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Primordial Cosmo = QFT in curved
spacetime / Quantum Gravity

* On large scales (>> Mpc) cosmological surveys measure
QFT correlators of metric fluctuation

f[M (Kq)

e Gravitational floor of non-Gaussianity in single-clock
inflation: fy? > 107>

* The goal of primordial cosmology is to understand QFT and
QG in (approximately, asymptotically) de Sitter



Aspirations

 We want to learn about fundamental physics from cosmo:

New degrees of freedom and their interactions: Inflation
requires at least one degree of freedom and three energy
scales beyond the standard model.

The laws of gravity at short distances/high energies: probe
GR and beyond at high energies

QFT in FLRW/de Sitter: which theories are consistent?

When does QFT on curved space-time break down and
we need quantum gravity in dS?
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Penrose diagram

 \We work in the Poincare’ patch (half of dS)
ds® = —dt* + a*dx* = a*(—dn* + dz°)

The future (conformal)
boundary can be thought as
the reheating surface after
inflation and determines the
statistics of LSS and CMB
observations
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Correlators

* The observables of cosmology are correlators of the
product of equal-time local operators O atn — 0

n—0

lim (Qf | [ O(ka,7
a=1

n

)12) = (]| O0(ka)) = (O7).

a=1

* they are usually computed in the interaction picture. For
closed systems in a pure state we have

(O(n)) = (0 _Te(i oo (14ie)

/

dn’ Hine (1))

Bunch-Davies

Or(n)

_Te (_7; fjoo(l_ie) dn’ Hint (77’)) -

time evolution operator

* We can compute this in perturbation theory with ad hoc

Feynman rules



In-INn correlators
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In-iIn Feynman rules
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o — o =Gy (n1,m2,p) = (0| T¢(m, P)$(n2, P') [0)
= fp(m)fp(m2)0(m — n2) + f(m) fp(m2)0(n2 —m)
o — & = Gi-(1,m2,p) = (0] #(m, P)(7m2,P") |0) = fp(m)f;(ﬂz)
e — o = Gp(n,m2,p) = (0] d(n2, P’ ) (M1, P) |0) = G}, (M1, M2, )
o —o = Gu(n,n2,p) = (0| T(n1, p)d(n2, ') [0) = Gr..(M1, 72, p)
= fp (m) fp(n2)0(m — n2) + fp(m)fp (m2)0(n2 —m)




In-In Feynman rules

Each external line is
o— = Gr(n,p) = fp(mo)fp(n), o— = Gi(n,p) = f,(m0) fp(n)

Diagrams with “left” <> “right” are complex conjugate of each
other (so you need only to compute half of them)

Left (right) vertices are 1 (-1) times the coupling constant, the
vertex factor including derivatives and an time integral

dny/—g8 = Jdn(nH )~

Notice that even tree-level diagrams with V vertices require
performing V nested time integrals (for amplitudes in
Minkowski these are all energy conserving delta functions)




Types of integral

* We encounter the following types of (IR-finite) integrals at
tree-level

0

Y00 A,BeV a
0

v =0 A.BeV
0

Y0 A,BeV
| d’k
At loop level we find of the above

Hb\/kg + m?

e We can do all tree-level in Mink and dS+(r = 0). Loop integrals are barely
explored even in Minkowski (handful of papers (37?))



Some difficulties

 The in-in formalism for cosmological correlators has been used and
studies extensively in the past 20 year since [Maldacena '02; Weinberg
'09]

 One encounters a few difficulties:
e A diagram with V vertices has 2V possibilities to label vertices

e Each contributions is a nested time integral of Hankel functions

e Mixing of Wightman and Feynman propagators and their complex
conjugates makes it hard to import amplitudes results and technology

e General consequences of unitarity, locality, causality are obscured



Different approaches

[much recent work
from many authors...]

[based 2402.05999
with Yaniv Donath
and work in progress]

[based on 2402.05999
with Yaniv Donath]



The Analytic Wavefunction

The Analytic
S-Matrix




The wavefunction

The field theoretic wavefunction is the projection of the quantum state
| ¥) of the system onto eigenstates | ¢) of the field operators,

Vo

P, | @) = dp(x,n) | P) , namely
Y[p,nl =(P|¥P,n)

It is a functional of the all fields in the theory (including the metric) at
some time. It can be written in terms of wavefunction coefficients y,

Vo,n) = e |3 [ wlki ki [[ o)

We Taylor expand log ¥ as opposed to V itself so that the y, are
computed in terms of connected diagrams

The field theoretic wavefunction coincides with the large volume limit
of the wavefunction of the universe in canonical quantum gravity,
which solves the Wheeler de Witt equation.



The wavefunction
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From Y to correlators

e All probabilities can be computed from ¥ as in QM
(0) = / 16T OT

* The Wy are closely related to cosmological correlators,

which determine the statistics of the Cosmic Microwave
Background and Large Scale Structures. For example

(60 (10)6-p(m)) = 5

<H Pp, (770)> =-2]] QRGli’g(pa) P3(p) + ¥3(—p)]

<H b, (770)> =] 5 ;Q(m) [44(p) + ¥4 (—p)]

[¢3(p1, P2, _S) + ¢3(_p17 —Po, _S)] [¢3 (p37 Py, S) + ¢3(_p37 — Py, _S>]

Re ¢ (s)



Feynman Diagrams

 Given a model, the wavefunction can be computed
perturbatively from a path integral

¢(x,m0) |
[p(x); 10] — / D] 519

vacuuin

with the following Feynman rules




Propagators

e Simples examples are the massless scalars (or gravitons) in dS
K = (1 — ikn)e™ or in Mink K = e'!

 Bulk-bulk propagator G is Feynman propagator + boundary term
G =(Tpp) + G, = G+ G,
where G, solves the homogeneous E.0.M and ensures G
vanishes at n = .

e The boundary term G is the root case of all differences with
amplitudes, e.g. in the analytic structure and in cutting rules

v

12

n=>0




Analyticity and causality

* There is a well-known connection between causality and
analyticity, which leads to powerful UV/IR sum rules,
analogous to the Kramers Kronig “dispersion relation”.

* EX: operators commuting outside the light cone implies the
2-to-2 amplitude is analytic in Mandelstam s at fixed t

M’
x

Y,

 What is the analytic structure of wavefunction coefficients?

e Here are some results [Goodhew, Lee, Melville & Pajer ’22]



Off-shell wavefunction

* Analytic in what?! We need to go off-shell.

e Off-shell wavefunction coefficients are the F-transform of
amputated (i.e. acted on eqg. of motions for all fields),
connected in-out Green’s functions

U (1w}, 1K}) = H / Ay Ko (@, ma) | GEPE™ (1.

— O‘ TH¢k ‘Qm con — le Kk (tla ) 5(D3) (Z ka)

 where K are mode functions in any FLRW spacetime with Bunch-
Davies initial conditions.

 This is construction is non-perturbatively and reminiscent of LSZ.



Analyticity

b () ~ / dt e G (1)

— OO

e Time integral for W[d,Nno] stops at no because of causality

* Then Yn are analytic in w in the lower-half complex plane
because the integral is even more convergent. This is true
non-perturbatively

e /f Hermitian analyticity is valid non-perturbatively, this
extends to the upper-half plane Ppn(w*)=Pn*(w)

® Singularities only on the negative real axis



The energy-conservation
condition

Results below are proven in Minkowski with some comments
on dsS.

The energy conservation condition states that the location of
singularities of a wavefunction coefficient corresponds to the

vanishing of the partial energy of a connected sub diagram iaqui-
Salcedo, Melville, Lee & EP ’22]

At tree level all these singularities are simple poles in Minkowski
(and higher order poles of massless scalars in de Sitter)

All residues of partial energy singularities are fixed by unitarity
Wazayeri, EP & Stefanyszyn 21] IN the form of the Cosmological Optical
Theorem [Goodhew, Jazayeri, EP *20]



Tree-level examples

e Total energy singularities

Wa 2w Fy(wy,we,ws; ki, ko)

Wi + w2 + w3

e Partial energy singularities

W1 Wo FL(wl;k)Fu(w‘z?k)

Yo(wr, wos k) = = * | |
gg((,ul, W2, ) @ (w’l_ -l Qk)(w‘Z + SZA)(wl + w‘Z)
w2 W3 W FL(WQ,CU.%;kI)FR(wl;kl)

Y3 = @ - (w1 + Qg ) (w2 + w3 + g, ) (w1 + Wz T W3 ws)



Loop level examples

e At loop level

e for massless particles every pole becomes a branch point

e for massive theories for each pole there is an infinite series of branch
points at successively more negative @

 Recalling that the wavefunction propagator is G = G + G, the
singularities of Yy, can be classified into two classes [Lee 23

e Amplitude-like singularities have analogous singularities in amplitude
Feynman diagrams and correspond to cutting internal lines and putting

them on-shell. These come form G, C G

* Wavefunction-only singularities don’t have any analogue in amplitudes
and correspond to cutting a single line. These come from all the

G,CG



Loop example

e A simple example IS jee 23

W1 = —wo — 2M w1 = —k2Z + 4m?2 Wi

wavefunction only amplitude-like

* Another example displays anomalous thresholds in y,

& vy Y Y

W1 = W’““’*—)m Wi = u,w—\/L +4Am2 wy = .M—x/l\ + Am?  w '—\/L-—lm w? = 4m? - MZ_2m”
<

wavefunction onl amplitude-like anomalous
y

wi



Normal thresholds

e In summary, singularities in y;, occur only on the negative real w

axis where the energy of a perturbative subdiagram vanishes
(energy-conservation condition)
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The surprise

We introduce the wavefunction a somewhat simpler object
to study that correlator, but what we observe are
correlators

It turns out that in the few cases studied, the
wavefunction-only singularities cancel exactly when
computing correlators!

Some of these cancellations can be understood in analogy

to the so-called KLN “theorem” for amplitudes jagui-saicedo &
Melville 23]

We will see another interpretation of this result



UV/IR sum rules

= e s
— == S LB
- - -

e By Cauchy’s theorem we can write UV/IR sum ruléé '

0 :
dw disc(w W, Wi£1, K
wTwEFT(wz',kj) — / ( TwUV( L J))

_ (WTwUV(Wawi;élakj))
271 W — W1 '

- Res
oo w — Wi

e The LHS can computed in a low-energy EFT. The RHS
depends on the full UV theory.

* This fixes all Wilson coefficients in the EFT, including total
derivatives and terms proportional to the eq of motion.






Unitary time evolution

In Quantum Mechanics we compute probabilities, which
must be between 0 and 1 to make sense

This requires the positive norm of states in the Hilbert space
and Unitary time evolution, UUT=1. Colloquially this is the
conservation of probabllities

The consequences of unitarity for particle physics
amplitudes were discover over 60 years ago: the Optical
theorem and Cutkosky Cutting Rules.

In cosmology we don’t see the time evolution, so how can
we see it’s unitary?!



The Cosmological Optical
Theorem (COT) cvcowcom

From unitarity, UUT=1, we found infinitely many relations.
The simplest applies to contact n-point functions

wn({w}v {k}) + w;;({_wh {_k}) =0 : ; : A time

It follows from unitarity time evolution, but the equation does not
involve time! Time “emerges” at boundary as in holography...

This is a Cosmological Optical Theorem (COT) and can be
interpreted as fixing a “discontinuity”

Disctpn, = ¥n({w}, 1k}) + 1, (1—w}i, {—k}) =0



Exchange diagrams

* The next simplest case is a 4-particle exchange diagram
(trispectrum). The Cosmo Optical Theorem (COT) is

{ Discq[ilpklk?_q] Paq' U Discy [M’q'kslﬁ;]



General diagrams

* These relations are valid to all order in perturbation theory to
any number of loops for fields of any mass and spin and
arbitrary interactions (around any FLRW admitting a Bunch
Davies initial condition) [Goodhew, Jazayeri & EP '21: Melville & EP '21]

i disc [iw(D)} = Z H / H (—7) tdisc1 N [iw(“bdiagram) ,

internal :
lines cuts cut Subdlagrams cut lines
| momenta
— { + ! +
| YRR !
+ + . l +
LY ALY -G



Loop corrections

e Unitarity gives us also loop corrections! For example we
compute the leading 1-loop corrections for the power
spectrum in the EFT of inflation, from tree-level results.

R \!f Wt '\ ||/ V1! | |1 TRT,
Lk “\\ r!f \ | Tk \\\ {zf \\\ / \| / \\\ !;, \ | / \\\ !;’
AR T N R 2N L

~l_- - :\‘t’/

Paza 029 Fasdi Faze

sl |/ \L /5 zu.‘w \!s , \‘k,-”/ \W\'

= 1 \l(; ( \\W L + I \\\ ;/’ | \‘\ '.'; “;uk + i \\\U ! \\l f,‘ )

P y -» Py p Py { »

2 13 (1 _ 232
H* ik” (1 —¢2)
f3480r  co

S

. . . :]—]—— —~ S D) 9
1Disc {“’"’k] i::p} — [(4(.‘-3 + 9+ 6¢7)° + 15“]



IN-1N = In-out



Main message

in-in . in-out
: r : /
: “ / : N
: / -
/ \\G // G/,v / \G}' ) / GF
N AN
Yoo Ce Y N | Gr v/
afi=r,il “ \\\é/ ///‘:/ - Cr \\2/ /////
af’/ Gap " Gf
' 70 7 +0oc 00
tzJ Hdn i:j Hdn - { Hdy —zJ' Hdn

 Cosmological correlators in de Sitter (and Minkowski) can be computed using
the in-out formalism, using only the familiar time-ordered (Feynman) propagator

* Assumptions: interactions are IR finite; evolution is unitary (closed system in
Bunch Davies); any number of fields of any spin and mass.

* This leads to significant simplifications practically (many applications: new
recursion relations, cutting rules, pole bagging) and conceptually (S-matrix
technology, dS S-matrix, non-perturbative optical theorem)



Main message, take 2

RSN T VN N
1=, ,,,ﬂf"‘f“‘:'a,_._. // L SR /‘/\\\ ﬂ
/, P \ 1:*4
nen 7S
S
. dS 1
| i
D

In

—p

* |n-in contour can be deformed into in-out by adding a second
spacetime (contracting Poincare’ patch) that prepares the bra

* \We get a straight contour, just like in (Euclidean)AdS and in
Minkowski amplitudes



In-INn correlators

e |et’s slightly generalise the definition of an in-in correlator
allowing for un-equal time inside a time ordering

Bin_in = <O‘ T 6)—1 .l‘i(?x.(]*if) ]]i“t([{} T |:O({t x})e_, fi(,):)@(]—ff) Hin di |0>/

e The i€ rotation of the countour selected the Fock vacuum

as initial state (Bunch-Davies state) in the infinite past by
turning off interactions adiabatically

o time 1, is any time after all operator insertions



In-out correlators

We define an in-out correlator in dS/Mink as the following object

—v—:x(l LE ) _
01T |0({t, x})e 220 H’} o)
+oo(1—1i€)
<O‘ |: ’f (1—ie) Hmtdf:| |O>,

Time integral goes over —oo0 < 77 < + 00, encompassing the
standard expanding Poincare’ patch, —co < 1 < 0, and an extra
contracting Poincare’ patch, 0 < n < + 0.

Bin—out =

The i€ rotation of the contour turns off interactions adiabatically at the
past and future null “boundary”

Denominator removes the vacuum-to-vacuum bubbles so:
<1>in—out =1



In-1N = In-out

e Claim: for all IR-finite interactions, for which the time
integral converges around # = 0, we have

Bin-in = in-out

e This is a known fact in Minkowski. Here we claim it
applies to de Sitter too (and probably to any accelerated
FLRW but we haven’t checked yet)

 We'll provide a formal argument and some explicit checks



A formal argument

e A formal argument relies on the observation that infinite time
evolution changes the ground state only by a phase

U(+00, —00) |0) = |0) (0| U(+00, —c0) |0)

e This can be checked to all

orders in perturbation theory by

projecting on any excited state: the result is a derivative of a delta
function of energy conservation and has zero support on physical

perturbations. Then

Bin out —

<7? [HZ O(ttr)(f_j'f+: Hi”'m] )f

. oo
(r [{)-/J > Hi,,,df] .

- <.UT(+9C‘+= —004 )T

. [ ) .._...-_\‘+
— <r[1 (3+IJ Xy Ilint(”:| T

(T (¥ % n,,..(n] Ut (400, to)U (400, t0)T

= Bin-in )

n L oc
. —i |_.. Hintdl
[T é(ta)e -~ ]>

a

. ptex
|:(7 ?.I'“ Ilil‘.fd{] rr

n
- rto
e Hipne di
| |(.-+)(tu.)(’ J=co_ Hin ]>,
a
- f ‘.—l. Ii()\ ’[””(lt \/
I | O(tq)e - )
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iN

A formal argument,
graphically

e In terms of path integral contours this is simply

- >
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Applications



Correlator cutting rules

* In dS and Minkowski we can derive cutting rules for correlators
following the derivation of Cutkosky cutting rules for amplitudes
(with the additional complication of external legs)

* The starting point is the field identity

Z(_l)r Z j_ {C)O'(l:) (ta(l) )'-'C)U(r'}(fm:r])] I [(_C)a(r f l)(trf(r f l))"'C)mjn)(f’mjju))} =0

r=>0 cell(r,n—r)

* This leads to infinitely many propagator identities, which in turn
become correlator cutting rules

* These appear to be equivalent to the wavefunction cutting rules
of , the advantage is that one works directly with observables, i.e.
correlators, rather than with the more primitive wavefunction



Propagator identities

* We use the identity to re-write in-out correlators

O1 = o(X1. [,())m : Oy = c‘)(x2. (())”_m : O3 = Hint([) :

Im {(T[¢" Hins]) — (0™ T[¢" ™ Hint]) — (0" T[¢™ Hing]) } = 0,

 Changing integration variables and using the properties of
the Feynman propagator this becomes

BS({E:) —%[ B + (<) B (=B} oy, (B i)

BL({Ei}iz) + (1) "By ({E VL - Eiliimg))] =0



Contact diagrams

 There is a handy graphic notation

B({EYy) + ()" Ba({— B}y B} ma)]

]
>

Ev ... E, Er...Ep/Buit .. E,




Correlator cutting rules:
contact diagrams

 For exchange diagrams

E] .. .F:m b"m+1 . -E,, F:| ...F:”, b'vm—-l .o -F:” F[ ...F:n, bjm—1 .. -F:,, li‘] . .F:,,, b‘m—1 .. -F:H
1 ? ' R N ! !
| Ve /= \ + /=0
I w_ — |
By ({Eitie1) + (=1)"B>( { —Ei}i_) = (:3
- L 1
— 9 / B ?L-l-l {E } i =1 {lja —1 )BnUrl:z L+ 1({E }n m—+1° {J }
B I
B PL [T Ply:)

 We haven'’t yes found a good combinatorial structure to write
the most general correlator cutting rule



Scattering in de Sitter



dS scattering

Minkowski de Sitter

t=+00 N=+0c0

t=—00 n==—0o0

* The in-out formalism suggests a natural definition of a scattering matrix in
“extended” de Sitter

Spar = (0| U(400, —00) [n) = (n’ |T(J_'f fine (m)dn |y

e In and out states are tensor products of unitary dS irrupts

n
rn>::<gD’Amﬁkh«3aJﬂJ
a



Conceptual problems?

e Previous proposals of a dS scattering matrix are in [Marolf Morrison &
Srednicki '12; Melville & Pimentel 23]

e Common criticisms and difficulties:

e |IR divergences prevent a dS S-matrix. Possible, we assume that
derivatives and massive field cancel IR divergences (as e.g. for a shift-
symmetric massless field)

e Particles are unstable so no asymptotic states. Our ie prescription turns
on/off interaction adiabatically at # = = o

e blue-shifted particles near null infinity (the “big bang”) lead to large
backreaction. This is a coordinate artefact. In global coordinates a
particle can cross the “big bang”

e particle creation prevents an out state at # = (. Possibly, but we work at
n===00



dS amplitudes

* Since S-matrix elements don’t have only an energy
conserving delta function, we define amplitudes by

/
Sn.n’ — <'”-' 9 +:>C‘”~ _OC’>

* Using a “relativistic normalization” we define

A k) = \/2[k|al |0)

* Notice we don’t factor out the “energy conserving” Dirac
delta

(| U (400, —00) — 1]i) = i(27)* 6" (kin — kout ) Ai7 -




Contact dS amplitudes

e | et’s compute the simplest process: contact scattering of

n conformally coupled scalars (m> = 2H?) (n+ n' = 4 is
Minkowski amplitude)

A”‘”/ — _)\ (_IHOEI)II+I)’_45(ET) |

E’[ — — Z ‘ka,| + Z ’kbl



Exchange diagram

 For an exchange diagram of cc-scalars mediated by a cc-
scalar we find (r = 1 is just Minkowski amplitude)

> < »

N2 2r ’Zb (:k’in _ Em)l-f-r 1+ (:lxm + Em)l-{—l —1
: / 2kin (—E? + k2 )1+r—t

/“:H—r..‘H—r — ()r+l5(Eill o Emlt)

3+7,, 6+2"
Ei“ — E |k(1,| ’ E()llt = E k” I
a=1 a=4+4r

kin — g ka k()ut =

|
I



The optical theorem

Claim: these dS amplitudes satisfy the standard
generalised optical theorem (non perturbative, usual
derivation)

Aijp — A% =1 dITx (2m)*63) (ki — k) Aix A%y
/ I X
X

Because of our “symmetric” definition of in and out
states, the right-hand side above is positive in the forward

limit!

We hope to use this to obtain de Sitter positivity bounds



Non-trivial check

* The optical theorem is satisfied somewhat non-trivially.
For example, for r = 1 we have 4 — 4 scattering

A\ IT? | k2 + F?
(5” Ein — E(m — — (S, Ein — E(m
( b1u+/m) ( r) " 'I'”(b“ _lm) ( T):|

111

LHS =

27 Im [—

—

RHS—'/ dky ] (2m) 6" (ki — kx)|Ag 1|7
. =1 (27_) )QF\ () ¢ in X 4.1

(5, (Eiu — kiu)
2Ein .

— zﬂlj’\‘zH‘;(sl(bfout — b‘in)

* They seem pretty different. But integrating by part and

using the standard ie prescription to shift the energy pole
leads to a perfect match



Outlook

e \We have correlators, the wavefunction and dS
amplitudes, all computed by Feynman diagrams with a
combination of time-ordered (Feynman) and not-ordered
(Wightman) propagators

 There are only a dozen papers studying the general
singularity structure, Landau analysis and master integral.
It’s a great time to have a large impact.
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