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Discriminants are everywhere, and they can be computed more often than you think
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Euler integrals
ℐΓ(z) = ∫Γ

(z1 xm1 + z2 xm2 + ⋯ + zs xms) μ xν1
1 ⋯ xνn

n
dx1

x1
∧ ⋯ ∧

dxn

xn
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In physics, these are Feynman integrals:
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Counting solutions
The number of linearly independent functions  in a neighbourhood of  ℐΓ(z) z* ∈ ℂs

=  the dimension of the space of local solutions of a GKZ system 


=  the number of “master integrals”


=  the dimension of the -th twisted (co)homology of  

=  the signed topological Euler characteristic of 


=  the number of complex critical points of a log-likelihood function

n Xz* = (ℂ*)n∖VA,z*

VA,z*
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Example. A = (0 1 2
1 1 1), fA(x; z) = z3 x2 + z2 x + z1, ΔA = z2

2 − 4z1z3

∇A = {ΔA = 0} “ -discriminant (polynomial)”A

Example. A = (
0 1 0 1
0 0 1 1
1 1 1 1), fA(x; z) = z1 + z2 x1 + z3 x2 + z4 x1x2

ΔA = z1z3 − z2z4

∇A = πℂs (YA) “ -discriminant variety”A (projectively dual to )𝒳A
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They are computable via elimination!

EA = z00 ⋅ z11 ⋅ z22 ⋅ (z2
01 − 4z00z11) ⋅ (z2

02 − 4z00z22) ⋅ (z2
12 − 4z11z22) ⋅ det M(z)

M(z) =
2z00 z01 z02

z01 2z11 z12

z02 z12 2z22



Principal -determinantsA
For which values of  is  different from its generic value?z χ(VA,z)

7



Principal -determinantsA
For which values of  is  different from its generic value?z χ(VA,z)

Theorem (Amendola, Bliss, Burke, Gibbons, Helmer, Hoşten, Nash, Rodriguez, Smolkin)
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Coefficients  are restricted to lie in a linear subspace , the kinematic spacez 𝒦 ⊂ ℂs
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Sunrise problem
p1

p2 p3

p4

x1

x2

x3

ℐΓ(z) = ∫Γ
[(1 −

3

∑
i=1

mixi)(x1x2 + x1x3 + x2x3) + sx1x2x3]μ xν1
1 xν2

2 xν3
3

dx1

x1
∧

dx2

x2
∧

dx3

x3
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Let  be a surjective map of irreducible quasi-projective -varietiesπ : 𝒱 → 𝒵 ℂ

Let  be the signed Euler characteristic of a generic fiber χ* Vz* = π−1(z*)

The Euler discriminant of  is π

∇χ(π) = {z ∈ 𝒵 : |χ(Vz) | ≠ χ*}
“parameters with non-generic Euler characteristic”

9

𝒱 = {(x, z) ∈ (ℂ*)n × ℙs−1 : fA(x; z) = 0}, 𝒵 = ℙs−1Corollary.

∇χ = {z ∈ ℙs−1 : EA(z) = 0}
and no closure is needed

Example. 𝒱 = {(x, z) ∈ ℂ* × ℙ2 : fA(x; z) = z3 x2 + z2 x + z1 = 0}, 𝒵 = ℙ2

∇χ = {EA(z) = z1z3(z2
2 − 4z1z3) = 0}Vz* = χ* = 2
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𝒱 = {(1 −
3

∑
i=1

mixi)(x1x2 + x1x3 + x2x3) + sx1x2x3 = 0}
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π



p1

p2 p3

p4

x1

x2

x3
1 2

11

Sunrise solution: PLD.jl



A zoo of examples
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A statistical model for a discrete random variable with  states is a 
subset of the probability simplex of dimension 

s
s − 1

Joint probability distribution of two binary random variables

LOTR HP

Red

White

p00 p01

p10 p11

pLOTR + pHP = 1, pred + pwhite = 1
independence:

p00 = pLOTR ⋅ pred

= [ pred
pwhite] ⋅ [pLOTR pHP]

p00 =
x0y0

f
, p01 =

x0y1

f
, p10 =

x1y0

f
, p11 =

x1y1

f
, f = x0y0 + x0y1 + x1y0 + x1y1

This model is the intersection of the Segre quadric in  with the probability simplex  ℙ3 ℙ3
>0
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MLE: infer  and  by maximizing  x =
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y =
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Lu = log pu00

00 pu01
01 pu10
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∂Lu

∂x
=

∂Lu

∂y
= 0 x =

u00 + u01

u00 + u01 + u10 + u11
, y =

u00 + u10

u00 + u01 + u10 + u11

The number of complex solutions for generic data  is 
called the maximum likelihood degree of the model

u
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A = (m1 m2 ⋯ ms
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Theorem (Huh)  The maximum likelihood degree of the discrete exponential family 
corresponding to  is the signed Euler characteristic of A VA,z = {x ∈ (ℂ*)n : f(x; z) = 0}
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Example. A = (
0 1 0 1
0 0 1 1
1 1 1 1), fA(x; z) = z1 + z2 x1 + z3 x2 + z4 x1x2

ΔA = z1z3 − z2z4

Theorem (Amendola, Bliss, Burke, Gibbons, Helmer, Hoşten, Nash, Rodriguez, Smolkin)
| χ(VA,z) | < vol(conv(A)) ⟺ EA(z) = 0



Tossing a biased coin
A biased coin shows HEADS with probability , TAILS with probability x y
We toss five times and count the number of HEADS
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5xy4
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,

10x2y3
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,

10x3y2

fA
,

5x4y
fA

,
x5

fA
), fA(x, y; z*) = y5 + 5xy4 + 10x2y3 + 10x3y2 + 5x4y + x5
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1 solution ⟷ χ(Vℂ*( fA)) = χ{(x + 1)5 = 0}

5 solutions
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Let  be a surjective map of irreducible quasi-projective -varietiesπ : 𝒱 → 𝒵 ℂ

An Euler stratification of  is a partially ordered finite set  of quasi-
projective subvarieties (strata) of  such that for any 

π 𝒮
𝒵 S, S′￼∈ 𝒮

•  when , and 

•  is a union of strata

•  is constant for 

•  is smooth and irreducible

S ∩ S′￼= ∅ S ≠ S′￼ ⊔S∈𝒮 S = 𝒵
S

χ(Vz) = χ(π−1(z)) z ∈ 𝒵
S

The Euler discriminant is ∇χ(π) = {z ∈ 𝒵 : | χ(Vz) | ≠ χ*}

𝒱 = {(x, z) ∈ (ℂ*)n × ℙs−1 : fA(x; z) = 0}, 𝒵 = ℙs−1

𝒱 = {(x, z) ∈ 𝒳A × ℙs−1 : fA(x; z) = 0}, 𝒵 = ℙs−1

Favorite examples: 



Points on the line
Euler stratification of π : {(x, z) ∈ ℂ* × ℙ3 : z1 + z2x + z3x2 + z4x3 = 0} ⟶ ℙ3

A = (0 1 2 3
1 1 1 1)
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π : {(x, z) ∈ ℙ1 × ℙ5 : z1 + z2x + z3x2 + z4x3 + z5x4 + z6x5 = 0} ⟶ ℙ5

strata are indexed by partitions of 5 = Young diagrams using 5 boxes



Five points in ℂ*

20

tossing a biased coin 5 times



Euler stratifications for 
plane curves

ongoing with Maximilian Wiesmann

M(z) =
2z00 z01 z02

z01 2z11 z12

z02 z12 2z22

det M(z) = 0 rank M(z) = 1

21



Euler stratifications for 
plane curves

ongoing with Maximilian Wiesmann

Δ = 0

Aronhold invariant

35 gens, deg 8

22

z 4
4 − 8 z3z 2

4 z5 + 16 z2
3 z2

5 + 24 z2z4z5z6 − 48 z1z2
5 z6 − 8 z2z 2

4 z7 − 16 z2z3z5z7 + 24 z1z4z5z7 + 16 z2
2 z2

7

−48 z0z5z2
7 + 24 z2z3z4z8 − 8 z1z 2

4 z8 − 16 z1z3z5z8 − 48 z2
2 z6z8 + 144 z0z5z6z8 − 16 z1z2z7z8 + 24 z0z4z7z8 + 16 z2

1 z2
8

−48 z0z3z2
8 − 48 z2z2

3 z9 + 24 z1z3z4z9 + 144 z1z2z6z9 − 216 z0z4z6z9 − 48 z2
1 z7z9 + 144 z0z3z7z9



Thank you!
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Euler integrals
Euler’s Beta integral  converges for  ∫

1

0
(1 − x)μ xν dx

x
Re(ν) ≥ 0, Re(μ) ≥ − 1

Here  is a twisted cycle on Γ ℂ*∖{1}

B(ν,1 + μ1) 2F1(−μ2, ν, μ1 + 1 + ν ; z) = ∫Γ
(1 − x)μ1 (1−zx)μ2 xν dx

x

A similar integral appears in Euler’s integral formula for :2F1

Its meromorphic extension to  is the Beta function ℂ2

B(ν,1 + μ) = ∫Γ
(1 − x)μ xν dx

x
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The principal Landau determinant 
is a computable subset of the         


Euler discriminant, whose definition 
is inspired by GKZ


