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The method of regions (MoR)

• Statement:

The original integral, I , can be restored by summing over 
contributions from the regions.
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The method of regions (MoR)

• Statement:

The original integral, I , can be restored by summing over 
contributions from the regions.

• Proposed by Beneke and Smirnov in 1997, no proof yet. 

• The regions are chosen using heuristic methods based on 
examples and experience.

• The integration measure is the entire space for each term.
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The method of regions (MoR)
Example: one-loop Sudakov form factor

(Becher, Broggio, Ferroglia 2014)

The on-shell limit kinematics
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The method of regions (MoR)
Example: one-loop Sudakov form factor

(Becher, Broggio, Ferroglia 2014)

The on-shell limit kinematics

The Feynman integral

can be evaluated directly, or, we can apply the method of regions.
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The method of regions (MoR)
Step 1: identify 4 regions in total:
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The method of regions (MoR)
Step 1: identify 4 regions in total:

Step 2: perform expansion around each region:
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The method of regions (MoR)

Step 1: ….

Step 2: ….

Step 3: sum over their contributions, and the original integral is 
reproduced:

This equality holds to all orders of λ!

More examples are presented in Smirnov’s book “Applied Asymptotic 
Expansions in Momenta and Masses”. 4



Parameter representation

5

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

spanning trees spanning 2-trees



Parameter representation
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The Lee-Pomeransky representation (Lee & Pomeransky 2013)

spanning trees spanning 2-trees



Parameter representation
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The Lee-Pomeransky representation (Lee & Pomeransky 2013)

Each region → a certain scaling of the x

spanning trees spanning 2-trees



Parameter representation
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The Lee-Pomeransky representation (Lee & Pomeransky 2013)

Advantage: provides a systematic way of identifying the regions.

(Pak & Smirnov 2010; Jantzen, Smirnov, Smirnov, 2012.)

→ See Stephen’s talk for more details

spanning trees spanning 2-trees



Identifying regions from Newton polytopes
• Given the Lee-Pomeransky polynomial,

take the exponents of each term:
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Identifying regions from Newton polytopes
• Given the Lee-Pomeransky polynomial,

take the exponents of each term:

(1,0,0;0)

(0,1,0;0)

(0,0,1;0) (1,0,1;1)

(0,1,1;1)

(1,1,0;0)
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Identifying regions from Newton polytopes
• Given the Lee-Pomeransky polynomial,

take the exponents of each term:

Construct a Newton polytope = the convex hull of all these points.

Regions = the lower facets of this Newton polytope.

(1,0,0;0)

(0,1,0;0)

(0,0,1;0) (1,0,1;1)

(0,1,1;1)

(1,1,0;0)
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Identifying regions from Newton polytopes
Regions = the lower facets of this Newton polytope

Given a graph with N propagators, the Newton polytope △ is N+1
dimensional.

• Facets: the N-dimensional boundaries of △.

• Lower facets: those facets whose inward-pointing normal vectors v
satisfy vN+1>0.

(from Stephen’s slides)

• The vector v is usually referred to as the region vector, and its 
entries show the scaling of x.

1

2
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Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

These points are in the hard facet, with vh = (0,0,0;1).

In comparison,

(1,0,0;0)

(0,1,0;0)

(0,0,1;0) (1,0,1;1)

(0,1,1;1)

(1,1,0;0)
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Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

These points are in the collinear-1 facet, with vC1 = (-1,0,-1;1).

(1,0,0;0) (0,0,1;0) (1,0,1;1) (1,1,0;0)

7



Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

These points are in the collinear-2 facet, with vC2 = (0,-1,-1;1).

(0,1,0;0)

(0,0,1;0)

(0,1,1;1)

(1,1,0;0)
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Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

(0,0,1;0) (1,0,1;1)

(0,1,1;1)

(1,1,0;0)

These points are on the soft facet, with vS = (-1,-1,-2;1).
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• Momentum space:

• Parameter space:

• Relation between the scalings:

Regions in different representations
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• There have been computer codes based on this approach:

Asy2, ASPIRE, pySecDec, … 

• Timely results may not be available if the graph is not too simple.

Note that dim(polytope) = #(propagators)+1.

• Also, how to interpret the output in momentum space?

Identifying regions from Newton polytopes
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• There have been computer codes based on this approach:

Asy2, ASPIRE, pySecDec, … 

• Question: For any expansion of interest, can we establish a 
general rule, which governs all the regions and specifies 
all the relevant modes?

Identifying regions from Newton polytopes
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• Based on

→ E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197,

→ YM, arXiv:2312.14012,

→ E.Gardi, F.Herzog, S.Jones, YM, to appear.

This talk will try to answer the question.

Identifying regions from Newton polytopes
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• We start with the following asymptotic expansion:

The “on-shell expansion”

11

small virtuality large virtuality wide-angle scattering

massless



• We start with the following asymptotic expansion:

• Result: the possibly relevant modes are

The “on-shell expansion”

small virtuality large virtuality wide-angle scattering

massless
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• More precisely, the general structure of each region looks like

with additional requirements on the subgraphs H, J, and S.

This conclusion was proposed in [Gardi, Herzog, Jones, YM, Schlenk, 2022],

and later proved in [YM, arXiv:2312.14012].

Regions in the on-shell expansion
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For the Symanzik polynomials,

• The terms are described by spanning (2-)trees of G.

• Furthermore, the terms are described by weighted spanning (2-) 
trees of G for a given scaling of the parameters.

• The leading terms are described by the minimum spanning (2-)trees 
of G.

• Meanwhile, regions → lower facets of the Newton polytope.

Idea of the proof

13

Graph theory

Convex geometry



• Long and technical.

• 12 lemmas, ~50 pages…

• It works exclusively for the on-shell expansion, but can be slightly 
modified to apply to some other expansions.

The proof
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Regions vs singularities

17

(Arkani-Hamed, Hillman, Mizera, 2022)



Regions vs singularities

(Arkani-Hamed, Hillman, Mizera, 2022)

A pinch singularity residing in the double-collinear region.
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• Based on this conclusion, we can construct a graph-finding 
algorithm to unveil all the regions.

• A fishnet example

Step 1: constructing the “primitive jets”:

15

Application 1: graph-finding algorithm



• Based on this conclusion, we can construct a graph-finding 
algorithm to unveil all the regions.

• A fishnet example

Step 2: overlaying the “primitive jets”:

Step 3: removing pathological configurations.

This algorithm does not involve constructing Newton polytopes, and 
can be much faster.

Application 1: graph-finding algorithm
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• In addition, one can use this knowledge to study the analytic 
structure of wide-angle scattering, which further leads to 
properties regarding the commutativity of multiple on-shell 
expansions.

Application 2: analytic structures of I
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• Soft-Collinear Effective Theory (SCET): an effective theory 
describing the interactions of soft and collinear degrees of freedom 
in the presence of a hard interaction.

• For example, the SCET describing 

involves the hard mode (integrated out), the collinear modes, and the 
soft mode.

Phenomenology

18



• Soft-Collinear Effective Theory (SCET): an effective theory 
describing the interactions of soft and collinear degrees of freedom 
in the presence of a hard interaction.

• The SCETI Lagrangian (leading order):

• We have shown that, in the regime of the on-shell 
expansion, nothing can go beyond the prediction of SCET, 
as long as all the regions are predicted by lower facets.

Phenomenology

18



• So far our analysis is based on

region → lower facet

• But in principle, a region may also come from the inside of the 
Newton polytope, when terms in the Lee-Pomeransky polynomial 
cancel.

Subtleties
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• So far our analysis is based on

region → lower facet

• But in principle, a region may also come from the inside of the 
Newton polytope, when terms in the Lee-Pomeransky polynomial 
cancel.

• For long, we have believed that only “facet regions” are involved in 
massless wide-angle scattering kinematics, because prior to this 
work, the only known “non-facet regions” are the threshold region 
and the Glauber region, which are not relevant here.

• We did test quite many examples, all supporting the statement 
above…

Subtleties
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• So far our analysis is based on

region → lower facet

• But in principle, a region may also come from the inside of the 
Newton polytope, when terms in the Lee-Pomeransky polynomial 
cancel.

• For long, we have believed that only “facet regions” are involved in 
massless wide-angle scattering kinematics, because prior to this 
work, the only known “non-facet regions” are the threshold region 
and the Glauber region, which are not relevant here.

• ... until recently we found a counterexample in the 
framework of wide-angle scattering.

Subtleties
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• The “Landshoff scattering”:

• The cancellation structure is s12·(x1x4 – x2x3)·(x5x8 – x6x7).

Subtleties

20(E.Gardi, F.Herzog, S.Jones, YM, to appear)



• The “Landshoff scattering”:

• The cancellation structure is s12·(x1x4 – x2x3)·(x5x8 – x6x7).

• In scalar theory, from straightforward power counting, above is the 
only region that contributes to the leading asymptotic behavior. So 
this region must be included.

• This region cannot be detected by Asy2.

Subtleties

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 20



• To see why this region is leading:

• With this parameterization,

• Under change of variables ,

Subtleties

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 21

(Botts & Sterman, 1989)



• To see why this region is leading:

• Power counting result:

• Meanwhile, all the other regions have μ ≥ 0.

Subtleties

(E.Gardi, F.Herzog, S.Jones, YM, to appear) 21

(Botts & Sterman, 1989)



Numerical evidences

22(E.Gardi, F.Herzog, S.Jones, YM, to appear)

“Landshoff scattering” region

full integral



Numerical evidences

22(E.Gardi, F.Herzog, S.Jones, YM, to appear)



• 8-propagator

• 9-propagator

• 10-propagator

Subtleties

23



Regions in the on-shell expansion

24

Proposition:

facet inside



Regions in the on-shell expansion
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Proposition:

facet inside

(endpoint) (cancellation)



How about 

other 

expansions?



• Including some soft external momenta

The “soft expansion”

25

exactly on-shell large virtuality

wide-angle scattering

massless

exactly on-shell

soft momenta

(YM, arXiv:2312.14012)



• Result: the possibly relevant modes are:

• Interesting feature: additional requirements for the subgraphs.

Regions in the soft expansion

26(YM, arXiv:2312.14012)



• The interactions between the soft subgraph and the jets follow the 
“disease-spreading” picture.

• Each jet must be “infected” by some soft external momenta.

• Any soft component adjacent to ≥3 jets can “spread the disease”.

• Example:

Regions in the soft expansion

27(YM, arXiv:2312.14012)



Regions in the soft expansion

28(YM, arXiv:2312.14012)



Regions in the soft expansion

29

(Beneke, Hager, Szafron, “Soft-Collinear Gravity and Soft Theorems”)

• This study may also go beyond QCD.

• For example, some rules for the “Soft-Collinear Gravity” coincide 
with what we have found:



• The heavy-to-light decay process:

• In addition to the hard, collinear, and soft modes, more 
complicated modes can be present.

The “mass expansion”

30

large mass small mass

(YM, arXiv:2312.14012)



• More modes are included:

hard mode Q(1,1,1),

collinear mode Q(1,λ,λ½ ),

soft mode Q(λ,λ,λ),

soft·collinear mode Q(λ,λ2,λ3/2),

soft2 mode Q(λ2,λ2,λ2), ….

semihard mode Q(λ½ ,λ½ ,λ½ ),

semihard·collinear, semihard·soft, ….,

semicollinear mode Q(1,λ1/2,λ1/4),

semihard·semicollinear, ….

Regions in the mass expansion

31

Starting from

1 loop

1 loop

2 loops

3 loops

4 loops

2 loops

3 loops, nonplanar

3 loops, nonplanar

4 loops, nonplanar

(YM, arXiv:2312.14012)



• Examples

Regions in the mass expansion

32



• For planar graphs, each region can be depicted as a “terrace”.

A formalism for planar graphs

33(YM, arXiv:2312.14012)



• For planar graphs, each region can be depicted as a “terrace”.

A formalism for planar graphs
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• For planar graphs, each region can be depicted as a “terrace”.

A formalism for planar graphs

33(YM, arXiv:2312.14012)



Consider the Regge limit of the 2-to-2 forward scattering.

Regions include:

hard, collinear, soft, Glauber, soft·collinear, collinear3, …

kinematic limit:

High-energy expansion of forward scattering

34(E.Gardi, F.Herzog, S.Jones, YM, to appear)



Consider the Regge limit of the 2-to-2 forward scattering.

Regions include:

hard, collinear, soft, Glauber, soft·collinear, collinear3, …

High-energy expansion of forward scattering

From 3 loops.

Not facets of the Newton polytope.

Due to the cancellation of the following terms
s12·(x1x4 – x2x3)·(x5x8 – x6x7).

Cannot be detected by Asy2 either.

34(E.Gardi, F.Herzog, S.Jones, YM, to appear)



Consider the Regge limit of the 2-to-2 forward scattering.

Regions include:

hard, collinear, soft, Glauber, soft·collinear, collinear3, …

High-energy expansion of forward scattering

From 3 loops.

Not facets of the Newton polytope.

Due to the cancellation of the following terms
s12·(x1x4 – x2x3)·(x5x8 – x6x7).

Cannot be detected by Asy2 either.

Much more to explore!

34(E.Gardi, F.Herzog, S.Jones, YM, to appear)



High-energy expansion of forward scattering

35



The regions corresponding to a given graph can be 
predicted from the infrared picture!
- on-shell expansion: hard, collinear, soft.
- soft expansion: hard, collinear, soft.
- mass expansion: hard, collinear, soft, semihard, 
soft·collinear, soft2∙collinear, semicollinear, ...
- high-energy expansion: hard, collinear, soft, 
Glauber, soft ∙collinear, ...

The mode interactions follow certain pictures.

Main conclusion
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Hopefully, this work can be helpful to the following aspects.

1. Connections to SCET, gravity?

2. Local infrared subtractions.

3. Can one even justify the method of regions with the help of 
our results?

4. Landau analysis.

5. Connections to mathematical studies of positive geometry, 
tropical geometry, etc.?

…

Outlook

37



1. Nambu, 1957, Parametric Representations of General Green's Functions.

2. Amati, Stanghellini, Fubini, 1962, Asymptotic properties of scattering and 
multiple production.

3. Islam, Landshoff, Taylor, 1963, Singularity of the Regge amplitude.

4. Mandelstam, 1963, Cuts in the angular-momentum plane.

5. Halliday, 1963, High-energy behavior of perturbation Theory.

6. Tiktopolous, 1963, High-energy behavior of Feynman amplitudes.

7. Halliday, 1964, High energy behavior at fixed angle in perturbation theory.

8. Menke, 1964, High-energy behaviour of Feynman integrals involving singular 
configuration.

9. Hamprecht, 1965, High-energy behavior of Feynman amplitudes.

10. Lam, 1968, High-energy behaviour of Feynman diagrams via the electric-circuit 
analogy.

11. Landshoff, 1974, Model for elastic scattering at wide angle.

…

Some old references
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Some old references
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Some old references
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Some old references
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Some old references

40THANK YOU!



Backup slides



Infrared structures of wide-angle scattering

• Generic infrared divergences (pinch surfaces):

This picture can be obtained from the Landau equations.



Infrared structures of wide-angle scattering

• The Landau equations

are necessary conditions for infrared singularity. The solutions of 
the Landau equations are called pinch surfaces.

• The pinch surfaces of hard processes has been studied in detail 
in the past decades.

• Motivation: it looks that the infrared regions are in one-to-one 
correspondence with the pinch surfaces!



Hard Infrared

Relating regions to Landau equations



Regions

Relating regions to Landau equations



Solutions of 

Landau equations

Relating regions to Landau equations



E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197

• Each solution of the Landau equations corresponds to a region, 
provided that some requirements of H, J, and S are satisfied.

Regions in the on-shell expansion
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• Each region (except the hard region) must correspond to an 
infrared singularity, satisfying the Landau equations:

• Therefore, F having both positive and negative terms does not 
necessarily imply a region, because the Landau equation above 
may not be satisfied.

• For example,

Landau analysis of cancellations



• For example,

Landau analysis of cancellations



• For example,

One can check that any possible cancellation within F is not 
compatible with the Landau equations.

• Therefore, all the regions are from the lower facets of the Newton 
polytope.

• Actually, as one can check in this way, most cases where F is 
indefinite does not have regions due to cancellations.

Landau analysis of cancellations


