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The method of regions (MoR)

« Statement: entire space = R{URs U .- U R,

The original integral, I , can be restored by summing over
contributions from the regions.



The method of regions (MoR)

« Statement: entire space = R{URs U .- U R,

The original integral, I , can be restored by summing over
contributions from the regions.

* Proposed by Beneke and Smirnov in 1997, no proof yet.

* The regions are chosen using heuristic methods based on
examples and experience.

* The integration measure is the entire space for each term.



The method of regions (MoR)

Example: one-loop Sudakov form factor

(Becher, Broggio, Ferroglia 2014)

The on-shell limit kinematics

o 1/2 B 1/2 TQ
Pr~@ (LA AT, pp~ QA LA

pi/Q° ~pa/Q° ~ X =0



The method of regions (MoR)

Example: one-loop Sudakov form factor

(Becher, Broggio, Ferroglia 2014)

The on-shell limit kinematics

o 1/2 B 1/2 TQ
Pr~@ (LA AT, pp~ QA LA

pi/Q° ~pa/Q° ~ X =0

The Feynman integral

) 1
I:C'/d 5 10) (o1 + 2+ 70) (2 + B2 7 10)

can be evaluated directly, or, we can apply the method of regions.




The method of regions (MoR)

Step 1: identify 4 regions in total:

Hard region: k¥ ~ Q(1,1,1)
Collinear-1 region: k" ~ Q(
Collinear-2 region: k" ~ Q(A,

Soft region: k¥ ~ Q(A, A, \)

P1

A, AY )P1+A p2+ k
1, AY/?)



The method of regions (MoR)

Step 1: identify 4 regions in total: k
P1

Hard region: k¥ ~ Q(1,1,1)
Collinear-1 region: k¥ ~ Q(1, A, )\lﬁ) P+ k po+ k
Collinear-2 region: k* ~ Q(X, 1, AY?)
Soft region: k" ~ Q(A, A, A)

Q
Step 2: perform expansion around each region:
D 1
tn = /d MR 1 i0) (B2 1 2py -k +40) (K2 + 2ps -k +40) T

1
Tc, =C - /de
¢ (k2 + i0) ((p1 + k)2 +40) (2pa - k +i0)
1

C-/df’k —— . —
. (k2 4+ 10) (2p1 - k + 20) ((p2 + k)2 + 20)

1
T =C-[de . . — +
° ~ (k2 4 ¢0) (2p1 - k + p3 + 10) (2p2 - k + p3 + ¢0)

e, =

+ ...




The method of regions (MoR)

Step 1. ...

Step 2: ....

Step 3: sum over their contributions, and the original integral is
reproduced:

1
1 =TIg+Zc,+Lc,+Ls = QQ (111 (

This equality holds to all orders of A!

QQ " QQ TTQ )
-pi)  (=p3) 3

More examples are presented in Smirnov’s book “Applied Asymptotic

Expansions in Momenta and Masses”. 2



Parameter representation

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

N ['(D/2) Ve ~D/2
7(G) = T((L+1)D/2 — 1) Hee(;r( / (H dxex, l) x,s)) )

ecG

Plx,s) =U(x) + F(x, s),

:ZH;;;& F(x ZQTQHT€+M Zm Te .

T e¢T! edT?
spanning trees spanning 2-trees



Parameter representation

P

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

B ['(D/2) o e —D/2
O = S+ 0D2 = ) e T ) /n (H e l) el

ec(

Plx,s)=U(x) + F(x, s),

U(x) = Z H Te, Flx,8) = — ZSTQ H ze +U(x) Zmﬁire :

T! e¢T! T2 e T2 e
spanning trees spanning 2-trees

nooY = r]+ a9 + 13, F = {—p%).’fl.’f:; + {—p%).:rg.:r;:; + {—q%).:rl.:r.g

. %
o r1—1 wvo—1 1g9—1
I—C/ dridxydrsry 5" x4
- 0

5] X2

2 2 2 Dy2
'($1 T X2+ T3 — PIT1X3 — PrXaly — q1$1$2)

P2 5



Parameter representation

oy P

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

B ['(D/2) o e —D/2
O = S+ 0D2 = ) e T ) /n (H e l) el

ec(

Plx,s)=U(x) + F(x, s),

U(x) = Z H Te, Flx,s) =— ZSTQ H Te +U(x) Zmﬁire .

T! e¢T! T2 e T2 e
spanning trees spanning 2-trees

Each region - a certain scaling of the x

Hard region : @1, a2, z3 ~ A\’
Collinear region to py : @1, 23 ~ A1, x5 ~ A"
Collinear region to ps : 1 ~ )\D, To, Ly ~ A1
Soft region : &1, xo ~ A7l g~ A2




Parameter representation

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

N I'(D/2) ~D/2
O = S+ 0D2 = ) e T ) / (Hd% ) (@)

ecG

Plx,s) =U(x) + F(x, s),

:ZH;;;& F(x ZQTQHT€+M Zm Te .

T e¢T! edT?
spanning trees spanning 2-trees

Advantage: provides a systematic way of identifying the regions.
(Pak & Smirnov 2010; Jantzen, Smirnov, Smirnov, 2012.)

- See Stephen’s talk for more details



Identifvying regions from Newton polytopes

* Given the Lee-Pomeransky polynomial,
Plx:s) =U(x) + F(x: s),
take the exponents of each term:

R v : : . a2
b;{:l IQ . e J’,‘_”.” — (-1,_11?-1}2? L :‘.U?_il_? a_) lf 5 ~ /\\ Q



Identifvying regions from Newton polytopes

* Given the Lee-Pomeransky polynomial,
Plx:s) =U(x) + F(x: s),
take the exponents of each term:

Sii‘ﬂ';rlw;g . e LU:;.” — (UI;UQ; . ;UT?.; {1) lf S ~ /\\L’LQQ

a1

73(:13, 3) =T+ T2+ T3 — PIT1T3 — PyT2T3 — q1T1T2

(1,0,0;0) | (0,0,1;0) (1,0,1:1) (1,1,0:0)

N _ ~, (0,1,0;0) 0.1.1:1)



Identifvying regions from Newton polytopes

* Given the Lee-Pomeransky polynomial,
Plx:s) =U(x) + F(x: s),
take the exponents of each term:

Sii‘ﬂ';rlw;g . e LU:;.” — (UI;UQ; . ;UT?.; {1) lf S ~ /\\L’LQQ

a1

73(:13, 3) =T+ T2+ T3 — PIT1T3 — PyT2T3 — q1T1T2

(1,0,0;0) | (0,0,1;0) (1,0,1:1) (1,1,0:0)

N _ ~, (0,1,0;0) 0.1.1:1)

Construct a Newton polytope = the convex hull of all these points.

Regions = the lower facets of this Newton polytope.



Identifvying regions from Newton polytopes

Regions = the lower facets of this Newton polytope

Given a graph with N propagators, the Newton polytope A is N+1
dimensional.

Facets: the N-dimensional boundaries of A.

Lower facets: those facets whose inward-pointing normal vectors v
satisfy Un+1>0.

P
P

. n
0.0 12 € F*

3 n; SEF-‘-

1 ny

3 Pr

(1?{1) 2 {2?0]
(from Stephen’s slides)

The vector v is usually referred to as the region vector, and its
entries show the scaling of x.



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — p%;’l’flﬂf‘g — ])%:IJQ;’I;‘;g — (}%;’1’31.’1’.‘2
(1,0,0;0) | (0,0,1:0) (1,0,1;1) (1,1,0:0)

0:1.0:0) (0.1,1;1)
These points are in the hard facet, with va=(0,0,0;1).

In comparison,

Hard region : x1,x2,x3 ~ A’



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — P1X1X3 — Polo2Xy — (1 X1X2

(1,0,0;0) (0,0,1;0) (1,0,1;1) (1,1,0;0)

These points are in the collinear-1 facet, with ver = (-1,0,-1;1).

Collinear region to p; : 1, @3 ~ AL, oy ~ X0



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — p%;’lﬁlﬂf‘g — pg:ﬁg;’lﬁg — (}%;’1’31.’1’.‘2
(©.0.1:9) (1,1,0;0)

(0,1,0;0) (0,1,1;1)

These points are in the collinear-2 facet, with ve2 = (0,-1,-1;1).

Collinear region to ps : 1 ~ X, x9, 25 ~ A71



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — p%;’lﬁlf}f‘g — pgﬂig;’l}g — (}%;’1’31.’1’.‘2

(0,1,1;1)
These points are on the soft facet, with vs = (-1,-1,-2;1).

Soft region: xy, Ty ~ AL, x5 ~ A2



Regions in different representations

* Momentum space:
Hard region: k" ~ Q(1,1,1)
Collinear-1 region: k¥ ~ Q(1, A, )klﬁ)
Collinear-2 region: k* ~ Q(X, 1, A/?)
Soft region: k" ~ Q(A, A, A)

* Parameter space:

Hard region : z1,x3, 3 ~ A\’
Collinear region to py : ©1, @3 ~ AL, @y ~ X’
Collinear region to ps : 1 ~ }\D, To, Ty ~ A1
Soft region : 1, xs ~ AL oz~ AT

* Relation between the scalings:
—1
e ~ (D)



Identifvying regions from Newton polytopes

* There have been computer codes based on this approach:
Asy2, ASPIRE, pySecDecg, ...

Usky

* Timely results may not be available if the graph is not too simple.
Note that dim(polytope) = #(propagators)+1.
* Also, how to interpret the output in momentum space?



Identifvying regions from Newton polytopes

* There have been computer codes based on this approach:
Asy2, ASPIRE, pySecDecg, ...

* Question: For any expansion of interest, can we establish a
general rule, which governs all the regions and specifies
all the relevant modes?



Identifying regions from Newton polytopes

 Based on
- E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197,
2> YM, arXiv:2312.14012,

- E.Gardi, F.Herzog, S.Jones, YM, to appear.

T'his talk will try to answer the question.

10



The “on-shell expansion”

* We start with the following asymptotic expansion:

Pm /}7 Imn+1
_‘_/

massless
P1 PK
q1 qL
2 2 : - :
PP~ AQ (i=1....,K), ¢@¢~Q* (j=1,....L), pi piy~Q (i1 +#i2).
small virtuality large virtuality wide-angle scattering

11



The “on-shell expansion”

* We start with the following asymptotic expansion:

Pm //pm-—l-l
massless
.
p1 Pk
2 2 2 2 (. 2 -
PP~ (i=1,....K), @~Q* (j=1,...,L), pi, pi,~@Q (i1 #i2).
small virtuality large virtuality wide-angle scattering

* Result: the possibly relevant modes are

ki~ Q(1,1,1), k. ~ Q(L,AAY?), K~ QA A N).

11



Regions in the on-shell expansion

* More precisely, the general structure of each region looks like

. kg ~ Q(1,1,1),
H-T-_/‘l\jm kgz ™~ Q(I’ Af’ Al/z)?

k' ~ Q(A, A A).

with additional requirements on the subgraphs H, J, and S.
This conclusion was proposed in [Gardi, Herzog, Jones, YM, Schlenk, 2022],

and later proved in [Ym, arXiv:2312.14012].
12



Idea of the proof

For the Symanzik polynomials,

=ZH$€’ F(x ZETJ HmEJrL{ Zm Te .

T! egT! eg¢T?

* The terms are described by spanning (2-)trees of G.

* Furthermore, the terms are described by weighted spanning (2-)
trees of (3 for a given scaling of the parameters.

* The leading terms are described by the minimum spanning (2-)trees

of G.
Graph theory

 Meanwhile, regions <> lower facets of the Newton polytope.

Convex geometry.

13



The proof

* Long and technical.

Basic properties

of U'R) and f(p",‘").

< Define canonical terms.

Define H, J, and S.
wy = -1

12 lemumas, ~50 pages...

Define Sy, Sy, and Syy.

Basic properties

of F(@*.R),

It works exclusively for the on-shell expansion, but can be slightly
modified to apply to some other expansions.

14



Regions vs singularities

i)
Q
=)
AN

PAC JP ¢
/"

Edges expanding at o f C C 6
different relative rates | — -
PN, 0 — 00 7 £ CoE

G,0,§ — 00

(Arkani-Hamed, Hillman, Mizera, 2022)

17



Regions vs singularities

£ /
pAo ¢
/"
Edges expanding at o E C Cri é-
different relative rates : > YN
Py A\, 0 — 00 V4 6 s ¢

G,0,§ = 0

l (Arkani-Hamed, Hillman, Mizera, 2022)

A pinch singularity residing in the double-collinear region.

17



Application 1: graph-finding algorithm

Based on this conclusion, we can construct a graph-finding
algorithm to unveil all the regions.

A fishnet example

Step 1: constructing the “primitive jets”:

P1 P2 P1 D2

Ta - V2 -
P4 P3 P4 P3
P1 D2 P1 P2

I3b -

P4 p3 P4 P3



Application 1: graph-finding algorithm

* Based on this conclusion, we can construct a graph-finding
algorithm to unveil all the regions.

* Afishnet example
Step 2: overlaying the “primitive jets”:

P1 p2

P4 P3

Step 3: removing pathological configurations.

This algorithm does not involve constructing Newton polytopes, and

can be much faster.

15



Application 2: analytic structures of 1

* In addition, one can use this knowledge to study the analytic
structure of wide-angle scattering, which further leads to
properties regarding the commutativity of multiple on-shell
expansions.

Theorem 4. [If R is a jet-pairing soft region that appears in the on-shell expansion of a
wide-angle scattering graph G, then the all-order expansion of I(G) in this region can be

written as follows:

’}";{RJI(S) = ( H (ﬂ?)ﬂﬁ.a{{j) , Z ( H (—p‘fjki) ff{fi (s\ ), (5.8)

prEt k1,....kj 20 plet

. . . . | o —(R)
where pr;(€) is a linear function of €, k; are non-negative integer powers and T (k) (s\ )
1s a function of the off-shell kinematics, independent of any pf ct.

1z



Phenomenology

» Soft-Collinear Effective Theory (SCET): an effective theory
describing the interactions of soft and collinear degrees of freedom
in the presence of a hard interaction.

* For example, the SCET describing e e~ — ~* — dijets
b

' pﬁ[ I

n-collinear
jet

5
n-collinear
jet

soft

involves the hard mode (integrated out), the collinear modes, and the
soft mode.

18



Phenomenology

» Soft-Collinear Effective Theory (SCET): an effective theory

describing the interactions of soft and collinear degrees of freedom
in the presence of a hard interaction.

* The SCETi Lagrangian (leading order):

L: = Z (En{ + [:”.’l) + ‘C.\‘u['l,

n
: , 1 \ 7
— E ve-P¢ ( m D 4+ 21D 1) ) iy -
— € Lmn . [ ¥ n < ke [ . rt
= < i | e D, l 2°

—

I

+‘)1/:'|‘1-{;;'Df’. iD,)°} + TTY{[iD*, A,.,.)*} + 2Tr{b,[iD", '_i’D,,.r,,JJ})
|

+ ’,‘_\/.l.‘)\(-’\ : rl‘r{("i”’('v.\./u'} 1 Ts,lwl‘{(i(‘)fl"‘il):} ¥ ‘zll{l)“”)lllpil(\} 2

o

 We have shown that, in the regime of the on—shell

expansion, nothing can go beyond the prediction of SCET,
as long as all the regions are predicted by lower facets.

18



Subtleties

* So far our analysis is based on
region € - lower facet

 Butin principle, a region may also come from the inside of the
Newton polytope, when terms in the Lee-Pomeransky polynomial
cancel.

19



Subtleties

* So far our analysis is based on

region € - lower facet

But in principle, a region may also come from the inside of the
Newton polytope, when terms in the Lee-Pomeransky polynomial
cancel.

For long, we have believed that only “facet regions” are involved in
massless wide-angle scattering kinematics, because prior to this
work, the only known “non-facet regions” are the threshold region
and the Glauber region, which are not relevant here.

We did test quite many examples, all supporting the statement
above...

19



Subtleties

* So far our analysis is based on
region € - lower facet

* Butin principle, a region may also come from the inside of the
Newton polytope, when terms in the Lee-Pomeransky polynomial
cancel.

* For long, we have believed that only “facet regions” are involved in
massless wide-angle scattering kinematics, because prior to this
work, the only known “non-facet regions” are the threshold region
and the Glauber region, which are not relevant here.

* ... until recently we found a counterexample in the

framework of wide—angle scattering. g



Subtleties

* The “Landshoff scattering”:

P2 P

* The cancellation structure is $,,-(x,x, — X,%;3)- (XX — XcX5).

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 220



Subtleties

* The “Landshoff scattering”:

P2 P

<

A':;

ko
Vs

/," 7
/\' 1

P1 P3
* The cancellation structure is $,,-(x,x, — X,%;3)- (XX — XcX5).

e In scalar theory, from straightforward power counting, above is the
only region that contributes to the leading asymptotic behavior. So
this region must be included.

* This region cannot be detected by Asy?2.

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 220



Subtleties

 To see why this region is leading:

k' =@ (Eivf + AKiTE + \/;Tiuf + \/Zym*“’) : 1=1,2,3,4.

2 P1 (Botts & Sterman, 1989)

d

: / =& — %\/Xcosﬂ(f}) (tan (g) AT — cot (g) ZT) + AMK2 — K1),

63 = 61 + %\/Xtaﬂ (g) AT + /\(Hg — f{q__)
Ea =& — %\/Xcot (g) Y7+ AMK2 — K3).

3
With this parameterization, /dﬂkldﬂkgd%g = Q3P / H dé;dr;dT;dv;
i=1

Under change of variables {&2, {3} — { K4, 74},

M _\3/2.
det (3(54,7'4)) 7 CDE’(Q) C‘:'t(g)'

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 21



Subtleties

 To see why this region is leading:

k' =@ (&?}f + AT 4 VAl + \/Zym*"*) : i=1,2,3,4.

2 P (Botts & Sterman, 1989)

3 1 3
fHd& dridridv; = C / dé (/H (Adﬁ;i){/\%dﬂ)()\%dyz)l—%)
i=1 0 i1

N -
S

\6—3e

8(52553)
./dmda det (6{:{4,74)) |

N —_

Ny
A3/2

* Power counting result:

1
INA'U', ’J,:—E—?)E-

 Meanwhile, all the other regions have p 2 0.
(E.Gardi, F.Herzog, S.Jones, YM, to appear) 21



Numerical evidences

107 -
] —4— Re[e ¥
o Ime %]
—— Re[e 3] (EBR)
s=1, t=-0.7
10* 5
= ]
g.. “Landshoff scattering’ region
/
2103 . full integral ey
:_-] h
1 -
(-
10? 4
10—° 10~ 1073 102 101
T}'i:lz

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 22



Numerical evidences

4 R.E[E_H:
40000 - —— Im|e _,-;]
—+— Re[¢ %] (EBR)
Im[e™ ](EBR}
30000 - s=1,t=-0.7
C 20000 -
<)
10000 -
o4 ¢
10-° 104 103 102 10~1
I'ﬁ%

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 22



Subtleties

* &-propagator

* 9-propagator

* 10-propagator



Regions in the on-shell expansion

Proposition:

PK

facet inside

24



Regions in the on-shell expansion

Proposition:

PK

facet inside

(endpoint) (cancellation)

24






The “soft expansion”

* Including some soft external momenta

[ Lne

Pm _APm+1

massless
P PK
q1 qL
exactly on-shell large virtuality exactly on-shell
: . 2
pz?=0 (t=1,...,K), q?NQQ (.;"= L) Ek=0 (k=1?ﬂ’f)
. . 2 2
Piy *Piy ~ Q% (v #42), il ~ @ le ~AQ7, iy -y ~ N°Q% (k1 # k).
wide-angle scattering soft momenta

(YM, arXiv:2312.14012) o=



Regions in the soft expansion

* Result: the possibly relevant modes are:
ki~ Q(1,1,1), k. ~ Q(L,AAY?), K~ QA A N).

* Interesting feature: additional requirements for the subgraphs.
(YM, arXiv:2312.14012) o,



Regions in the soft expansion

The interactions between the soft subgraph and the jets follow the
“disease-spreading” picture.

Each jet must be “infected” by some soft external momenta.

Any soft component adjacent to >3 jets can “spread the disease”.

Example:
P1 P1

P4 lo [y P3 P4 L1 P3

X

(YM, arXiv:2312.14012) 27



Regions in the soft expansion

o
1

i
P

PT
I 7
B
Pl @) s s
a)
Pi
/ —_—
1 i ly
P @) Py Pl ) Py 7 li‘( Py P n P
a) >< < c <

(YM, arXiv:2312.14012)

2L



Regions in the soft expansion

* This study may also go beyond QCD.

For example, some rules for the “Soft-Collinear Gravity” coincide
with what we have found:

t:l.l.rl.l' ALl AL A L s LS A ru;!—f“? AL E L F Rl Rs R

The above argument generalises to the following all-order statement: In soft loop-
corrections to the soft theorem, contrary to the tree-level case, the emitted soft gravi-
ton must always attach to a purely-soft vertex, and never directly to any of the en-
ergetic particle lines. The reason is that soft-collinear interactions involve the soft
field at the multipole-expanded point x* to any order in the A-expansion. Hence, if
the emitted graviton couples directly to an energetic line, one can always route its
momentum such that the entire loop integral will depend only on n; _k ni /2 of a
single collinear direction, i, and no soft invariant can be formed to provide a scale
to the loop diagram.

Mantinmnine vanth f1mra 0afk lasame svrhanairras tha Aiacerans Aasntains o oasaand saaealss

(Beneke, Hager, Szafron, “Soft-Collinear Gravity and Soft Theorems”)

29



The “mass expansion”

* The heavy-to-light decay process:
1)

P

PP=M*~ Q% p*=m?>~)Q% P-p~Q>

large mass small mass

* |n addition to the hard, collinear, and soft modes, more
complicated modes can be present.

(YM, arXiv:2312.14012) 5,



Regions in the mass expansion

* More modes are included: Starting from
hard mode Q(1,1,1), 1 loop
collinear mode Q(1,A\,A), 1 loop
soft mode Q(A,AAN), 2 loops
soft-collinear mode Q(A,A2,A\3/2), 3 loops
) e 4 loops
semihard mode Q(A”,A\2,N\%), 2 loops
semihard-collinear, semihard-soft, ...., 3 loops, nonplanar
, 3 loops, nonplanar
semihard-semicollinear, .... 4 loops, nonplanar

(YM, arXiv:2312.14012) =21



Regions in the mass expansion

 Examples

32



A formalism for planar graphs

* For planar graphs, each region can be depicted as a “terrace”.

(YM, arXiv:2312.14012) 3=



A formalism for planar graphs

For planar graphs, each region can be depicted as a “terrace”

el

—
—
- ——

-~

(f)
(YM, arXiv:2312.14012) 33



A formalism for planar graphs

* For planar graphs, each region can be depicted as a “terrace”.

(d) (e) (f)
(YM, arXiv:2312.14012)

23



High—-energy expansion of forward scattering

Consider the Regge limit of the 2-to-2 forward scattering.
Regions include:

hard, collinear, soft, Glauber, soft-collinear, collinear3, ...

'pg pq

kinematic limit:

2 2 2 *
pt =p3 =p5 =ps =0,
t] < s ~ |ul,

P1

(py + p2)?
(p1 + p3)?
(p1 + pa)?

I
o

L,

1,
(E.Gardi, F.Herzog, S.Jones, YM, to appear) 24



High—-energy expansion of forward scattering

Consider the Regge limit of the 2-to-2 forward scattering.
Regions include:

hard, collinear, soft, Glauber, soft-collinear, collinear3, ...

P2 PA T

From 3 loops.

//\ Not facets of the Newton polytope.
/ Due to the cancellation of the following terms
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High—-energy expansion of forward scattering

Consider the Regge limit of the 2-to-2 forward scattering.
Regions include:

hard, collinear, soft, Glauber, soft-collinear, collinear3, ...
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From 3 loops.
Not facets of the Newton polytope.

Due to the cancellation of the following terms
S1, (X2, — X,005) (x5 — X X5).

/ /\ Cannot be detected by Asy?2 either.
P p3 Much more to explore!

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 24



High-energy expansion of forward scattering
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Main conclusion

The regions corresponding to a given graph can be
predicted from the infrared picture!

— on-shell expansion: hard, collinear, soft.
— soft expansion: hard, collinear, soft.

— mass expansion: hard, collinear, soft, semihard,
soft-collinear, soft?scollinear, semicollinear, ...

— high—energy expansion: hard, collinear, soft,
Glauber, soft *collinear, ...

The mode interactions follow certain pictures.
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Outlook

Hopefully, this work can be helpful to the following aspects.

|. Connections to SCET, gravity!?
2. Local infrared subtractions.

3. Can one even justify the method of regions with the help of
our results?

Landau analysis.

5. Connections to mathematical studies of positive geometry,
tropical geometry, etc.?
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ANNALS OF PHYSICS: 2B, 320-345 (1964)

High Energy Behavior at Fixed Angle in Perturbation
Theory*

I. G. HaLLiDAY

Department of Applied Malhemalics and Theoretical Physies, Universily of Cambridge,
Cambridge, England

The high energy behavior of the planar diagrams n a g4® theory at fixed
angle 18 shown to be dominated by the Born terms. The behavior of the ladder
diagrams is calculated in detail. It is then shown that the graphs possessing
third spectral functions which give rise to the Gribov-Pomeranchuk singu-
larity and Regge cuts behave like s7%? ag 3§ — =« at fixed angle. A set of planar
diagrams is also investigated whose behavior on an unphysical sheet is pre-
vented from breaking the Born behavior only by the existence of the Froissart

hound. Finally the Bjorken-Wu graphs are shown to behave like logs/s for
all orders.
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Some old references

[n the limit ¢ — o with s fixed the graph of Fig. 4 behaves like 1/¢" and con-
tributes towards the Gribov-Pomeranchuk singularity at [ = —1. Further itera-

tions give rise to terms 1/¢- (log ¢)"°. For this graph
g = (maz — wa) (aay — az'ay) (27}
f = _'ﬂmqi'ﬂlﬁl‘l':: - ﬂ!]ﬂ.’gﬂzrﬂ:

+ yyelen + a: + as + ad(a + &' + a5 + ai)

+ mlamas(er’ + a2 + a5 + ar') + o (ag + a0 + a5 + )]

+ velaas(a’ + a2 + @ + @) + a'ew’ (o + @ + a5 + )] (28)
+ ﬂgrﬂ'ziﬂl’]&H + alra;n-zag .

If we now let r = eqay — asas and ¥ = ay’as — ao’as’ then the z, y integra-
tions give rise to a pinch of the integration contour and when we integrate over
z, y we obtain the form (1I Eq. (9))

[E(a;aa — o Q’4}5_(a1}rﬂ3! — u:z’m!_)ﬁz ITades (3] & — ”.

o)
Fslfs + df (29,
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Infrared structures of wide-angle scattering

e Generic infrared divergences (pinch surfaces):

This picture can be obtained from the Landau equations.



Infrared structures of wide-angle scattering

* The Landau equations . ?(k.p.q)=0 VeeG
0
Ok,

D(k,p,q;a) =0 Vae{l,...,L}.

are necessary conditions for infrared singularity. The solutions of
the Landau equations are called pinch surfaces.

* The pinch surfaces of hard processes has been studied in detail
in the past decades.

* Motivation: it looks that the infrared regions are in one-to-one
correspondence with the pinch surfaces!



Relating regions to Landau equations
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Relating regions to Landau equations
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Regions
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Relating regions to Landau equations

q1

Solutions of
Landau equations
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Regions in the on-shell expansion

E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197

* Each solution of the Landau equations corresponds to a region,
provided that some requirements of H, J, and S are satisfied.

e Requirement of H: all the internal propagators of H,.q, which is the reduced form
of H, are off-shell.

o Requirement of J: all the internal propagators of J; req. which ts the reduced form of

I
the contracted graph .J;, carry eractly the momentum pf .

e Requirement of S: every connected component of S must connect at least two different
jet subgraphs J; and J;.
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Landau analysis of cancellations

Each region (except the hard region) must correspond to an
infrared singularity, satisfying the Landau equations:

Fla;s) =0,
Vi, a; =0 or 9F/0a; = 0.

Therefore, &F having both positive and negative terms does not

necessarily imply a region, because the Landau equation above
may not be satisfied.

* For example,




Landau analysis of cancellations

* For example,

Flag s)

g (g + a5 + ag + a7) + asayar)

asaz(ay + a5 + ag + ar) + asasog)
(

agas(a) + a2 + as + ag + a7) + ajasar + asagog)

asar(ar + a2 + a3 + as + as) + arasoe + azasar]

—
oo
——
™
ot
b
-4
-
o
e
=]
—
e
Ll 1
M=
. —
2
b
™
't
i~
-
o



Landau analysis of cancellations

For example,

One can check that any possible cancellation within & is not
compatible with the Landau equations.

Therefore, all the regions are from the lower facets of the Newton
polytope.

Actually, as one can check in this way, most cases where & is
indefinite does not have regions due to cancellations.



