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Main message

There is a strange, unfamiliar to most people construction that encodes a metric on a space into a
collection of differential forms on the same space

In 3D this coincides with the more familiar to people vielbein formalism

In 4D this is known under different names, but to physics audience is probably most known as the formalism behind
Ashtekar’s “New Hamiltonian formulation of GR”

People have searched for generalisation to higher dimensions, but | am not aware of any convincing story

What I am presenting can be thought of as such a generalisation

The aim of the talk is to explain this construction, and also explain why a physicist may care



Main message continued

The construction that encodes a metric into differential forms has spinor origin

Works (with appropriate modifications) in any D, in any signature

Schematically

“Geometric Map”

(Metric, unit spinor) @ (Collection of differential forms)

One of the aims of this talk is to explain this construction on several examples



® ®
Why interesting?
@® Inall known examples, gives an extremely powerful language to describe metric geometry

@® Givesa very interesting perspective on 4D GR, including how to generalise spin 2 to higher spins,
and on how to formulate gravity theories in higher D

How do we describe gravity + spinor matter in higher D?

® Ideas of dimensional reduction, taken to their extreme form, show that all known bosonic and
fermionic fields can be encoded into a metric + spinor in sufficiently high number of dimensions

Dynamics of such a system (PDE'’s satisfied) seems to be best approached by the scheme I am describing



Outline

Motivations: Dimensional reduction - (generalised) Kaluza-Klein, spinors
Prologue - Uniqueness of (metric) GR

Geometric map and resulting descriptions of gravity in 3 and 4D
Spinors and gravity in 8D

Outlook - Geometry behind the laws of Nature?



Motvations: Kaluza-Klein

The general idea of KK-type scenarios is that gravity + YM + scalar fields all have same origin

Dynamical geometry in higher D

N

v

Dynamics of gravity

in 4D YM fields Scalar fields
Example: Einstein-Hilbert gravity in §D
Gravity in 4D U(1])Cl§leziuge Sing]llee ls(;:alar

Conventional KK: Higher D geometry is Riemannian geometry of metrics, with dynamics dictated by the EH action



Spinors and Dimensional Reduction

Spinors behave very nicely under dimensional reduction Spin(n) x Spin(k) C Spin(n + k)
Basically  Snikx = Sn ® S

More concretely, in even dimensions Spin(2n) x Spin(2k) C Spin(2(n + k))

ot 1 _ _ S= are Weyl spinors (irreducible
Sn—l—k_S2n®32k@S2n®SQk y p . .
representations in even dimensions)

Spinors remain spinors under dimensional reduction



SM fermions and dimensional reduction

Recall that all 15 fermions (plus RH neutrino) of one generation of the SM can be put together into a single complex
16-dimensional Weyl representation of Spin(10) - this is the kinematics of SO(10) GUT

These 16 particles are also Lorentz Spin(1,3) 2-component spinors

[t follows that all field components of a single fermion SM generation can be put together into a single Weyl spinor

representation of a suitable Spin group in 14 dimensions
14 =10 + 4

KK - all boson fields are unified by a metric in a space of sufficiently high dimension

Also the spinor fields get unified in a spinor in a space of sufficiently high dimension

This suggests we should consider metric + (Weyl) spinor in sufficiently high number of dimensions

The basic question addressed by this talk is: What is the most natural dynamics for the system metric + (Weyl) spinor?
There is always the option Einstein-Hilbert + Dirac, but only in very specific dimensions works with Weyl

We will see that there are other natural possibilities



Prologue - Einstein’s GR in hindsight

Einstein’s “happiest thought” 1907: free fall = inertial motion

By 1012 it is clear to him that this means that gravity
can be encoded into non-trivial metric geometry

Misled by an erroneous argument he abandons the
covariant approach, only to return to it in 1915

1
He (eventually) writes what we now know as Einstein’s equations R, — §R9W = Ly

What we understand now (and what Einstein did not know) is that Einstein equations are the only second-order
PDE’s that can be written for a metric tensor



Uniqueness of GR

Many proofs, but particularly instructive is the elementary field theory proof. Let YJuv = Nuv + Ay

What is the most general free theory Lagrangian that can be written for pv  ?

Y

1
L = 5(fm,ﬂ,)Q + 5(8ah)2 — BhO* 0" hyy, — (0" hy,)?

[f we now assume general covariant (diffeomorphism invariance) ~ 0h,, = 9(,&,)

We are led to 1 5 1 5 2
L = 5((9”th) — 5(5’ah) — ho*0"h,, — (0"hy)
Unique diffeomorphism invariant second order in derivatives Lagrangian for the metric perturbation

Modulo an overall constant that can be absorbed into the field.

This linearised uniqueness argument works in any dimension!



Uniqueness continued

Harder to prove, but in 4D there is also the unique non-linear extension. Einstein-Hilbert action S|g] = / VIR

In higher D, Lovelock’s higher order in curvature terms are also possible, but GR is
still the unique quasi-linear theory (field equations are linear in second derivatives)

This uniqueness statement is very powerful, because we now know that the only input needed to
discover 4D GR is the idea that gravity can be encoded into metric geometry

Dynamics is unique and fixed by mathematics, at least in 4D, once kinematics is identified

We will follow a similar strategy, but for the system metric + (Weyl) spinor



Geometric map

One of the main points of this talk is that there exists an encoding

@ Collection of differential forms that are built

Given a metric and a (Weyl) spinor from the spinor

This collection depends on the “type of spinor”

An action principle can be written in terms of these differential forms.

. . . . Both the metric and the spinor
In general, gives dynamics to both the metric and the spinor b

(up to sign) are recovered
Linearised uniqueness can be analysed similar to GR

[ will now illustrate these ideas by considering 3D, 4D and then 8D



® ® ®
Spinors and gravity in 3D
Spinors are “defining” representations of the Clifford algebra VY + VY = 29l

In R? (half of) the Clifford algebra is generated by Pauli matrices

L (01 , [0 —i s (1
"_(10 7 i o0 )0 7 T o

olod + oot = 2591

)

Spinors are 2-component columns on which ¢"act

8%

Sazb:(ﬁ), a,BeC

0 —1
Invariant inner product on spinors (11, ¥2) = 1] €a, € = ( I ) .

(g1, g2) = (Y1,v2), Vg € SL(2,C)

[nvariant conjugation on spinors ¢ := etp* Combination of the two gives Hermitian inner product on spinors

TN
g =g, Vg e Spin(3) = SU(2) =



Can construct a vector Vi, := (¥, ")
Simple computation gives Vi, = (2Re(a* 3), 2Im(a*B), |o|? — |8]?) € R?

ltssquare  (Vy, Vi) = (|af* +B8°)? = ()7
Consider the space of unit spinors S3 = (o : () =1}

Then Vw gives a map ‘Zp . §° — 5% C R?

This map is the projection map of the Hopf fibration S! — 5% — 52

i i
Moreover, can construct a complex vector My, = (¥, 0"1))

Simple computation gives 7y = (—042 + 5%, —73(042 + 52)7 2a/3)
This vector satisfies (i, y) = 0, (Mg, Vig) =0,  (17hy, my,) = 2(ih, 1)°

This shows that for a unit spinor we get an orthonormal frame
Recall that a metric can be encoded into a
51 22 =3 ¥

(€ps €y €)= (Re(my ), Im(my ), Vy) choice of a frame on TM, whose vectors
S — / are declared to be orthonormal

Geometric

— | Frame = Metric + Unit spinor (mod Z>)
map example "



Metric + spinor encoding by differential forms

The idea of the geometric map is to produce a collection of differential forms from the metric and a spinor

The metric can be recovered from these differential forms

In this example this was the fact that the obtained triple of 1-forms was orthonormal

One can then forget about the origin of the differential forms, and continue to use the explicit formula for the metric

In this case we just take an arbitrary triple of 1-forms, and declare them orthonormal, thus encoding the metric



Field equations

Witten: 2+1
gravity as an
exactly soluble
system

[t is well-known that in 3D, the most efficient description of a metric is provided by the frame formalism

Concretely, consider the co-frame, which is a triple of i-forms  e' € A' (M) .
- Cosmological constant (scalar curvature)

We then have Cartan’s structure equations  de* + €% Eod Aef =0 /
dw' + (1/2)e9Fw? A w”® = NeFel A eF
The first equation defines the components of the spin connection «°

The second equation is then the statement that the curvature is constant

There is a simple action principle giving these as Euler-Lagrange equations

| o1 N o
Sle,w| = /ez A (dw’ + 56”’%03 Aw”) — ge”kez Ael A e”

Considering spinors, and natural geometric objects that arise as spinor bi-linears, we were led to the
notion of the frame, as a triple of differential 1-forms, as the best object to encode the metric. The
second-order PDE’s that one wants to impose on the metric (Einstein condition) become simple
equations written in the language of the differential forms




Remarks on uniqgueness
Uniqueness can be analysed similarly to the GR case, by considering the most general linearised Lagrangian, and then
Imposing gauge-invariance

The fields are perturbation of a metric + perturbation of a unit spinor = perturbation of a frame

Unique Lagrangian once diffeomoprhism invariance together with SU(2) invariance are imposed

In particular, the spinor is non-propagating in the SU(2) invariant theory



Spinors and gravity in 4D
’-matrices are now 4x4

vy = 0 1 i 0 0 everything is signature dependent
I 0 7 ’ —iOi 0
we use Euclidean to simplify life

Dirac spinors are 4-component

S=5,.85_, Sy ~ C? | |
Weyl spinors are 2-component 7 -matrices are off-diagonal
vy S_|_ — S_
Q0
Invariant inner product on S St D¢ = ( 3 ) : and vice versa
(Y1, 19) = ¢f€¢2 where ¥1,2 are both eitherin S+ orin S_

[nvariant conjugation on S+

Spin(4) stabiliser of a spinorin S, is SU(2)

What are the geometric objects that can be constructed from a Weyl spinor?



We must insert an even number of V' -matrices between two copies of the spinor

;
Can define W = §<w, Vip Yo W) dxt A dx” real
1
() := §<¢77[u%]¢>dﬂ?” A dz” complex
A simple computation gives w= V%" 0 =m>"

| 1. |
where X = daz* A dx' — 56” “dz? A dx® s the basis of self-dual 2-forms on R%

and Vj, mfp are the previously encountered vectorsin R3

Another simple computation shows that for a unit Weyl spinor ~ End(R*) > .J,, = V3"
is a complex structure  (Jy)* = —1
Wehave QA€ = m;;z:i A m{sz ~ (m,m) =10 this means that {} is decomposable
There exists a basis of eigenvectors 01,02 € Atz suchthat Q=61 A6y, iw =01 N0+ 05 A0

The data (w, §2) is not arbitrary but satisfies j QOANQ=0, QAw=0, 20AQ=w"



Theorem: A pair of 2-forms (W, {2) satisfying the boxed relations (on the previous slide), defines a (Euclidean signature)

metricon R* inwhich w,Re(2),Im(2) isan orthonormal basis in the space of self-dual 2-forms

Explicitly  2g(§,m)vol, = (ieQ A ipQ + i, Q2 N ieQ) A w
Alternatively, can describe the same databy X' :=Re(Q), X*=Im(Q), ¥°’:=w
These 2-forms satisfy X A X7 ~ §%

And define the metric via g(f, U)VOlg = Eijkig YA z’an /\ »F Mysterious Urbantke formula

Another example of

, dim{X"/constraints} = 18 — 5 = 13 = 10 + 3
a geometric map

A set of 2-forms satisfying algebraic relations = Metric + Unit spinor (mod Z5 ) l

There is a close link between these ideas and Kahler geometry, where the most useful description of the
geometry is known to be precisely in terms of (w, 2)



Like frame 1-forms in the case of 3D, a triple of 2-forms 3 : ' A 37 ~ §Y

provides arguably the most efficient known description of gravity in 4D - Plebanski formalism = Ashtekar formalism
. o . Cosmological constant
A + €77 A7 A SF = 0 e

dA* + (1/2)e7% A7 N AF = (T — %5”’)23'

Encodes Weyl curvature

Theorem: When fields X*, A* satisfy the above equations, the metric defined by the 2-forms X? is Einstein

Importantly, we see that as dimension increases, the object that spinors tell us we should use to describe the metric
are not frames - rather they are a collection of differential forms of higher degree

There is also a beautiful action principle giving the above as its Euler-Lagrange equations

| N . |
S[Y, A, 0] = /z@ A (AT + SR AT N AR) = S (0 — 26Y)8 A 3



Remarks on uniqueness

Like in the 3D case, linearised uniqueness is easy to analyse

The relevant linearised fields are metric perturbation + unit spinor perturbation

Again, one finds a unique linearised Lagrangian once diffeomorphism and SU(2) gauge invariance are imposed

Like in 3D, the spinor is non-propagating in the SU(2) invariant theory



G-structures

Very convenient to formalise the examples we have encountered as so called G-structures

Metric geometry is not the only possible one

After the approach to geometry pioneered by Cartan, we now know many more types of geometry

Definition:  G-structure is a reduction of the principal GL(n,R) bundle of frames on an n-manifold, to a G-subbundle
Examples: o Volume form - reduction to SL(n,R)

@ Metric - reduction to O(n,R)

@ Almost complex structure - reduction of GL(2m,R) to GL(m,C)

@ Hermitian metric - further reduction to U(m)

Can think of them as a collection of tensors invariant under G
The two examples we have encountered

@ {o}-structure in 3D

o SU(2)-structure in 4D



G-structures and Spinors

Given a metric - rank 2 symmetric, non-degenerate tensor in S?T*M - can form the Clifford algebra

uv + vu = 2g(u, v), u,v € TM
[ts fundamental representation is known as the spinor representation

Remark: In order for spinors to exist globally on M, it must be spin (second Whitney class vanishes)

Now, given a spinor ¥ there exists the stabiliser subgroup (possibly trivial) G C Spin(n)

Many types of G-structures arise as those stabilising a spinor - they can be referred to as “spinorial”

Examples: Calabi-Yau SU(m) structure - pure spinor of Spin(2m,R)

Stabiliser of a non-zero spinor in 3D is {0} - get the already encountered {0} structures in 3D
dim(GL(3,R)/{0}) =9=6+3

Stabiliser of a non-zero Weyl spinor in 4D is SU(2) - get the already encountered SU(2) structures in 4D

dim(GL(4,R)/SU(2)) = 13 = 10 + 3



Geometry from spinors

The point of the examples considered is that the same phenomena continue and extend to arbitrary dimension
and arbitrary signature. Thus, given a spinor of Spin(r,s)

Geometric map - Spinor bi-linears define geometric objects - in general differential
forms on M S® S = op_oA" (M)

The collection of geometric objects (differential forms) one obtains from a spinor
can be used to encode the metric.

In all known examples, this encoding is the best possible (most useful) description
of the metric+spinor system!

This construction explains why the metric can be encoded into objects of a
different type - differential forms



Spinors and gravity in 8D

As one increases the dimension the story is analogous. More and more exotic ways to encode the metric arise

In 8D, the Majorana (real) spinor of Spin(38) e S, ~ RS
(¥,v) =1 unit spinor
1
The only independent geometrical object one can construct is O = o4 (U, Yu Yo Yo Yo0)dxt N dx” A dxP A dx®

This 4-form satisfies 27 independent algebraic relations. Known as the Cayley form. Encodes the octonionic product

Explicit formula for the metric defined by the Cayley form is available, but will not be needed
The stabiliser of a unit real spinor in 8D is Spin(7). Also the GL(8,R) stabiliser of a Cayley form

dim(GL(8,R)/Spin(7)) = 64 — 21 = 43 dim(metrics) =36  dim(unit spinors) = 7

: 4 :
dim(A®)/constraints = 70 — 27 = 43 This explains why the geometric map can work in this case



Linearised dynamics

Most general diffeomorphism invariant free theory Lagrangian for perturbations of the Cayley form?

Proposition: A computation shows that there is a one-parameter family of such Lagrangians

1 K 1 K 1 K 2

= (1 ~ C2__1__ a 2__1—— aba—— aa2

S(1+ D) @ahne)? = (1= 2)(8ah)? = 5 (1= 2)h0"0 oy — - (0 har)
_1 & 2 2 aY ba ¢
+24(1 -+ 5)(8a€bc) — §(1 -+ 5)6’bh o fca

Here K isa parameter and field &ab belongs to the 7-dimensional representation of Spin(7),

here encoded as a 2-form satistying some algebraic conditions

Remark: ~ = —2 gives the same linearised Lagrangian as Einstein-Hilbert

For all other values we have 7 additional propagating degrees of freedom



Non-linear completion math DG

There is a one-parameter family of actions, analogous to the Plebanski action in 4D

A
S|P, C| = /M A (dC —6C N C) + g(C’)chp + G Ve + constraint terms.

1 8D version of the
' _ = —DPAND
Here Ciis a 3-form and Ty Plebanski formalism

(C A& C)'uypo' . — C,w/acpcfﬁgaﬁ

[ts linearisation gives the Lagrangian described on the previous slide

This describes (Euclidean) gravity in 8D, coupled to spinorial matter, which, in general, carries propagating DOF


https://arxiv.org/abs/2403.16661

Summary

There is the geometric map spinor @ spinor - geometric objects (differential forms)

Differential forms arising via this map can be used to encode the metric (in a way
that is dimension and signature specific)

In all known examples, the way to encode the metric as suggested by spinors is the
most efficient and useful way to describe the metric + spinor geometry, and also
impose various differential equations on it

Many interesting geometries arise in the way described

Many known examples fall into the same pattern. In particular the known (but still
exotic to many people) descriptions of 3D and 4D gravity are covered

Do not use the metric to describe geometry. Use differential forms that originate in spinors




Speculative outlook

Coming back to the Kaluza-Klein dimensional reduction ideas

My hope is that in the search for a geometry that is relevant to the description of the real world

some version of this construction (with a Majorana-Weyl spinor) of Spin(12,4) is useful,

in the sense of providing the right geometric setup for unification by dimensional reduction ideas.

The basic idea is to look for a spinor orbit in 16D that can break Spin(16) in a realistic fashion
Symmetry breaking effected by the spinor matter itself

The metric is then described by a collection of differential forms, as relevant for that particular spinor orbit

Machian - no (spinor) matter, no metric



‘Thank you!



