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Main idea: reconstruct the result of a Feynman integration from
the knowledge of singularities. Precisely, rewrite it in terms of
iterated integrals.
We will need more than just the location of singularities. For
integrals of polylogarithmic type it will be possible to go pretty far.



Why write an integral in terms of other integrals?

▶ Fewer integrations (half!). Conjecturally, number-theoretical
optimum of simplicity.

▶ Cancellations are “obvious” in the iterated integral form.

▶ Asymptotic expansions around singularities are simpler in
iterated integral form.

▶ Monodromies around singularity loci are simpler in iterated
integral form.



Precursors:

▶ BCFW recursion relations at tree level: reconstruct the tree
level amplitude from multiparticle pole singularities.

▶ Steinmann relations revived by [Bartels, Lipatov & Sabio
Vera: 0802.2065], [Brower, Nastase & Schnitzer: 0801.3891]
and used extensively by [Dixon et al.]

▶ Pham–Steinmann relations, introduced by [Pham] and used by
[Hannesdóttir, McLeod, Schwartz, CV]



Singularities of Feynman-type integrals

Theorem [Landau, Leray][see also Pham] An integral of type

I (t) =

∫
Γ

N(x , t)dnx

s1(x , t) · · · sm(x , t)

is analytic in t except perhaps at the values of t for which we can
simultaneously solve the following equations

se = 0, for e ∈ E ⊂ {1, . . . ,m}, (1)

dℓ(t) =
∑
e∈E

αedse(x , t), (2)

for αe not all vanishing.
These are called “on-shell equations” and “Landau loop
equations”.



The most familiar (but not the only) way to understand these
singularities is to group the denominators using Feynman’s formula

1

si1(x , t) · · · sim(x , t)
= (m−1)!

∫
∆

dm−1α

(αi1si1(x , t) + · · ·+ αimsim(x , t))
m
,

where ∆ is a simplex defined by αe ≥ 0 and
∑

e∈E αe = 1.
Then we define

FE (α, x , t) =
∑
e∈E

αese(x , t)

and look at its critical points

∂αeFE = se(x , t) = 0, (3)

dxFE =
∑
e∈E

αedxse(x , t) = 0 (4)



Note that both the on-shell conditions and the Landau loop
equations have the same origin: critical point conditions on a
function FE .
This way of thinking about the necessary conditions for the
singularities is due to Pham (influenced by René Thom).
A subtle but important distinction from the usual way the
equations are presented: it is possible to have αe = 0 while at the
same time se(x , t) = 0. Normally this is understood as either
αe = 0 or se(x , t) = 0.
The singularity corresponds to a subgraph whose edges are in the
set E .



Generically the critical points (α∗, x∗) are isolated (FI is a Morse
function) and its Hessian matrix(

∂2FE
∂x∂x

∂2FE
∂α∂x

∂2FE
∂α∂x 0

)

is definite (positive or negative) at the critical point then we have
the simplest situation (sometimes called a “simple pinch”).



Figure: A cartoon of FE in
the space of coordinates
(α, x).

Figure: A cartoon of a FE

with a “shallow” direction.

The singularities arise for the values of t such that
FE (α

∗(t), x∗(t), t) = 0. Generically (but not always) a
codimension one variety.



Cutkosky’s theorem

Given a subset E of propagators such that the Landau equations
have a simple pinch solution we have a singularity at a
hypersurface L defined by ℓ(t) = 0 where
ℓ(t) = FI (α

∗(t), x∗(t), t). When this is a branch cut singularity,
the monodromy around (a smooth point) of L is given by:

AL(t) = (1−ML)I (t) = (−2πi)m
∫

N(x , t)
∏

e∈E δ(se(x , t))∏
e ̸∈E se(x , t)

.

Here the arguments se(x , t) are real. The real hypersurfaces Se(R)
defined by se = 0 may have multiple branches so we need to select
the ones compatible with external data (energy conditions
sometimes written as δ+(se(x , t))).



Absorption integrals

An integral such as AL(t) is called an absorption integral. It is not
a priori clear what analytical properties AL(t) could have. The
integral definition uses reality in an essential way. Can we
analytically continue?
The answer is yes and this can be seen in several ways:

▶ Using Cutkosky’s representation which he used to prove his
theorem.

▶ Using a construction due to Pham and Leray, which proceeds
through Picard–Lefschetz theorem, Leray coboundaries, Leray
formula for residues and a Poincaré duality.

Some restrictions apply in the second case whose correspondent in
the first method is not immediately clear.



Pham’s theorem on singularities of absorption integrals

Pham: Since AL(t) can be analytically continued, what
singularities can it have?
Answer: It can have singularities of two types. The first type
involves a superset E ′ ⊃ E (new propagators are added to the
pinch). The second type involves a completely new set E of
propagators producing a pinch (there are strong constraints on
when this can happen).
The first type are called “hierarchical principle” singularities. The
second type are Pham–Steinmann singularities.



Intersection of Landau loci

Principal Landau loci can intersect transversally or tangentially.
What happens when taking monodromies in the neighborhood of
the intersection?
Theorem (Pham): If the Landau locus L′0 is above the threshold
for the Landau locus L0 and is tangent to it, then in the
neighborhood of the intersection (and away from other Landau
loci), we have

DiscL′0 DiscL0 A = DiscL′0 A, (5)

where DiscL0 is the discontinuity around the Landau locus L0 and
DiscL′0 is the discontinuity around the Landau locus L′0. The
discontinuities are taken around the effective parts (non-negative
α) of the Landau loci.



Tangential contraction diagram

ker κ0

ker κ′0

ker κ′ G ′ G

G0

κ′

κ′
0 κ0



Transversal intersection

Finally, this is the generalization of Steinmann relations.
Theorem (Pham) If the Landau loci L′ and L′′ intersect
transversally and effectively (fibered product, see below), then in a
neighborhood of the intersection (and away from other
singularities) we have

DiscL′ DiscL′′ A = DiscL′′ DiscL′ A (6)

where DiscL′ is the discontinuity around the branch cut ending at
the Landau locus L′ and similarly for L′′.



Transversal contraction diagram

ker κ′ ker κ ker κ′′

G

G ′ G ′′

G0

κ

κ′

κ′′



Sketch of proof (hierarchical case)

We can think of the
∏

e∈E δ(se(x , t)) in the numerator as defining
a new variety where the new contour of integration lives. If we are
away from the Landau locus of the pinch determined by the edges
in E , the intersection is transverse.
We can group the extra propagators in E ′ \ E as usual using the
Feynman formula and this defines a denominator

FE ′\E (α, x , t) =
∑

e∈E ′\E

αese(x , t).

We need to find the critical points of this function, subject to the
constraints se(x , t) = 0 from the constraints in the numerators.



Proof sketch (continued)

We can impose these constraints via Lagrange multipliers so we
need to find the critical points of

FE ′(α, x , t) =
∑
e∈E ′

αese(x , t),

which gives the same equations as for the Landau locus
corresponding to the subgraph of edges E ′.
The difference is that the αe for e ∈ E do not have to satisfy a
positivity condition anymore.
For the critical points to be minima/maxima we need a bordered
Hessian to be positive/negative.
A less appealing alternative is to solve (parametrize rationally) the
on-shell constraints explicitly, which should always be possible for
polylogarithmic integrals.



Iterated integrals



Singularities of iterated integrals

Theorem (Goncharov, arXiv:0103059, Prop. 2.4)

Consider an iterated integral with forms ω1, . . . , ωl , such that the
form ωp has a pole along a codimension one variety S and no other
forms have a singularity there. Next, consider two paths γ± with
the same end points and such that they go around S in opposite
ways such that γ+γ

−1
− goes around S in the counter-clockwise

orientation. Then, we have∫
γ+

ω1 ◦ · · · ◦ ωl −
∫
γ−

ω1 ◦ · · · ◦ ωl =

2πi resωp

∫
γ′
ω1 ◦ · · · ◦ ωp−1

∫
γ′′

ωp+1 ◦ · · · ◦ ωl , (7)

where γ′ is the initial section of the path until S and γ′′ is the final
section of the path γ starting at S and ending at the end-point of
γ.



Figure: Difference of contours for iterated integrals.

For logarithmic singularities take the residue.
For square root singularities, subtract the value obtained by
replacing

√
• → −

√
•. Sometimes this yields zero even when the

symbol letters contain square roots (Galois symmetry). Will show
examples below.



Examples, bubble in two dimensions

I =
1√

s − (m1 +m2)2
√

s − (m1 −m2)2(
log(

√
s − (m1 +m2)2 −

√
s − (m1 −m2)2)−

log(
√

s − (m1 +m2)2 +
√

s − (m1 −m2)2)
)
. (8)

▶ the prefactor can be computed algebraically (jacobian)

▶ logarithmic singularities at m2
e = 0

▶ Discm2
1=0Discm2

2=0 I = 0 (tadpole Pham-Steinmann).

▶ no singularity under√
s − (m1 −m2)2 → −

√
s − (m1 −m2)2.



m1

m2

m1 m2

Figure: Contractions for bubble integral.



Examples, bubble in three dimensions

I =
1√
s

(
log(

√
m2

1 +
√
m2

2 +
√
s)− log(

√
m2

1 +
√
m2

2 −
√
s)
)
. (9)

▶ Second type singularity at s = 0, invisible on the physical
sheet. Therefore, invariance under

√
s → −

√
s.

▶ Square root singularities at m2
1 = 0 and m2

2 = 0.

▶ Discm2
1=0Discm2

2=0 I = 0.

▶ s = (m1 +m2)
2 singularity on the physical sheet,

s = (m1 −m2)
2 only accessible after analytic continuation

m2
2 → e2πim2

2.



Second type singularities

The s = 0 singularity for the bubble in three dimensions is a
second type singularity (pinch happening at infinity).
To analyze it, we can do an inversion in the dual coordinate x0,
x0 → x0

x20
. We have

dDx0 →
dDx0
(x20 )

D
, (10)

(xi − x0)
2 → 1

x20
(1− 2x0 · xi + x20x

2
i ). (11)

If D ̸= 2 (not dual conformal invariant) then we have an extra
denominator (x20 )

D−2. Then apply the usual treatment.
For higher loops, can treat mixed singularities by inverting only in
a subset of dual points.



Example, sunrise in two dimensions at p2 = 0

I =
1

r+++r−++r+−+r++−

([
m1

∣∣∣ r+++r−++ − ir+−+r++−
r+++r−++ + ir+−+r++−

]
+[

m2

∣∣∣ r+++r+−+ − ir−++r++−
r+++r+−+ − ir−++r++−

]
+[

m3

∣∣∣ r+++r++− − ir−++r+−+

r+++r++− + ir−++r+−+

])
, (12)

where ms1,s2,s3 =
√
s1m1 + s2m2 + s3m3.



▶ Under me → eπime the ms1,s2,s3 get permuted so that their
contribution cancels.

▶ Logarithmic (first entry) m2
e = 0 singularity (tadpole Landau

diagram).

▶ After m2
1 → e2πim2

1 monodromy Discm2
1=0 I has logarithmic

singularities at
(r+++r−++ − ir+−+r++−)(r+++r−++ − ir+−+r++−) =
4m2

2m
2
3 = 0. Double tadpole singularity. See also [Abreu,

Britto, Duhr, Gardi].

▶ Discm2
1=0 I also has square root singularities from the sunrise

Landau diagram, but only subset compatible with α > 0.
Same mechanism as for the bubble integral.



m1
m2

m3

m1

m2

m1

m3

m2

m3

m1 m2 m3

Figure: Contractions for the sunrise integral.



Vanishing Hessian example

The sunrise Landau singularity at p2 = 0 has a vanishing Hessian
(it is proportional to p2, the only Lorentz-invariant kinematics
dependence it can have).
Toy example:

F (ϵ) =

∫
R2

dxdy

ϵ+ x2 + y4
=

π

2
B(

1

4
,
1

4
)ϵ−

1
4 . (13)

At the critical point (x , y) = (0, 0) this has a degenerate Hessian
matrix

( 2 0
0 0 ) .

In general, keep terms of cubic order in (α, k), the highest power in
Feynman parametrization. Catastropy theory or tropical analysis.
Can obtain 1

3 and 1
4 exponents.



Examples, massless
Integrals with massless propagators always have pinches, for all
values of external kinematics (permanent pinches). This also
happens for all higher-loop integrals in α-space [Boyling].
Not possible to formulate the integral as a pairing between
homology and cohomology before resolving the singularities at the
tip of the light-cone.

Figure: Blow-up of lightcone.



Blow-up

For a massless propagator q2 we have the on-shell condition
(q0)2 − q⃗2 = 0.
The blow-up is a change of coordinates

q0 = ρ, q⃗ = ρy⃗ ,

π(ρ, y⃗) = (ρ, ρy⃗) = (q0, q⃗).

For ρ ̸= 0 the change of coordinates is one-to-one. But
π−1(0, 0⃗) = (0, y⃗), with y⃗2 = 1.
The on-shell condition becomes ρ2(1− y⃗2) = 0. An extra
denominator in the integrand.



Figure: Blow-up of lightcone.



Deformation instead of blow-up

For a massless bubble at the Landau locus p2 = 0 we have q1 = zp
and q2 = (1− z)p for z ∈ [0, 1] so we don’t have a simple pinch.
Collinear singularities.
Instead of studying the problem at p2 = 0, study its deformation
p2 = ϵ and take the limit ϵ → 0. While ϵ ̸= 0 the Hessian is
non-degenerate but vanishes in the limit ϵ → 0. We have
detH ∼ ϵν for some computable ν.



Massless bubble

I =

∫
dDq1
q21q

2
2

=

∫
dαdDq1

(αq21 + (1− α)q22)
2
.

Analyze critical points of F (α, q1) = αq21 + (1− α)(p − q1)
2

0 =
∂F

∂α
= q21 − (p − q1)

2, (14)

0 =
∂F

∂q1
= 2q1 − 2(1− α)p (15)

to find α∗ = 1
2 and q21 = 1

2p. We have a simple pinch! We have
F ∗ = F (α∗, q∗1) = −1

4ϵ.



H =

(
ηµν

pµ
2

pν
2 0

)
So detH = (−1)D p2

4 . Therefore the full integral behaves as

I ∼ ϵ
D−4
2 .

Asymptotic expansion (Landau exponent) constrains location in
the symbol [Hannesdóttir, McLeod, Schwartz, CV]. Extension of
this result for square roots.
We have analyzed a number of other mixed massive-massless
integrals and we always obtain agreement with existing
computations.



Remaining questions

▶ Regularization?

▶ How to deal with elliptic and Calabi-Yau integrals?



Thank you!


