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Have we found all of them?
10w many new particles still remain to
ye discovered?

‘hese are different questions:

If new particles are very heavy, we cannot make an
accelerator to create them in collisions of protons or
electrons. Example: Majorana see-saw neutrinos with
masses above TeV.

 If new particles interact very weakly we will not be
able to detect them. Example: axion with too weak
couplina.



Possible clues for the answers:

Theoretical prejudice - we may not like how the Standard
Model is constructed, many “why’s”:

e why 3 generations of fermions?
e why the top quark is much heavier than electron?
e how to unify all interactions with gravity?

e etc, etc...
Experimental guidance:

Find where the Standard Model of particle physics cracks
and cannot explain observations.

EinA wwhat +tha A~ncrAlAAaIAAl ANWeAary/AaFiAane manAdA frarm mariiAalAa
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' None. We have discovered everything we could, all
troubles of the Standard Model are resolved by its
unification with gravity. The energy scale is so high,
that we will never reach it experimentally.
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these different questions

' None. We have discovered everything we could, all
troubles of the Standard Model are resolved by its
unification with gravity. The energy scale is so high,
that we will never reach it experimentally.

- 10% new particles (e.g. suggested to solve the strong
CP-problem in quantum chromodynamics).

 Add ~ the same number as we already have in SM.
Every particle has its supersymmetric partner. So far

none were found, but many physicists were expected
+tA con them at | FP and | HO
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particle physics cracks
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- In the Standard Model neutrinos are Q “
exactly massless. Experimentally N %
neutrinos have tiny, but non-zero V.
masses.

- Our Universe contains an
unidentified substance: Dark
Matter. None of the known particles
can play the role of dark matter.

- Our Universe contains matter but
no antimatter. The Standard Model
fails to explain this.




Dark Matter
26.8%

Standard Model does
10t explain the
composition of the
Jniverse and therefore
should be extended

Dark Energy
68.3%




Inspirations

' Ockham’s razor principle: “Frustra fit per
plura quod potest fieri per pauciora” or
“entities must not be multiplied beyond
necessity” .

- Mendeleev in 1871 predicted several new
elements by putting already known into a
smart periodic table.

' Isaac Raby, when the muon was discovered
in 1936, asked: “Who ordered that?”
Fvervthina shotuild have 3 “Raicon d’etre”
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discovery in 2012

andard Model in now complete with
amilies of quarks and leptons,

Ions,

and Z bosons.
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Standard Model
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Filling the boxes
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Filling the boxes

= Atmospheric neutrino
L\, oscillations can be explained
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Filling the boxes

10 ordered that?

= Dark matter in the
Universe can be explained.

Dark Energy
68.3%
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figure from Klaric, MS, Timiryasov
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Dark matter sterile neutrino N1: long-lived light particle (mass
n the keV region) with the life-time greater than the age of

he Universe. It can decay as /N; — yv, what allows for

>xperimental detection by X-ray telescopes in space. Future
axperimental searches: Hitomi-like satellite XRISM (2023),
_arge ESA X-ray mission, Athena + (20287)

\vailable parameter space, Prediction for neutrinoless
urrent situation double beta decay:

" 1107

Int.).Mod.Phys.A 33 (2018) 05n06, 1842006

Hagedorn et al.,




discover Heavy Neutral Leptons”

storical development of the SM: gradual adaptation of electroweak theory to
perimental data during the past 50 years.

Bosonic sector of the electroweak model remains intact from 1967, with the
discoveries of the W and Z bosons in 1983 and the Higgs boson in 2012.

The fermionic sector evolved from one to two and finally to three generations,
revealing the remarkable symmetry between quarks and leptons.

It took about 20 years to find all the quarks and leptons of the third generation.

otimistic answer:

ne, Dark matter, at XRISM Two others at SHIP @ CERN in 2031 (?)

2024 (?) ‘E‘i
\/ \/




. . ' X-Ray Imaging and

Spectroscopy Mission

XRISM payload consists of two instruments:

Resolve, a soft X-ray spectrometer, which combines a lightweight X-ray Mirror
Assembly (XMA) paired with an X-ray calorimeter spectrometer, and provides
non-dispersive 5-7 eV energy resolution in the 0.3-12 keV bandpass with a field

of view of about 3 arcmin.
Xtend, a soft X-ray imager, is an array of four CCD detectors that extend the field

of the observatory to 38 arcmin on a side over the energy range 0.4-13 keV,
using an identical lightweight X-ray Mirror Assembly.

Spectral resolution is more than 10 times better than in XMM-Newton!

: -’ | 2 ‘
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do we need in particle physics?

Perhaps, just three. These are heavy neutral leptons
which can be the key to all known experimental
problems of the Standard Model:

e neutrino masses and oscillations
 pbaryon asymmetry of the Universe

e dark matter

NMavr he mara eame narticlae mavy nat fit +ta the



Axion and simplicity
QCD without axion:

» One “unnatural” number, 8 < 10~10
QACD with axion:

» 6 new degrees of freedom (KSVZ - one complex scalar field and a new massive
quark, DFSZ - two complex scalar fields, one is the doublet with respect to the
SU(2) weak isospin and another is a singlet).

» Two “unnatural” numbers:

2
- Ratio of EW scale and PQ scale: <vEW/FPQ> < 10714

2
- Quality of PQ symmetry: (mPQ bmking/ Fp Q) < 1030

[ N P e R [ Y a |



e B EEE R A R T N L R e e el T
simplicity

Josmological inflation

lost economical possibility - Higgs boson of the Standard Model drives
flation. Essential ingredient - non-minimal coupling of the Higgs to

urvature scalar: ¢ H'H R, £ > 1, making the theory scale-invariant at
arge values of the Higgs field.

redictions depend on the formulation of gravity

metric gravity, 8 Is the only dynamical variable

Palatini gravity, g and symmetric connection

Einstein-Cartan agravitv. spin connection and tetrad
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Inflation

figure from MS, Shkerin, Timiryasov
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Figure 5. Spectral tilt (a) and tensor-to-scalar ratio (b) in the case £, = 0. One can see th
two regions in the right part of the plots reproduce metric and Palatini Higgs inflation. The le
region is completely new. Note that due to the large values of the tensor-to-scalar ratio, this regic

is observationally excluded.
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Inflation

Observations:
Inflation is a generic phenomenon.

Large parts of the parameter space
reproduce the predictions of either
metric or Palatini Higgs inflation.

The spectral index ns is mostly
independent of the choice of
couplings and lies very close to

n,=1-2/N.

The tensor-to-scalar ratio
r can vary between 1 and 10-10.
Detection of r in near future?
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and Weyl invariance

-xtra symmetries lead to more definite predictions:

 EC gravity + scale invariance + Weyl symmetry
below the Planck scale ( MS, Karananas, Zell’23):

2 12
n~l——, rz—,
N N?

Here NV is the number of e-foldings.



Dark Energy

-quation of state of DE: € = wp

if = — 1 - no new particle is needed, this is just

cosmological constant, fits well to the SM (or the v
MSM)

 if w #= — 1 (DESI?), light or massless particle can do
the job. Possible origin - dilaton of spontaneously
broken exact scale invariance and unimodular gravity

(detlg,,] = 1). Also fits well to the SM (or the YMSM)
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Invariance

cale-invariant action in unimodular gravity with dilaton:

1 1 f
S = Jd4x [—5 )()(ZR + 5(8ﬂ)()2 — 1)54] .

quivalent metric theory (no unimodular constraint):
S = |\/—gd*x —lMZR — A +1(a 7)Y — U(7)
— g o P > 4 A

ith the potential of the thawing quintessence, leading to negative in wy, and w,
0 & wy+ aw, ais the scale factor)

A < y;?) 4
U=—exp|—-——-] r=
5}( MP




Conclusions

{ow many new particles do we need?

‘hree Is enough to explain neutrino masses, dark
natter and baryon asymmetry of the Universe, while
)ne more may be needed if Dark Energy is dynamical.



