∀j

1) ℱ(α; s) = 0

2) αj
∂ℱ(α; s)

∂αj
= 0 ∀j

αj ≠ 0∀j

(L + 1)ℱ =
N

∑
k=1

αk
∂ℱ
∂αk

.
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Looking for Trouble: Algorithm

Generally, solutions of the Landau equations depend on .  
Let us restrict our search to solutions with generic kinematics 

 

Algorithm (finds integrals which potentially have a pinch in the massless case) 

Much more sophisticated algorithms for solving Landau equations exist

s

ℱ = − ∑
i

si [fi(α) − gi(α)] = ∑
i

ℱi,− + ℱi,+

ℱi,− = − si fi(α), ℱi,+ = si gi(α), fi(α), gi(α) ≥ 0

For each : 

1) Compute  

2) If  or   Exit (no cancellation) 

3) If  or  set   Goto 1 

     Else  Exit (potential cancellation)

si

ℱi,−, ℱi,+

ℱi,− = 0 ℱi,+ = 0 →

∂ℱi,−/∂αj = 0 ∂ℱi,+/∂αj = 0 αj = 0 →

→

(E.g.) Mizera, Simon Telen 21; Fevola, Mizera, Telen 23 
(See also) Gambuti, Kosower, Novichkov, Tancredi 23
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Looking for Trouble: 1- & 2-loops

We considered massless 4-point scattering amplitudes ( ) 

@1-loop: found no candidates (trivially) 

@2-loop: 

s23 = − s12 − s13

p1

p2

p3

p4

0

1
2

3
4

5
6

p1

p2

p3

p4

0

1

2

3

4

5

6 p1 p2

p3

p4

0

1

2

3

4

5

6

p1

p2

p3

p4

0

1

2

3

4

5

6

p1

p2

p3

p4

0

1

2

3

4

5

6

p1
p2

p3

p4

0

1

2

3

4

5

6

p1

p2

p3

p4

0

1

2

6

4

3

5

p1

p2

p3

p4

0

1

2

6

4

3

5

p1

p2

p3

p4

0

1

2

6
4

3

5 p1

p2

p3

p4

0

1

2

6

4

3

5

+ … no candidates (!)



@3-loop: finally some interesting candidates 

The complete set of corresponding master integrals for generic  are knowns12, s13
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Looking for Trouble: 3-loops

Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21;
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Figure 2: All the four-point three-loop graphs with possibly hidden Landau singularities.

variables. Might be good to say something about the logic of inserting the derivative with the
imaginary part.]Einan

F(e↵) = F(↵) � i

X

j

⌧j
@F(↵)

@↵j
+ O(⌧

2
), ⌧j = �j↵j(1 � ↵j)

@F(↵)

@↵j
, (3.18)

– 12 –
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variables. Might be good to say something about the logic of inserting the derivative with the
imaginary part.]Einan

F(e↵) = F(↵) � i

X

j

⌧j
@F(↵)

@↵j
+ O(⌧

2
), ⌧j = �j↵j(1 � ↵j)

@F(↵)

@↵j
, (3.18)

– 12 –
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Interesting Example

𝒰(α) = α0α2α4 + α0α2α5 + α0α2α6 + (29 terms)

= ∫
∞

0
dx0 …dx7

𝒰(x)4ϵ

ℱ(x; s)2+3ϵ
δ(1 − x7)

ℱ(α; s) = −s12 (α1α4 − α0α5) (α3α6 − α2α7) − s13 (α1α2 − α0α3) (α5α6 − α4α7),
∂ℱ(α; s)

∂α0
= s12 α5(α3α6 − α2α7) + s13 α3(α5α6 − α4α7),

⋮
∂ℱ(α; s)

∂α7
= s12 α2(α1α4 − α0α5) + s13 α4(α1α2 − α0α3)

Can have a leading Landau singularity with generic kinematics (arbitrary ) 
when each factor of  vanishes!

s12, s13
ℱ
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variables. Might be good to say something about the logic of inserting the derivative with the
imaginary part.]Einan

F(e↵) = F(↵) � i

X

j

⌧j
@F(↵)

@↵j
+ O(⌧

2
), ⌧j = �j↵j(1 � ↵j)

@F(↵)

@↵j
, (3.18)

– 12 –
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Interesting Example

Let’s try to compute this with sector decomposition (pySecDec)

Fails to find contour…
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Contour Deformation

5.3. Deformation of the integration contour

after having integrated out the loop momenta, see Ref. [300]. The leading Landau
singularity is again given by the solution to the system of equations assuming an empty
set of vanishing Feynman parameters.
How we deal with these singularities will be described in the following section.

5.3 Deformation of the integration contour

5.3.1 Cauchy theorem

Re(z)

Im(z)

10

Figure 5.2: Schematic picture of the closed contour avoiding poles on the real axis.

Unless the function F is of definite sign for all possible values of invariants and Feyn-
man parameters, the denominator of a multi-loop integral will vanish within the integra-
tion region on a hypersurface given by the solutions of the Landau equations. To avoid
the non-physical poles on the real axis, the Cauchy theorem

∮

c

N∏

j=1

dzjI(z⃗) =
∫ 1

0

N∏

j=1

dxjI(x⃗) +
∫ 0

1

N∏

j=1

dzjI(z⃗) = 0 (5.5)

can be exploited, where Re(z⃗) = x⃗. To be able to use the theorem, the original integrand,
depending only on the real coordinates xj, is analytically continued to the complex plane.
The coordinate transformation reads

∫ 1

0

N
∏

j=1

dxjI(x⃗) =
∫ 1

0

N
∏

j=1

dxj

∣
∣
∣
∣

(
∂zk(x⃗)
∂xl

)∣
∣
∣
∣
I(z⃗(x⃗)) , (5.6)

where the new complex coordinates z⃗ describe a path parametrized by the variables x⃗.
With a given description of the coordinates z⃗, the Cauchy theorem in Eq. (5.5) can be
formulated. It is valid in this form as long as the deformation is in accordance with
the causal iδ prescription of the Feynman propagators, as the region enclosed by the
integration contour then does not contain any singular points, compare Fig. 5.2. It is
important to keep in mind, that no poles should be crossed while changing the integration
path, otherwise Eq. (5.5) is no longer valid.

55

Feynman integral (after sector decomp): 

I ∼ ∫
1

0
[dα] αν [𝒰(α)]N−(L+1)D/2

[ℱ(α; s)]N−LD/2

Deform integration contour to avoid poles on real axis  
Feynman prescription  tells us how to do this 

Expand  around ,    

Choose  with small constants  

ℱ → ℱ − iδ

ℱ(z = α − iτ) α ℱ(z) = ℱ(α) − i∑
j

τj
∂ℱ(α)

∂αj
+ 𝒪(τ2)

τj = λj αj(1 − αj)
∂ℱ(α)

∂αj
λj > 0

Soper 99; Binoth, Guillet, Heinrich, Pilon, Schubert 05; Nagy, Soper 06; Anastasiou, Beerli, Daleo 07, 08; 
Beerli 08; Borowka, Carter, Heinrich 12; Borowka 14;…
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Contour Deformation

But for this class of examples  and all  vanish at the same point inside 
the integration domain 

 pinch singularity 

ℱ(α) ∂ℱ(α)/∂αi

→

ℱ(α; s) = −s12 (α1α4 − α0α5) (α3α6 − α2α7) − s13 (α1α2 − α0α3) (α5α6 − α4α7),
∂ℱ(α; s)

∂α0
= s12 α5(α3α6 − α2α7) + s13 α3(α5α6 − α4α7),

⋮
∂ℱ(α; s)

∂α7
= s12 α2(α1α4 − α0α5) + s13 α4(α1α2 − α0α3)

vanish for

α2 =
α0α3

α1
, α4 =

α0α5

α1
, α6 =

α0α7

α1
.

Example
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Resolution

The problem is that we have monomials with different signs… 

Asy2.1 PreResolve->True

Correctly identifies that iterated linear changes of variables are not sufficient to 
resolve the singularity and reports that pre-resolution has failed 
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Resolution

ℱ(α; s) = −s12 (α1α4 − α0α5) (α3α6 − α2α7) − s13 (α1α2 − α0α3) (α5α6 − α4α7)

1) Rescale parameters to linearise singular surfaces

ℱ(α; s) = α1α3α5α7 [−s12(α4 − α0)(α6 − α2) − s13(α2 − α0)(α6 − α4)]

α0 → α0α1, α2 → α2α3, α4 → α4α5, α6 → α6α7

2) Split the integral by imposing αi ≥ αj ≥ αk ≥ αl

α0 → α0 + α2 + α4 + α6,
α2 → α2 + α4 + α6,
α4 → α4 + α6,
α6 → α6

+perms

ℱ1(α; s) = α1α3α5α7 [−s12(α0 + α2)(α2 + α4) − s13(α0)(α4)]
ℱ2(α; s) = α1α3α5α7 [−s12(α2)(α0 + α2 + α6) + s13(α0)(α6)]

⋮
ℱ24(α; s) = α1α3α5α7 [−s12(α2 + α4)(α4 + α6) − s13(α2)(α6)]

All coefficients of 
 now have 

definite sign
s12, s13
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Result

Can now obtain results numerically ( )s12 = 1, s13 = − 1/5

I1 = ϵ−4 [(−3.8842800687 + 5.2359902003j) ± (4.458 ⋅ 10−6 + 3.638 ⋅ 10−6j)] + …

I2 = ϵ−4 [(−7.9291803033 + 20.943767810j) ± (9.149 ⋅ 10−5 + 1.061 ⋅ 10−4j)] + …

I3 = ϵ−4 [(18.5195704502 − 15.707988011j) ± (5.897 ⋅ 10−5 + 5.897 ⋅ 10−5j)] + …

I4 = ϵ−4 [(−13.294034089) ± (2.068 ⋅ 10−5)] + …

I5 = ϵ−4 [(12.7432949988 − 23.561968275j) ± (1.605 ⋅ 10−5 + 1.415 ⋅ 10−5j)] + …

I6 = ϵ−4 [(−4.0702330904) ± (2.018 ⋅ 10−6)] + …

I = 4 (I1 + I2 + I3 + I4 + I5 + I6)
= ϵ−4 [8.34055 − 52.3608j] + 𝒪(ϵ−3)

Ianalytic = ϵ−4 [8.3400403922 − 52.3598775598j] + 𝒪(ϵ−3)

Agrees with analytic result

Note: even after resolution this integral is slow to compute numerically, possible 
to vastly improve performance by avoiding contour deformation entirely

 We will return to this point shortly→



MoR and Hidden Regions
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On-Shell Expansion

On-shell expansion provides a way to explore emergence of IR singularities 
starting from an object free of IR singularities (off-shell Green’s function) 

Consider an arbitrary loop, -leg wide-angle scattering graph 

Cancellations of the type just observed lead to new regions that are hidden in 
the straightforward Newton polytope approach as they do not originate from 

an end-point singularity

(K + L)

on-shell: p2
i ∼ λQ2 (i = 1,…, K ),

off-shell: q2
j ∼ Q2 ( j = 1,…, L),

wide-angle: pk ⋅ pl ∼ Q2 (k ≠ l) .
G

q1 qL

p1

p2

pK



Consider a collinear/jet configuration 
 

Let us introduce a fourth (extra) loop momentum 
and consider the mode with all  collinear to  

p2
i = λQ2, pi ⋅ vi ∼ λQ, pi ⋅ vi ∼ Q, pi ⋅ vi⊥ ∼ λQ

ki pi

kμ
i = Q (ξiv

μ
i + λκiv

μ
i + λτiu

μ
i + λνinμ)

26

On-Shell Expansion

Botts, Sterman 89

p1 p3

p2 p4

1

0 4

5

7

62

3

(a) A choice of labelling the 8
propagators of the graph G••
(figure 2a).

p1 p3

p2 p4

H1

H2

k1

k2

k3

k4

(b) Landshoff scattering where
the hard subgraph consists of
two components H1 and H2.

Figure 4: The graph G•• and its hidden region associated with the Landshoff scattering.

4.2 Power counting in parameter space

Let us first carry out the power counting analysis in Lee-Pomeransky representation. To begin
with, the integrand, according to eq. (2.3), scales as

⇣
P

(R)
(x; s)

⌘D/2
⇠ (�3) · (�D/2) = 6 � 3✏. (4.6)

To obtain the contribution to the degree of divergence from the integration measure, we
shall change the variables {x0,x3,x5,x6} into {y0,y3,y5,y6}, such that:

x0 = y0 · x1, x2 = y2 · x3, x4 = y4 · x5, x6 = y6 · x7. (4.7)

It then follows that yi is O(1) for each i = 0, 3, 5, 6, and from eq. (4.4), they further satisfy

(y2 � y0)(y6 � y4)x1x3x5x7 ⇠ �
�3

, (y0 � y4)(y2 � y6)x1x3x5x7 ⇠ �
�3

. (4.8)

As x1x3x5x7 ⇠ �
�4, it is clear that (y2 � y0)(y6 � y4) ⇠ � and (y0 � y4)(y2 � y6) ⇠ �.

Furthermore, it can be deduced that for any i, j 2 {0, 2, 4, 6}, yi � yj ⇠ �
1/2. To see this, let

us set y2 � y0 ⇠ �
1/2+a and y6 � y4 ⇠ �

1/2�a for some a 2 R, as is consistent with eq. (4.8).
If a > 0, either y0 � y4 ⇠ �

1/2�a or y2 � y6 ⇠ �
1/2�a (or both) would hold. Without loss of

generality, let us assume y0�y4 ⇠ �
1/2�a. Then, in order that (y0�y4)(y2�y6)x1x3x5x7 ⇠ �

�3,
one must have y2 � y6 ⇠ �

1/2+a, which, in line with y6 � y0 ⇠ �
1/2+a as we have assumed,

yields y0 � y2 ⇠ �
1/2+a. The integration measure for all the y variables can then be rewritten

as

dy0dy2dy4dy6 = dy0d(y2 � y0)d(y4 � y0)d(y6 � y0)

⇠ �
1/2+a

· �
1/2�a

· �
1/2+a

= �
3/2+a

. (a > 0) (4.9)
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Momentum conservation at  vertex (  )  
implies not all  are independent: 

H1 k1 + k2 = k3 + k4
ξi

ξ2 = ξ1 −
1
2

λ cos2(θ)(tan ( θ
2 ) Δτ − cot ( θ

2 ) Στ) + λ(κ2 − κ1),

ξ3 = ξ1 +
1
2

λ tan ( θ
2 ) Δτ + λ(κ2 − κ4),

ξ4 = ξ1 −
1
2

λ cot ( θ
2 ) Στ + λ(κ2 − κ3) .

Δτ ≡ τ1 + τ2 − τ3 − τ4
Στ = τ1 + τ2 + τ3 + τ4
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Now let us analyse the leading behaviour of this integrand for small , 

1) Loop measure can be expressed as  

2) Trade large components of  for small components of ,    

Jacobian of transformation:   

Overall obtain the following scaling: 

 

Expect this region to scale as  

λ

∫ dDk1dDk2dDk3 = Q3D ∫
3

∏
i=1

dξidκidτidνi

k2, k3 k4 {ξ2, ξ3} → {κ4, τ4}
det ( ∂(ξ2, ξ3)

∂(κ4, τ4) ) = λ3/2 cos(θ)cot(θ)

∫
3

∏
i=1

dξi dκidτidνi ∼ ∫
1

0
dξ1 (∫

3

∏
i=1

(λdκi)(λ
1
2 dτi)(λ

1
2 dνi)1−2ϵ)

λ6−3ϵ

∫ dκ4dτ4 det ( ∂(ξ2, ξ3)
∂(κ4, τ4) )
λ3/2

μ = 6 − 3ϵ +
3
2

− 8 = −
1
2

− 3ϵ

Scaling of collinear propagators
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where the third, e
�3✏L, does not appear as a facet of the original polytope but does appear

after our separation into sectors.
At NNLP we have four different scalings,

NNLP {IMand.} (L; ✏) = e
�7✏L
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◆
+ · · ·

◆
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1
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◆
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�3✏L

✓
638

9

1

✏6
+

1

3

1
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(903 + 1108i⇡ + 112L) + · · ·

◆

+ e
�2✏L

✓
�

372

5

1

✏6
+

2

5

1

✏5
(�784 � 957i⇡ + 80L) + · · ·

◆

(5.25)

where the explicit L term in the series multiplying both e
�3✏L and e

�2✏L terms is indicative
of the role played by analytic regulators in computing the relevant regions separately.

[Pay attention to the following property]Einan We note that the cancellation region in
both the 8 propagator diagram (the sole contributor to the leading power, eq. (5.18)) and the
Mandelstam 10 propagator one (the e

�3✏L term at NLP in eq. (5.24)) involve at least one
power of i⇡. Recall that loops producing a factor of i⇡ is a hallmark of a Glauber mode.

6 Conclusions and outlook
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A Examples and facet regions

vR (x0, x1, . . . , x7) order
(�2, �1, �2, �1, �2, �1, �2, �1; 1) �6✏

(�1, �2, �1, �2, �1, �2, �1, �2; 1) �6✏

(�1, �1, �1, 0, �1, 0, �1, 0; 1) 1 � 3✏

(�1, �1, 0, �1, 0, �1, 0, �1; 1) 1 � 3✏

(�1, �1, 0, 0, 0, 0, 0, 0; 1) �✏

(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 1: On-shell expansion with p
2
1 ⇠ �Q

2 and p
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i = 0 (i = 2, . . . , 4).
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Directly applying MoR in parameter space, we do not see this region…

Dissecting the polytope according to our resolution procedure eliminates 
monomials of different sign, we now see the region in each of the 24 new polytopes

I1 ∼

I ∼

μ = −
1
2

− 3ϵ

G

p1 p3

p2 p4

Figure 1: The generic picture of two-to-two forward scattering.

G

p1 p3

p2 p4

Figure 2: The generic picture for expanding one-leg in the on-shell expansion, all others
exactly on-shell.

2 Preliminaries

[Based on this idea, computer codes such as Asy2 [1], as part of the program FIESTA [2–6],
ASPIRE [7] and pySecDec [8] have been developed to identify the regions.]Einan

[Yao’s Abstract:
Newton polytopes of Symanzik graph polynomials has been found useful in analysing Feyn-
man integrals. Faces of these polytopes identify Landau singularities, and are used in sector
decomposition and in performing asymptotic expansions by the Method of Regions. However,
some Landau singularities, referred to as the hidden Landau singularities in this study, arise
from cancellations within the Symanzik polynomials and cannot be identified by the faces of
polytopes.

This research delves into 2 ! 2 massless scattering, pinpointing graphs featuring hidden
Landau singularities. Such graphs appear at three or more loops, all of which can be generated
by an 8-propagator graph. In the scenario of wide-angle scattering, these singularities emerge
when the hard subgraph disconnects, while in forward scattering, they occur during the ex-
change of Glauber-mode momenta between upper and lower jets. Unlike known examples of
hidden Landau singularities, 2 ! 2 scattering graphs exhibit cancellation structures of the
form (xaxb � xcxd)(xexf � xgxh), evading detection by other existing algorithms.]Einan

We begin in section ?? by sketching the idea of the Newton polytope approach. In
this approach, each Feynman integral can be represented by a Newton polytope whose lower
faces correspond to endpoint Landau singularities. Then in section 3.1 we examine some

– 2 –

 See Yao’s talk→
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Inserting   into the Botts-Sterman 
analysis leads to one of the loop 
momenta becoming Glauber: 

 

We obtain 

θ ∼ λ

kμ
4 − kμ

2 = kμ
1 − kμ

3 ∼ Q(λ, λ; λ)

μ = − 1 − 3ϵ

Alternatively, can expand known analytic result in the foward limit  

  

 

 

gives 

x = − s13/s12

I(s12, s13; ϵ) = s−2−3ϵ
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ℐ(x; ϵ) = LP {IXX}(L; ϵ) + 𝒪(x0)
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8

3ϵ4
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16
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+
2 (π2 − 144)

3ϵ2
−

4 (−58ζ(3) + 3π2 − 432)
3ϵ

+
1

60 (−27840ζ(3) + 71π4 + 1440π2 − 207360) + ⋯) ,

ℐ(x; ϵ) ∼ x−1−3ϵ

Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21;

L = log(x)
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ASPIRE [7] and pySecDec [8] have been developed to identify the regions.]Einan

[Yao’s Abstract:
Newton polytopes of Symanzik graph polynomials has been found useful in analysing Feyn-
man integrals. Faces of these polytopes identify Landau singularities, and are used in sector
decomposition and in performing asymptotic expansions by the Method of Regions. However,
some Landau singularities, referred to as the hidden Landau singularities in this study, arise
from cancellations within the Symanzik polynomials and cannot be identified by the faces of
polytopes.

This research delves into 2 ! 2 massless scattering, pinpointing graphs featuring hidden
Landau singularities. Such graphs appear at three or more loops, all of which can be generated
by an 8-propagator graph. In the scenario of wide-angle scattering, these singularities emerge
when the hard subgraph disconnects, while in forward scattering, they occur during the ex-
change of Glauber-mode momenta between upper and lower jets. Unlike known examples of
hidden Landau singularities, 2 ! 2 scattering graphs exhibit cancellation structures of the
form (xaxb � xcxd)(xexf � xgxh), evading detection by other existing algorithms.]Einan

We begin in section ?? by sketching the idea of the Newton polytope approach. In
this approach, each Feynman integral can be represented by a Newton polytope whose lower
faces correspond to endpoint Landau singularities. Then in section 3.1 we examine some
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vR (y0, x1, y2, x3, y4, x5, y6, x7) vR (x0, x1, . . . , x7) order
(1/2, �1, 1/2, �1, 1/2, �1, 0, �1; 1) (�2, �2, �2, �2, �2, �2, �2, �2; 2) �1/2 � 3✏

(0, �1, 1, �1, 1, �1, 0, �1; 1) (�1, �1, �1, �1, �1, �1, �1, �1; 1) �3✏

(1, �1, 1, �1, 0, �1, 0, �1; 1) (�1, �1, �1, �1, �1, �1, �1, �1; 1) �3✏

(�1, �1, �1, �1, �1, �1, �1, �1; 1) (�2, �1, �2, �1, �2, �1, �2, �1; 1) �6✏

(1, �2, 1, �2, 1, �2, 1, �2; 1) (�1, �2, �1, �2, �1, �2, �1, �2; 1) �6✏

(0, �1, 0, 0, 0, 0, 0, 0; 1) (�1, �1, 0, 0, 0, 0, 0, 0; 1) �✏

(0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 2: On-shell expansion with p
2
1 ⇠ �Q

2 and p
2
i = 0 (i = 2, . . . , 4), first split I1. The

region (�1, �1, �1, 0, �1, 0, �1, 0; 1), in the old variables, is absent from I1 but is present in
other splits, e.g. I10. The region (�1, �1, 0, �1, 0, �1, 0, �1; 1), in the old variables, is absent
after the splitting [I don’t know why, presumably the choice of variables we eliminate?]Stephen.

vR (x0, x1, . . . , x7) order
(�1, �1, �1, 0, �1, �1, �1, 0; 1)) �3✏

(�1, �1, 0, �1, �1, �1, 0, �1; 1) �3✏

(�1, 0, �1, �1, �1, 0, �1, �1; 1) �3✏

(0, �1, �1, �1, 0, �1, �1, �1; 1) �3✏

(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 3: Forward-scattering expansion.
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(0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 4: Forward-scattering expansion, fourth split I4. The region
(�1, �1, �1, 0, �1, �1, �1, 0; 1), in the old variables, is present in other splits, e.g. I11.
The region (0, �1, �1, �1, 0, �1, �1, �1; 1), in the old variables, is absent after splitting.
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I ∼

Directly applying MoR in parameter space, no region with correct scaling…

I1 ∼

After resolution, in some polytopes we now directly see the leading region 
observed in the analytic result!

G

p1 p3

p2 p4

Figure 1: The generic picture of two-to-two forward scattering.

G

p1 p3

p2 p4

Figure 2: The generic picture for expanding one-leg in the on-shell expansion, all others
exactly on-shell.

2 Preliminaries

[Based on this idea, computer codes such as Asy2 [1], as part of the program FIESTA [2–6],
ASPIRE [7] and pySecDec [8] have been developed to identify the regions.]Einan

[Yao’s Abstract:
Newton polytopes of Symanzik graph polynomials has been found useful in analysing Feyn-
man integrals. Faces of these polytopes identify Landau singularities, and are used in sector
decomposition and in performing asymptotic expansions by the Method of Regions. However,
some Landau singularities, referred to as the hidden Landau singularities in this study, arise
from cancellations within the Symanzik polynomials and cannot be identified by the faces of
polytopes.

This research delves into 2 ! 2 massless scattering, pinpointing graphs featuring hidden
Landau singularities. Such graphs appear at three or more loops, all of which can be generated
by an 8-propagator graph. In the scenario of wide-angle scattering, these singularities emerge
when the hard subgraph disconnects, while in forward scattering, they occur during the ex-
change of Glauber-mode momenta between upper and lower jets. Unlike known examples of
hidden Landau singularities, 2 ! 2 scattering graphs exhibit cancellation structures of the
form (xaxb � xcxd)(xexf � xgxh), evading detection by other existing algorithms.]Einan

We begin in section ?? by sketching the idea of the Newton polytope approach. In
this approach, each Feynman integral can be represented by a Newton polytope whose lower
faces correspond to endpoint Landau singularities. Then in section 3.1 we examine some

– 2 –
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Minkowski Regime

Several conflicting definitions of the term Minkowski regime for Feynman Integrals 

In the remainder of this talk I will use the following conventions: 

(Pseudo-)Euclidean 

 for  

Minkowski  
Not Euclidean/Pseudo-Euclidean 

We can have  for some values of 

ℱ(α) ≥ 0 α ∈ ℝN
≥0

ℱ(α) < 0 α ∈ ℝN
≥0
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Contour Deformation

5.3. Deformation of the integration contour

after having integrated out the loop momenta, see Ref. [300]. The leading Landau
singularity is again given by the solution to the system of equations assuming an empty
set of vanishing Feynman parameters.
How we deal with these singularities will be described in the following section.

5.3 Deformation of the integration contour

5.3.1 Cauchy theorem

Re(z)

Im(z)

10

Figure 5.2: Schematic picture of the closed contour avoiding poles on the real axis.

Unless the function F is of definite sign for all possible values of invariants and Feyn-
man parameters, the denominator of a multi-loop integral will vanish within the integra-
tion region on a hypersurface given by the solutions of the Landau equations. To avoid
the non-physical poles on the real axis, the Cauchy theorem

∮

c

N∏

j=1

dzjI(z⃗) =
∫ 1

0

N∏

j=1

dxjI(x⃗) +
∫ 0

1

N∏

j=1

dzjI(z⃗) = 0 (5.5)

can be exploited, where Re(z⃗) = x⃗. To be able to use the theorem, the original integrand,
depending only on the real coordinates xj, is analytically continued to the complex plane.
The coordinate transformation reads

∫ 1

0

N
∏

j=1

dxjI(x⃗) =
∫ 1

0

N
∏

j=1

dxj

∣
∣
∣
∣

(
∂zk(x⃗)
∂xl

)∣
∣
∣
∣
I(z⃗(x⃗)) , (5.6)

where the new complex coordinates z⃗ describe a path parametrized by the variables x⃗.
With a given description of the coordinates z⃗, the Cauchy theorem in Eq. (5.5) can be
formulated. It is valid in this form as long as the deformation is in accordance with
the causal iδ prescription of the Feynman propagators, as the region enclosed by the
integration contour then does not contain any singular points, compare Fig. 5.2. It is
important to keep in mind, that no poles should be crossed while changing the integration
path, otherwise Eq. (5.5) is no longer valid.

55

Feynman integral (after integrating -func.): δ

I ∼ ∫
1

0
[dα] αν [𝒰(α)]N−(L+1)D/2

[ℱ(α; s)]N−LD/2

Deform our integration contour to avoid poles on real axis  
Feynman prescription  tells us how to do this 

Expand  around ,    

Choose  with small constants  

Can also generalise  and train the deformation with a Neural Network

ℱ → ℱ − iδ

ℱ(z = α − iτ) α ℱ(z) = ℱ(α) − i∑
j

τj
∂ℱ(α)

∂αj
+ 𝒪(τ2)

τj = λj αj(1 − αj)
∂ℱ(α)

∂αj
λj > 0

λj → λj(α)

Soper 99; Binoth, Guillet, Heinrich, Pilon, Schubert 05; Nagy, Soper 06; Anastasiou, Beerli, Daleo 07, 08; 
Beerli 08; Borowka, Carter, Heinrich 12; Borowka 14;…

Winterhalder, Magerya, Villa, SJ, Kerner, Butter, Heinrich, Plehn 22
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Contour Deformation

Downsides of contour deformation: 

 1. Real valued integrand  complex valued integrand (slower numerics) 

 2. Large and complicated Jacobian from  (can be optimised) 

 3. Increases variance of function (integrand can be both  and ) 

 4. Sensitive to choice of contour 

 5. Sometimes fails analytically and/or numerically 

Summary: it is slow, arbitrary and can fail 

Can we find a way to avoid contour deformation?   Yes 

Always?   I don’t know*

→

x → z

> 0 < 0
Borinsky, Munch, Tellander 23
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NoCD: Avoiding Contour Deformation

Idea: 
1. Construct transformations of the Feynman parameters which map the zeroes of 
the -polynomial to the boundary of integration ℱ

Figure: Thomas Stone
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NoCD: Avoiding Contour Deformation

Idea: 
2. For transformations which make  non-positive extract an overall minus sign 
(using the  prescription to generate the physically correct imaginary part) 

3. Stitch together the resulting integrals 

  

The individual integrals  have manifestly non-negative integrands 

 no contour deformation, trivial analytic continuation, faster to integrate

ℱ
iδ

I =
N+

∑
n+=1

I+
n+

+ (−1 − iδ)−(ν − LD/2)
N−
∑

n−=1
I−
n−

{I+
n+

, I−
n−

}
⟹
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NoCD: Avoiding Contour Deformation

Rules of the Game: 
1. Transformations must not spoil the -func. constraint 

     Cheng-Wu Theorem: 

 

2. Transformations must preserve the sign of  

3. Jacobian  of the transformation must have a definite sign 

We found the following transformations useful: 
1. Rescaling:   with   

2. Blow-up:   

3. Decomposition: 

δ

∀S ⊆ {1,...,N} ∧ S ≠ ∅ : δ 1 −
N

∑
j=1

αj → δ 1 − ∑
j∈S

αj

𝒰 ≥ 0
𝒥

αj → cαj c > 0
αj → αiαj

xj → xi + xj

1 = θ(αa − αb) + θ(αb − αa)
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NoCD: Example 1

Slide: Thomas Stone (Loops & Legs 2024)
Convention:  is now a Feynman parameterx 14/39

Introduction & Motivation Massless Integrals Massive Integrals Outlook

1-Loop O�-Shell Box

p1

p2

p3

p4

x1

x0

x2

x3 U =x0+x1+x2+x3

F =�sx0x2�tx1x3�p2
1x0x1

Let’s consider the regime: s > 0, p2
1 > 0 & t < 0 ) zeroes of

F within the integration volume for {x0, x1, x2, x3} 2 R4
�0

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation Thomas Stone
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NoCD: Example 1

ℱ = − sx0x2 + | t |x1x3 − p2
1 x0x1

ℱ → x1 (x2 (x3 − x0) −
p2

1

s x0x1)

ℱ → − 1
s (x1 (sx0x2 + p2

1 x1 (x0 + x3))) =: − ℱ−
1 ℱ → x1 (−

p2
1

s x0x1 + x2x3)

ℱ →
p2

1

s x0x1x2
3 (x2 − x1)

ℱ →
p2

1

s x0x1x2x2
3 =: ℱ+

1 ℱ → −
p2

1

s x0x1 (x1 + x2) x2
3 =: − ℱ−

2

x0 →
x0x1

s , x3 →
x2x3

| t |

x0 > x3 : x0 → x0 + x3 x3 > x0 : x3 → x3 + x0

x2 →
p2

1 x0x2

s , x1 → x1x3

x2 > x1 : x2 → x2 + x1 x1 > x2 : x1 → x1 + x2
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NoCD: Example 1

Generate  by applying the same transformations to   
Compute the Jacobian determinants of the transformations  

Each new integral is of the form: 

  

with manifestly non-negative integrand 

We have converted the initial integral into sum of 3 integrals: 

  

Verified result numerically against known analytic result

𝒰+
1 , 𝒰−

1 , 𝒰−
2 𝒰

𝒥+
1 , 𝒥−

1 , 𝒥−
2

I±
n±

∼ 𝒥±
n± (𝒰±

n±)
2ε

(ℱ±
n±)

−2−ε

I = I+
1 + (−1 − iδ)−2−ε(I−

1 + I−
2 )
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NoCD: Example 2

Slide: Thomas Stone (Loops & Legs 2024)
18/39

Introduction & Motivation Massless Integrals Massive Integrals Outlook

2-Loop Non-Planar Box

p1

p2
p3

p4

U = x0x1 + x0x2 + x0x3 + x0x4 + x1x2 +
x1x3+x1x5+x2x4+x2x5+x3x4+x3x5+x4x5

F = �sx1x2x5 � tx0x1x3 � ux0x2x4

Momentum conservation implies s + t + u = 0 ) u = �(s + t)
Hence, F can be 0 within {xi} 2 R6

�0 even with s > 0, t > 0
Not possible to define a Euclidean region at all!
Nevertheless, the method works

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation Thomas Stone
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NoCD: Example 2

We considered the cases:  
1.   
2.  
We obtain different resolutions for each case 

Nevertheless, in each case we find we need 6 integrals to cover the space: 

 

Verified result numerically against known analytic result 

Let’s take a look at the time taken to numerically integrate this example…

s > − t
s < − t

I = (I+
1 + I+

2 + I+
3 ) + (−1 − iδ)−2−2ε(I−

1 + I−
2 + I−

3 )

Tausk 99
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NoCD: Example 2

Heinrich, SPJ, 
Kerner, Magerya, 
Olsson, Schlenk 23

Evaluating up-to-and-including finite order with pySecDec
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NoCD: Example 2

Evaluating up-to-and-including finite order with pySecDec
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NoCD: Example 3

Slide: Thomas Stone (Loops & Legs 2024) 23/39

Introduction & Motivation Massless Integrals Massive Integrals Outlook

3-Loop Non-Planar Box

p1 p3

p2 p4

Diagram by Yao Ma

F =� s (x1x4 � x0x5) (x3x6 � x2x7)

� t (x1x2 � x0x3) (x5x6 � x4x7)

[see Stephen Jones’ talk]

+

F !� sx1x3x5x7 (x4 � x0) (x6 � x2)

� tx1x3x5x7 (x2 � x6) (x6 � x4)

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation Thomas Stone
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NoCD: Example 3

For , two of the 6 independent integrals require contour deformation: 

 

Can express each of these in terms of 4 manifestly non-negative integrands 

Putting the pieces together for the full integral: 

  

Verified result numerically against known analytic result

s > − t > 0

ℱ3 = x1x3x5x7 [−sx0x2 + | t |(x0 + x4) (x2 + x4)]
ℱ5 = x1x3x5x7 [sx6 (x0 + x2 + x6) − | t |(x0 + x6) (x2 + x6)]

I =
8

∑
n+=1

I+
n+

+ (−1 − iδ)−2−3ε
4

∑
n−=1

I−
n−

Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21
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NoCD: Example 3

Can now obtain results numerically ( )s12 = 1, s13 = − 1/5

I3 = ϵ−4 [(18.5195704502 − 15.707988011i) ± (5.897 ⋅ 10−5 + 5.897 ⋅ 10−5i)] + . . .

INoCD
3 = ϵ−4 [(18.51948920208488 − 15.70796326794897i) ± (4.032 ⋅ 10−11 + 4.592 ⋅ 10−11i)] + . . .

I5 = ε−4 [(12.7432949988 − 23.561968275i) ± (1.605 ⋅ 10−5 + 1.415 ⋅ 10−5i)] + . . .

INoCD
5 = ε−4 [(12.74326269721394 − 23.5619449018131i) ± (4.125 ⋅ 10−11 + 6.919 ⋅ 10−11i)] + . . .

Full result after a few minutes integration with pySecDec:

Numerics are much, much faster and more stable

I = ϵ−4 [8.34055 − 52.3608i] + 𝒪 (ϵ−3)
INoCD = ϵ−4 [8.340040392028 − 52.3598775598347i] + 𝒪 (ϵ−3)

Ianalytic = ϵ−4 [8.34004039223768 − 52.35987755984493i] + 𝒪 (ϵ−3)
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NoCD: Example 3

Evaluating leading pole with pySecDec



Can this work also for massive integrals? 

  

Now  appears quadratically in  
Transformations harder to find, even for trivial integrals 

Ideas: 
1. Can geometry guide us in the right direction? 

2. Is this just singularity resolution? If so, how can we use existing technology?

ℱ(x; s) = ℱ0(x; s) + 𝒰0(x)
N

∑
j=1

m2
j xj

xj ℱ

49

NoCD: Massive Integrals

Hironaka e.g. desing
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NoCD: Massive Example 1

31/39

Introduction & Motivation Massless Integrals Massive Integrals Outlook

Massive Bubble

p

m1

m2

F = �p2x1x2+(x1 + x2)
�
m2

1x1 + m2
2x2

�

Define �2 := p2�(m1+m2)
2

p2�(m1�m2)
2 2 [0, 1)

Scale out dimension of F via xi !
xi
mi

F ! eF = x2
1 + x2

2 � 21+�2

1��2 x1x2

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation Thomas StoneSlide: Thomas Stone (Loops & Legs 2024)
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NoCD: Massive Example 1

32/39

Introduction & Motivation Massless Integrals Massive Integrals Outlook

Massive Bubble

0 2 4 6 8 10

0

2

4

6

8

10

x1

x
2

Let’s consider the variety of eF
3 regions ) 3 integrals
2 positive regions, 1 negative
region

Massive Bubble
I = I+1 + I+2 + (�1 � i�)�"I�1

Construct transformations
which directly send the variety
to the integration boundary

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation Thomas Stone

x2 =
1 ± β
1 ∓ β

x1

Slide: Thomas Stone (Loops & Legs 2024)
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NoCD: Massive Example 1

Slide: Thomas Stone (Loops & Legs 2024)
34/39

Introduction & Motivation Massless Integrals Massive Integrals Outlook

Massive Bubble

eF+
1 = y2

⇣
y2 +

4�
1��2 y1

⌘

eF�
1 = 4�

1��2 y1y2

eF+
2 =

y1
⇣

4�y2+(1+�)2y1
⌘

1��2

Verified result numerically & analytically X

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation Thomas Stone
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Introduction & Motivation Massless Integrals Massive Integrals Outlook

Outlook

p

m1

m3

m2

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation Thomas Stone
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NoCD: Massive Example 2

Less clear how to proceed in more involved cases

Very happy to try smart ideas you have… or see arguments why this wont work



Pinched Feynman Integrals 
• Studied an integral with a pinched contour independent of kinematics 
• Found a resolution procedure to remove the pinch 
• Can obtain stable numerical results only after removing pinch 

MoR 
• Expect regions can appear due to cancelling monomials either generically or at 

particular kinematic points 

NoCD 
• Presented method for evaluating integrals in the Minkowski regime without 

contour deformation 
• Demonstrated procedure for some 1,2,3-loop massless & 1-loop massive integrals 

Outlook 
• General/automated procedure to resolve pinches and/or zeros of ?ℱ

54

Conclusion

Thank you for listening!



Backup
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On-Shell Expansion

Use MoR on each of the split integrals  and summing only the leading 
region for each split (with  )

I1, …, I24
μ = − 1/2 − 3ϵ

See strong numerical evidence that the split integrals (MoR) reproduce the 
leading behaviour of the full integral in the limit  p2

1 → 0

power 
enhanced ~λ−1/2
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Contour Deformation

𝒰(x) = x1 + x2

ℱ(x, s) = − sx1x2 + (m2
1 x1 + m2

2 x2) (x1 + x2)

= ∫
∞

0
dx1 dx2

𝒰(x)−2+2ϵ

ℱ(x, s)ϵ
δ(1 − x1 − x2)

Re(z1)

Im
(z

1)

|ℱ |

Re(z1)

Im
(z

1)

Im(ℱ)
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Sector Decomposition in a Nutshell

Calculation of Multi-Loop Integrals with SecDec-3.0 Johannes Schlenk

is performed in sector j. The vectors ei denote the orthonormal basis of RN−1, the set Sj contains
the facets incident to the vertex j. In cases where the set Sj contains more than N− 1 elements,
an additional triangulation of the sector is needed. In SECDEC the triangulation algorithm imple-
mented in NORMALIZ is used for this purpose.

Compared to the other strategies implemented in SECDEC, strategy G2 is the fastest method
and it usually produces the smallest number of sectors.

As an example we decompose the two-loop vacuum integral with one massive and two mass-
less propagators using strategy G2. After employing the Cheng-Wu theorem to integrate out the
massive Feynman parameter x3, the Feynman integral becomes

I =

m

=−Γ(−1+2ε)
(

m2
)1−2ε

∫ ∞

0

dx1dx2
(

x11x
0
2+ x11x12+ x01x12

)2−ε . (3.4)

The exponent vectors

v1 =

(

1
0

)

,v2 =

(

1
1

)

,v3 =

(

0
1

)

(3.5)

can be read off from the polynomial in the denominator of Eq. (3.4) and the associated Newton
polytope Δ is shown in Fig. 1.

1

2

1

0
1
v1

v2v3

n3
n1

n2

Figure 1: Newton polytope Δ associated to the two loop vacuum integral of Eq. (3.4)

The facet normal vectors

n1 =

(

−1
0

)

n2 =

(

0
−1

)

n3 =

(

1
1

)

a1 = 1 a2 = 1 a3 = −1
(3.6)

together with Eq. (3.2) specify the facet representation of the polytope Δ. The sets Sj associated to
the three extremal vertices v1 to v3 are S1 = {3,1}, S2 = {1,2} and S3 = {2,3}. In this case no
additional triangulation is necessary since the size of the sets already equals N−1. The change of
variables defined in Eq. (3.3) can then be written as

x1 = y−11 y3,
x2 = y−12 y3

(3.7)

4
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𝒩(I ) =
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x2 = y−12 y3

(3.7)
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r r

r
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is performed in sector j. The vectors ei denote the orthonormal basis of RN−1, the set Sj contains
the facets incident to the vertex j. In cases where the set Sj contains more than N− 1 elements,
an additional triangulation of the sector is needed. In SECDEC the triangulation algorithm imple-
mented in NORMALIZ is used for this purpose.

Compared to the other strategies implemented in SECDEC, strategy G2 is the fastest method
and it usually produces the smallest number of sectors.

As an example we decompose the two-loop vacuum integral with one massive and two mass-
less propagators using strategy G2. After employing the Cheng-Wu theorem to integrate out the
massive Feynman parameter x3, the Feynman integral becomes

I =

m

=−Γ(−1+2ε)
(

m2
)1−2ε

∫ ∞

0

dx1dx2
(

x11x
0
2+ x11x12+ x01x12

)2−ε . (3.4)

The exponent vectors

v1 =

(

1
0

)

,v2 =

(

1
1

)

,v3 =

(

0
1

)

(3.5)

can be read off from the polynomial in the denominator of Eq. (3.4) and the associated Newton
polytope Δ is shown in Fig. 1.

1

2

1

0
1
v1

v2v3

n3
n1

n2

Figure 1: Newton polytope Δ associated to the two loop vacuum integral of Eq. (3.4)

The facet normal vectors

n1 =

(

−1
0

)

n2 =

(

0
−1

)

n3 =

(

1
1

)

a1 = 1 a2 = 1 a3 = −1
(3.6)

together with Eq. (3.2) specify the facet representation of the polytope Δ. The sets Sj associated to
the three extremal vertices v1 to v3 are S1 = {3,1}, S2 = {1,2} and S3 = {2,3}. In this case no
additional triangulation is necessary since the size of the sets already equals N−1. The change of
variables defined in Eq. (3.3) can then be written as

x1 = y−11 y3,
x2 = y−12 y3

(3.7)

4

r r r

=
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For each vertex make the local change of variables  

e.g.  :  ,   : ,   : r1 x1 = y−1
1 y1

3 , x2 = y0
1 y1

3 r2 x1 = y−1
1 y0

2 , x2 = y0
1 y−1

2 r3 x1 = y0
2 y1

3 , x2 = y−1
2 y1

3
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leading to the decomposed form of the vacuum integral

I =−Γ(−1+2ε)
(

m2
)1−2ε

∫ 1

0
dy1dy2dy3

y−ε1 y−ε2 y−1+ε3

(y1+ y2+ y3)2−ε
[δ (1− y2)+δ (1− y3)+δ (1− y1)] ,

(3.8)
where the δ -distributions correspond to the sets S1 to S3.

3.2 Complex Masses

In certain applications, especially in the electroweak context, the width of unstable particles
can be important. A consistent treatment is provided by the complex-mass scheme [24, 25], where
the width Γ is included as a negative imaginary part of the mass via the replacement

m2 → m2c ≡ m2
(

1− i
Γ
m

)

. (3.9)

The graph polynomial F then has the form

F = F0+U∑
j
x j
(

m2j − im jΓ j
)

, (3.10)

i.e. the widths induce a negative imaginary part:

ImF =−U∑
j
x jm jΓ j (3.11)

In general, for zero widths, F will exhibit kinematic-dependent zeros even after sector de-
composition, which can be avoided by a suitable deformation of the integration contour [26–28].
Similarly, a non-zero width can help to avoid these singular regions as well, but one cannot expect
this to lead to a stable numerical integration in all cases. Thus it makes sense to try to combine the
two in a consistent way, which should be possible since both the contour deformation and the com-
plex masses are required to produce only negative imaginary parts in order to fulfill the Feynman
+iδ prescription. For SECDEC-3.0 we have chosen

z⃗(⃗x) = x⃗− i⃗τ (⃗x), (3.12a)

τk = λxk(1− xk)
∂ReF
∂xk

, (3.12b)

i.e. to set the widths to zero in the definition of the deformation. For small deformations we then
have

F (⃗z(⃗x)) = ReF (⃗x)+ i ImF (⃗x)− iλ∑
k
xk(1− xk)

[

(

∂ReF
∂xk

)2
+ i

∂ ReF
∂xk

∂ ImF

∂xk

]

−
λ 2

2 ∑k,l
xk(1− xk)xl(1− xl)

∂ReF
∂xk

∂ReF
∂xl

[

∂ 2 ReF
∂xk∂xl

+ i
∂ 2 ImF
∂xk∂xl

]

+O(λ 3). (3.13)

Up to order λ , the imaginary parts induced by the widths and the contour deformation are both
negative as they should. The term involving ∂ ImF

∂xk does no harm because it is purely real. At order
λ 2, however, ImF leads to an imaginary part of indefinite sign, which would otherwise have been

5
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Additional Regulators (II)

1

2

f1

f2

f3

f4 f5,1

1

2

f1

f2

f3

f4 f5,2

SD1(�) SD2(�)

1

2

f1

f2

f3

f4 f5,1

1

2

f1

f2

f3

f4 f5,2

SD1(�) SD2(�)

need 
analytic 

regulator
ok!

pySecDec can find the constraints on the analytic regulators for you 

extra_regulator_constraints(): 
        

suggested_extra_regulator_exponent(): 
       

v2 − v4 ≠ 0, v1 − v3 ≠ 0

{δν1, δν2, δν3, δν4} = {0,0,η, − η}

Toy Example:

ࢅࡹ

�ʌ˦ȭɱʚɄʚǶƉ ƨ˥ɱŗȳʌǶɄȳ ŗȳƕ ƨ˥ʚɼŗ ɼƨǖʯțŗʚɄɼʌ
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� ˱ �ୗ୘୙୚ݩ
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Small  expansionm

P1(x, λ) = 1 + λx1 + x1x2 + λx2 P2(x, λ) = λ + x1 + λx1x2 + x2
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Applying Expansion by Regions

s m

For large ratio of scales ( ) the EBR result is faster & easier to integratem2/s

(at large ) 
~1 day

m2/s

Ratio of the finite  piece of numerical result  to the analytic result 𝒪(ϵ0) Rn Ra

~2 min



Lee-Pomeransky and MoR
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Building Bridges: LP  Propagator Scaling↔
Region vectors in momentum space and Lee-Pomeransky space are related, we 
can see this using Schwinger parameters  

  , with  

  

Example: 1-loop form factor 

 

Can connect the regions in mom. space with those we determine geometrically 

Next step: automatically find (Sudakov decomposed) loop momentum scalings 
compatible with region vectors

x̃e

1
Dνe

n
=

1
Γ(νe) ∫

∞

0

dx̃e

x̃e
x̃νe

e e−x̃eDe xe ∝ x̃e

(D−1
1 , …, D−1

N ) ∼ (x̃1, …, x̃N) ∼ (x1, …, xN)

Hard : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ0, λ0, λ0), (x1, x2, x3) ∼ (λ0, λ0, λ0)

Collinear to p1 : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ−1, λ0, λ−1), (x1, x2, x3) ∼ (λ−1, λ0, λ−1)

Collinear to p2 : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ0, λ−1, λ−1), (x1, x2, x3) ∼ (λ0, λ−1, λ−1)

Soft : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ−1, λ−1, λ−2), (x1, x2, x3) ∼ (λ−1, λ−1, λ−2)

WIP w/ Yannick Ulrich
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Building Bridges: Landau  Regions↔

The Landau equations give the necessary conditions for an integral to diverge 

 

Solutions are pinched surfaces of the integral where IR divergences may arise 

Idea is to explore the neighbourhood of a pinched surface, defined by 

 

with the goal of further understanding the connection between 

Solutions of the Landau equations  Regions

1) αel2
e (k, p, q) = 0 ∀e ∈ G

2)
∂

∂kμ
a

𝒟(k, p, q; α) =
∂

∂kμ
a ∑

e∈G

αe (−l2
e (k, p, q) − iε) = 0 ∀a ∈ {1,…, L}

1) αel2
e (k, p, q) ∼ λp ∀e ∈ G, with p ∈ {1,2}

2)
∂

∂kμ
a

𝒟(k, p, q; α) ≲ λ1/2 ∀a ∈ {1,…, L}

↔

Gardi, Herzog, Ma, Schlenk 22



Method of Regions (Details/Examples)
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Geometric Method

In Feynman parameter space, there is a geometric method for finding regions 

Each region will be defined by a region vector , in each region we 
will perform a change of variables  and series expand about  

Let us start by considering some polynomial 

  

 - non-negative coefficients 
 - integration variables 
 - small parameter 

 - exponent vectors

v = (v1, …, vN; 1)
xi → λvixi λ = 0

P(x, λ) =
m

∑
i=1

ci xri,1
1 ⋯ xri,N

N λri,N+1

ci
xi
λ
ri = (ri,1, …, ri,N+1) ∈ ℕN+1

Pak, Smirnov 10



Ignoring, for now, the coefficients  we can introduce a simple but useful picture for 
such polynomials: 
• For each variable  or  draw an orthogonal axis 
• For each monomial, draw a dot at position  

Example:   has exponent vectors 
 

ci

xi λ
ri

P(x, λ) = λ + x + x2

r1 = (0,1), r2 = (1,0), r3 = (2,0)
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Geometric Method

(0, 1)

(1, 0) (2, 0)

pt

px
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We may define a Newton polytope of the polynomial, this is the convex hull of the 
exponent vectors: 

 

Example:   has exponent vectors 
  

Δ = convHull(r1, r2, …) = ∑
j

αjrj |αj ≥ 0 ∧ ∑
j

αj = 1

P(x, λ) = λ + x + x2

r1 = (0,1), r2 = (1,0), r3 = (2,0)
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(0, 1)

(1, 0) (2, 0)

pt

px
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Alternatively, this polytope can also be described as the intersection of half spaces: 

  

 - set of polytope facets,  

  - inward-pointing normal vectors for each facet (co-dimension 1 face) 

Several public tools exist for computing Newton polytopes/convex hulls and their 
representation in terms of facets exist, e.g. Normaliz and Qhull

Δ = ⋂
f∈F

{m ∈ ℝN+1 ∣ ⟨m, vf⟩ + af ≥ 0}
F af ∈ ℤ

vf
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(0, 1)

(1, 0) (2, 0)

pt

px

v2

v1

v3
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Next, let us define a vector  such that  with  for each point  in the 
integration domain, we can write: 

 

Since , the largest term in the polynomial has the smallest  
Note that we can have several points with the same projection on , i.e. we can 
have several largest terms 

Example:  with  gives 

u xi = λui uN+1 = 1 x

P(u, λ) =
m

∑
i=1

ci λ⟨ri,u⟩

λ ≪ 1 ⟨ri, u⟩
u

P(x, λ) = λ + x + x2 u = (3,1) P(u, λ) = λ + λ3 + λ6
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(0, 1)

(1, 0) (2, 0)

pt

px

u = (3, 1)

<latexit sha1_base64="weqJ3kTEmyqN709igjbkEUqVl00=">AAACNHicbVDLTsJAFJ3iC+sLNK7cNBISF4S0hqhLohuXmMjDQENup1OYMH1kZoqQhq9wq7/hv5i4M279BofShYAnmeTk3Mece5yIUSFN80PLbWxube/kd/W9/YPDo0LxuCXCmGPSxCELeccBQRgNSFNSyUgn4gR8h5G2M7qb19tjwgUNg0c5jYjtwyCgHsUglfQU9XtMNbvQL5TMqpnCWCdWRkooQ6Nf1E57bohjnwQSMxCia5mRtBPgkmJGZnq5FwsSAR7BgHQVDcAnwk5SyzOjrBTX8EKuXiCNVNX/TCTgCzH1HdXpgxyK1dpc/K/WjaV3Yyc0iGJJArz4yIuZIUNjfr/hUk6wZFNFAHOqzBp4CBywVCktbXLHNBKp64oElWdlgl0Oz3YyWdywZEmoCIbEnekqSGs1tnXSuqxaV9XaQ61Uv80izaMzdI4ukIWuUR3dowZqIox89IJe0Zv2rn1qX9r3ojWnZTMnaAnazy+VWqtr</latexit>p�



Next, let us define a vector  such that  with  for each point  in the 
integration domain, we can write: 

 

Since , the largest term in the polynomial has the smallest  
Note that we can have several points with the same projection on , i.e. we can 
have several largest terms 

Example:  with  gives 

u xi = λui uN+1 = 1 x

P(u, λ) =
m

∑
i=1

ci λ⟨ri,u⟩

λ ≪ 1 ⟨ri, u⟩
u

P(x, λ) = λ + x + x2 u = (1,1) P(u, λ) = λ + λ + λ2
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(0, 1)

(1, 0) (2, 0)
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u = (1, 1)
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Rewrite our polynomial as:   
With  defined such that it contains all of the lowest order terms in  

The binomial expansion of 

 converges for  if  

Some observations: 
• An expansion with region vector  converges at a point  if the terms with 

minimum are contained in the terms with minimum  
• For any  the vertices with the smallest must be part of some facet  
• Since , the lowest order terms for any  must lie on a facet whose 

inwards pointing normal vector has a positive -th component, let us call 
the set of such facets  or lower facets 

Claim: regions are defined by vectors normal to the facets in , the integrand 
in each region consists of the monomials lying on the facet

P(x) = Q(x) + R(x)
Q(x) λ

P(x)m = Q(x)m(1 +
R(x)
Q(x) )

m

x = λu R(x)/Q(x) < 1

v u
< ri, u > < ri, v >

u < ri, u > F
uN+1 > 0 u

(N + 1)
F+

F+
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Expanding Regions



Momentum space 
In dimensional regularisation, scaleless integrals are 0 

  

Where  and  is some scaling dimension 

Feynman parameter space 
 

Geometrical view 
For  built from  

I({ki}a, {cki}b) = cq I({ki}) ⟹ I({ki}) = 0, {ki} = {ki}a ∪ {ki}b

c ≠ 1 q ≠ 0

(𝒰ℱ)(cux) = cq(𝒰ℱ)(x), u ≠ n1, n ∈ ℝ

Δ 𝒰 + ℱ

dim(Δ) = dim(x) ⟺ I scaleful
dim(Δ) < dim(x) ⟺ I scaleless

74

Scaleless Integrals

Important consequences: 
Faces of co-dimension > 1 are scaleless 

``Region’’ vectors not normal to a facet 
give scaleless integrals 

Overlap contributions i.e. rescaling by 
two region vectors, are scaleless

Scaleless integrals seem to play quite an interesting role
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Triangle Example

Consider the on-shell limit  for p2
1 ∼ p2

2 ∼ λq2
1 λ → 0

p1 p2

q1

I = iπD/2 μ4−D ∫ dDk
1

(k + p1)2(k + p2)2(k2)

k

k + p1 k + p2 p1 = (p+
1 , p−

1 , p⊥
1 ) ∼ Q(λ,1,λ 1

2)

p2 ∼ Q(1,λ, λ
1
2)

1) Split integrand up into regions

Hard : kμ
H ∼ (1,1,1) Q

Collinear to p1 : kμ
J1

∼ (λ,1,λ 1
2) Q

Collinear to p2 : kμ
J2

∼ (1,λ, λ
1
2) Q

Soft : kμ
S ∼ (λ, λ, λ) Q

IH = iπd/2 μ4−D ∫ dDk
1

(k2 + 2k+ ⋅ p−
1 )(k2 + 2k− ⋅ p+

2 )(k2)

IC1
= iπd/2 μ4−D ∫ dDk

1
(k + p1)2(2k− ⋅ p+

2 )(k2)

IC2
= iπd/2 μ4−D ∫ dDk

1
(2k− ⋅ p+

1 )(k + p2)2(k2)

IS = iπd/2 μ4−D ∫ dDk
1

(2k+ ⋅ p−
1 + p2

1)(2k− ⋅ p+
2 + p2

2)(k2)

2) Series expand each region in λ

Analysis follows:  
Becher, Broggio, Ferroglia 14
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Triangle Example

3-5) Integrate each expansion over the whole integration domain, discard scaleless, sum

IH =
Γ(1 + ϵ)

Q2 ( 1
ϵ2

+
1
ϵ

ln
μ2

Q2
+

1
2

ln2 μ2

Q2
−

π2

6
+ 𝒪(λ))

IC1
=

Γ(1 + ϵ)
Q2 (−

1
ϵ2

−
1
ϵ

ln
μ2

P2
1

−
1
2

ln2 μ2

P2
1

+
π2

6
+ 𝒪(λ))

IC2
=

Γ(1 + ϵ)
Q2 (−

1
ϵ2

−
1
ϵ

ln
μ2

P2
2

−
1
2

ln2 μ2

P2
2

+
π2

6
+ 𝒪(λ))

IS =
Γ(1 + ϵ)

Q2 ( 1
ϵ2

+
1
ϵ

ln
μ2 Q2

P2
2 P2

1
+

1
2

ln2 μ2 Q2

P2
2 P2

1
+

π2

6
+ 𝒪(λ))

I = IH + IC1
+ IC2

+ IS =
1

Q2 (ln
Q2

P2
2

ln
Q2

P2
1

+
π2

3
+ 𝒪(λ))

This reproduces the expected result, but why does this work (and does it always)? 

1) How did we find all the regions? 

2) Did we not double-count when integrating over the whole domain ?



Example: 1-loop massive box expanded for small  

 

Can keep  symbolic or  and take 

m2
t ≪ s, | t |

G4 = μ2ϵ ∫
∞

−∞

dDk
iπD/2

1
[k2 − m2

t ]δ1[(k + p1)2 − m2
t ]δ2[(k + p1 + p2)2 − m2

t ]δ3[(k − p4)2 − m2
t ]δ4

δ1, …, δ4 δ1 = 1 + n1/2, δ2 = 1 + n1/3,… n1 → 0+

77

pySecDec: EBR Box Example

mt

mH

mH

Requires the use of analytic regulators  

Can regulate spurious singularities by adjusting 
propagators powers

Output region vectors: 
v1 = (0,0,0,0,1)
v2 = (−1, − 1,0,0,1)
v3 = (0,0, − 1, − 1,1)
v4 = (−1,0,0, − 1,1)
v5 = (0, − 1, − 1,0,1)

Result: 4.0, -2.82843, ) s = t = m2
t = 0.1, m2

h = 0
I = −1.30718 ± 2.7 ⋅ 10−6 + (1.85618 ± 3.0 ⋅ 10−6) i

+𝒪 (ϵ, n1,
m2

t

s
,

m2
t

t )
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Transform the expression for the full integral:

p
m m

k k

k + p

F =

∫

k∈Dh

Dk I +

∫

k∈Ds

Dk I =
∑

i

∫

k∈Dh

Dk T (h)
i I +

∑

j

∫

k∈Ds

Dk T (s)
j I

=
∑

i

( ∫

k∈Rd

Dk T (h)
i I −

∑

j

∫

k∈Ds

Dk T (s)
j T (h)

i I

)

+
∑

j

( ∫

k∈Rd

Dk T (s)
j I −

∑

i

∫

k∈Dh

Dk T (h)
i T (s)

j I

)

The expansions commute: T
(h)
i T

(s)
j I = T

(s)
j T

(h)
i I ≡ T

(h,s)
i,j I

⇒ Identity: F =
∑

i

∫

Dk T (h)
i I

︸ ︷︷ ︸

F
(h)

+
∑

j

∫

Dk T (s)
j I

︸ ︷︷ ︸

F
(s)

−
∑

i,j

∫

Dk T (h,s)
i,j I

︸ ︷︷ ︸

F
(h,s)

All terms are integrated over the whole integration domain Rd as prescribed for the

expansion by regions ⇒ location of boundary Λ between Dh, Ds is irrelevant.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012
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Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012
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The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

• a (multiple) integral F =
∫

Dk I over the domain D (e.g. D = Rd),

• a set of N regions R = {x1, . . . , xN},

• for each region x ∈ R an expansion T (x) =
∑

j T
(x)
j

which converges absolutely in the domain Dx ⊂ D.

Conditions

•
⋃

x∈R Dx = D [Dx ∩Dx′ = ∅ ∀x ≠ x′] .

• Some of the expansions commute with each other.

Let Rc = {x1, . . . , xNc} and Rnc = {xNc+1, . . . , xN} with 1 ≤ Nc ≤ N .

Then: T (x)T (x′) = T (x′)T (x) ≡ T (x,x′) ∀x ∈ Rc , x
′ ∈ R .

• Every pair of non-commuting expansions is invariant under some expansion from Rc:

∀x′1, x
′
2 ∈ Rnc, x

′
1 ≠ x′2, ∃x ∈ Rc : T (x)T (x′

2)T (x′

1) = T (x′

2)T (x′

1) .

• ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.
↪→ All expanded integrals and series expansions in the formalism are well-defined.
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The general formalism (2)
Under these conditions, the following identity holds:

[

F (x,...) ≡
∑

j,...

∫

Dk T
(x,...)
j,... I

]

F =
∑

x ∈ R

F (x) −
⟨Rc + 1⟩
∑

{x′
1, x

′
2} ⊂ R

F (x′
1,x

′
2) + . . .− (−1)n

⟨Rc + 1⟩
∑

{x′
1, . . . , x

′
n} ⊂ R

F (x′
1,...,x

′
n) + . . .+ (−1)Nc

∑

x′ ∈ Rnc

F (x′,x1,...,xNc )

where the sums run over subsets {x′1, . . .} containing at most one region from Rnc.

Comments

• This identity is exact when the expansions are summed to all orders. !

Leading-order approximation for F " dropping higher-order terms.

• It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal

masses/off-shellness, . . .) as long as all individual terms are well-defined.

• Usually regions & regularization are chosen such that multiple expansions

F (x′

1,...,x
′

n) (n ≥ 2) are scaleless and vanish.

[! if each F
(x)
0 is a homogeneous function of the expansion parameter with unique scaling.]

• If ∃ F (x′

1,x
′

2,...) ≠ 0 " relevant overlap contributions (→ “zero-bin subtractions”).

They appear e.g. when avoiding analytic regularization in SCET. e.g. Manohar, Stewart ’06;
Chiu, Fuhrer, Hoang, Kelley, Manohar ’09; . . .


