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LCDM provides a remarkably simple 
description of the large-scale universe:
just 5 fundamental physics parameters

the matter/energy content
1. 𝜌!	 cosmological constant
2. ⁄𝜌#$ 𝜌% 	DM/baryon density
3. ⁄𝑛% 𝑛& 	 baryons per photon
the large-scale geometry
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4.	𝐴-= (7.6 ± 0.1)×10+,.
5.	 𝑛/−1 = −0.04 ± .006	

(𝑘∗ ≡ 	0.05Mpc−1)

Large scale Newtonian potential

Planck CMB

many quantities are observed to be so far consistent with zero: 
space curvature, tensor/isocurvature perturbations, non-Gaussianity…



ESA Planck satellite

Type	equation	here.

𝑙

Large scale perturbations

Polarization

Temperature



The simplicity of the observations suggests we look for 
     simpler and more elegant theoretical explanations

         



Planck 
length 10 !m

20 Gpc
1 mm

This talk: a unified framework based 
on extrapolating the radiation epoch 
(and the SM) all the way back 
to the big bang singularity 

Guiding principles: 
CPT symmetry, analyticity, asymptotic 
conformal (Weyl) symmetry

new explanations for SM/LCDM’s key features
3 generations including RH 𝜈0𝑠 
no need for inflation or any additional particles
with minimal assumptions we explain 
the amplitude, tilt and statistical character 
of the primordial fluctuations 



Friedmann-Lemaître-Robertson-Walker cosmology

         

In Planck units

                 3�̇�!= 𝑟	 + 	𝜇𝑎 − 3𝜅𝑎! + 	𝜆𝑎" 
                                                                                               

general solution (Jacobi elliptic function) has beautiful analytic properties
(single-valued in complex 𝑡-plane, only singularities are simple poles, 
arranged in a periodic lattice)

𝑑𝑠! = 𝑎 𝑡 ! −𝑑𝑡! + 𝛾#$𝑑𝑥#𝑑𝑥$
scale 
factor

radiation   matter  space curvature  Lambda

conformal 
    time

comoving symmetric space
       (assume compact)

𝑅(2) = 6𝜅



For a perfect radiation fluid, 𝑇	 4	
4 = 0  (𝑃 = !

"5), i.e., local conformal symmetry, 
∃ ∞2 solutions to Einstein-fluid equations which are analytic at 𝑡 = 0.	

They all have a global isometry 𝑡 ↔ −𝑡. They are saddles of the real-time path 
integral for gravity with CPT-symmetric boundary conditions. 

The singularity is purely conformal and invisible to conformally invariant matter

BKL or Mixmaster excluded because they are singular hence not genuine saddles

𝑑𝑠' = 𝑡'(−𝑑𝑡' + ℎ67(𝑡, 𝒙)𝑑𝑥6  𝑑𝑥7);	ℎ67 𝑡, 𝒙 = ℎ67. 𝒙 + 𝑡' ℎ67' 𝒙 +. . ,
regular 3-metric determined by 

 Einstein eqns
regular 4-metric
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The full nonlinear Einstein’s equations for inhomogeneous cosmology can be 
solved in a covariant gradient expansion by matching the two asymptotic series
                                                                                                          (NT, in prep. 2024) 

singularity

de Sitter 
boundary

mirror 
universe

conformal
    time
       

conformal 3-geometry provides complete Cauchy data

(“double Fefferman-Graham”) 

Conformal (Penrose) diagram



a minimal explanation of the dark matter



Gravity

SU3xSU2xU1
L LL

Generations      1      2      3



Gravity

SU3xSU2xU1

Generations      1      2      3



can impose CPT symmetry via the “method of images”  
               the big bang singularity is then a CPT mirror 
                  

𝑎(𝑡) ∝ 𝑡
analytic conformal zero:

maximal extension has 𝑡 → −𝑡 isometry

hot big bang cosmology:



𝑎(𝑡) ∝ 𝑡

𝑎(𝑡) ∝ !
"∗#"

simple pole

simple zero



radiation matter Lambda

If one 𝜈1	is stable, its density matches Ω23 if its mass 𝑀 ≈ 5×104𝐺𝑒𝑉

choose vacuum state consistent with CPT symmetry
     predict density of  stable 𝜈!’s  in the “out” regions

𝜈!	field equation is regular at the bang

(created when 𝐻 ≈ 𝑀	by the time-dependence of the background)

Also explains the baryon asymmetry as in Shaposhnikov picture. However, our 𝜈1	DM particle 
is stable and much heavier. We also have a testable prediction: the lightest neutrino is massless.

Boyle, Finn & NT,  Phys. Rev. Lett. 121 (2018) 251301; 
Annals of Physics 438 (2022) 168767



𝐻

𝜈( 𝜈(𝜈)

𝐻

will soon be tested using EUCLID, LSST and S4

Stability of one RH neutrino ⇒	ℤ* symm ⇒ lightest 𝜈 massless



Light neutrinos: observations

we 
predict 
zero

eBOSS 2007.08991

current data

sum of 
masses
minimised

Normal hierarchy Inverse hierarchy

Normal hierarchy:    

Inverted hierarchy:

𝑀! ≡7𝑚! ≈ 0.06	𝑒𝑉

𝑀! ≈ 0.1	𝑒𝑉



a minimal explanation of the large-scale geometry

Penrose



dark energy

𝑆𝑈
3×
𝑆𝑈
2×
𝑈1

gauge fields

particles

gravity

Higgs

Path integrals and gravity

𝑍 = 𝑒 	Stot

partition 
function

gravitational 
   entropy

With pbcs in imaginary time,  = 𝑒 	Sord + Sg



Im[𝑎 𝑡 ]
∟𝑡 ∟𝑡

X
bang Re[𝑡]

Im[𝑡]

Re[𝑎 𝑡 ]

space

imaginary time

Euclidean instanton for a universe
w/radiation, matter, curvature, Lambda

𝑎 𝑡  is single-valued and doubly periodic in the complex 𝑡-plane. The 
imaginary time period and the associated action (which is topological by 
Cauchy’s theorem) determine 𝑇!	and the gravitational entropy Sg



Sg  can be calculated analytically for a general cosmology with radiation, matter, 
space curvature and a cosmological constant (i.e., all globally conserved quantities).

Inhomogeneities and anisotropies treated in cosmological perturbation theory.

Sg gives the total number of states associated with a cosmology. It favours
1.  homogeneous, isotropic, spatially flat universes 
2.  a small, positive cosmological constant

This is a thermodynamic explanation of the large-scale geometry of the cosmos.
No smoothing or flattening mechanism is required. 

Note: Sg is the global entropy  and counts the total number of accessible microstates. 
           It is independent of the real time by Cauchy’s theorem. 

(echoing earlier arguments of Baum, Hawking, Coleman…)
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Suggests an explanation of the matter/radiation and Lambda/matter coincidence 
  from equipartition (must also include gravitational entropy due to black holes)
    We still need to understand how to impose all of the relevant constraints. 

Including matter



a minimal explanation of the perturbations



Quantum fields and gravity
vacuum energy and pressure are divergent in 
physical regularizations (e.g., point-splitting, Maxwell):

⟹ 𝑇!" ~ #
$$%&%

1 0 0 0
0 !

" 0 0
0 0 !

" 0
0 0 0 !

"

, 
B.S.DeWitt, Phys. Rep. 19 (1975) 295

where ∆𝑡' = invart time-like separation

Can be renormalized away but leaves us without a physical understanding

In interacting theory, e.g. QED, quantum divergences spoil the local scale (Weyl) 
invariance of Maxwell and Dirac fields in curved backgrounds: two independent 
conformal anomalies. 
𝑇	 !
! = 𝑎	𝐸 + 𝑐	𝐶'; 𝐸 = 𝑅)*+,𝑅)*+, − 4𝑅)*𝑅)* + 𝑅'; 𝐶' = 𝐶)*+,𝐶)*+,

These cannot be renormalized away.



Described by a four-derivative, Weyl-invariant (i.e., locally scale-invariant) action 

                            𝑆+ = −!
" ∫ -

#. /0 	(	 2 G3..)

Canonical quantization leads to negative norm states. However, as we shall see, 
these can be removed using an infinite-dimensional symmetry (superselection).  

The only remaining physical state is the vacuum, which has scale-invariant
fluctuations and vacuum stress energy

Dimension zero scalars:

𝜑 0, 𝒙 𝜑 0, 𝒚 = ∫ &"𝒌
($	*)"

,-𝒌.(𝒙0𝒚)

%	2"

cf.  approximately scale-invariant Newtonian potential Φ observed in cosmology



Dim 0 scalars can cancel the above 3 anomalies in 
coupling the SM to gravity

2. Conformal anomaly (Euler) ∝ 𝑛5,7 + !!
" 	𝑛8 + 62	𝑛9 − 28	𝑛5,:

3. Conformal anomaly (Weyl2)  ∝ 𝑛5,7 + 3	𝑛8 + 12	𝑛9 − 8	𝑛5,:

Dim 0 scalars

Dim 1 scalars
fermions

gauge bosons

1. Vacuum energy                      ∝ 𝑛5,7 − 2𝑛8 + 2𝑛9	 + 2𝑛5,:

1) All three vanish iff  𝑛-,/ = 0 ⟹  no fundamental dim 1 scalars allowed 
                                                                       (i.e., the Higgs must be composite)
2) Any two equations then give 𝑛0 = 4𝑛1 and 𝑛-,2 = 3𝑛1 

3) For gauge group 𝑆𝑈3×𝑆𝑈2×𝑈1,	cancellation of all three anomalies
 predict𝐬	𝑛0 	=48, i.e., 3 fermion generations, each with a RH 𝛎

L. Boyle+NT, 
arXiv:2110.06258 



    primordial perturbations from dimension 0 fields
Running couplings violate scale symmetry: at high temperature,
	 𝑇H

I3≡ 𝑇	 J
I3J	

H
 = 3𝑃 − 𝜌 ≈ ∑𝑐K𝛼KG 𝑇L ≡ 𝑐H

I3𝑇L;   in SM, 𝑐H
I3 ≡ MGN

MO4𝛼P
G 	− QN

RG𝛼G	
G − !"

# 𝛼S
G 

This anomalous trace can be cancelled by introducing a linear coupling in the effective action,

ΓT =.
UVM

W$,& 1
2
1−𝑎𝜑UΔL𝜑U + 𝑎 𝐸 − G

S⊡𝑅 + 𝑐𝐶G − 𝑛X,OZM𝑇H
I3 𝜑U

Note: the linear term generalizes the one used in string theory to preserve conformal symmetry

The final term corrects the Friedmann-fluid equations, converting quantum correlations 
in the dim-0 fields into large scale fluctuations of the conformal factor:
	
�̇�$ = "#$

% %&&'(!()(*+(,)) with ;𝜑(𝑥) 	= 𝑛X,OZM∑𝜑U(𝑥),	 𝑐T 	= 𝑐H
I3	/ '(

)&𝒩[\\ , 𝒩[\\ ≈106*!

This corresponds to a “comoving curvature perturbation” ℛ 𝑥 = *
!𝑐T ;𝜑(𝑥)

          (adiabatic, Gaussian, scalar: no primordial long-wavelength tensors)

Boyle+NT
arXiv: 2302.00344 



Planck energy 10%(
Energy scale in GeV

Buttazzo et al
1307.3536 
[hep-ph]



Spectral tilt
Dominated by QCD coupling 𝛼#: asymptotic freedom	⟹	red tilt

We argue that 𝒫ℛ(𝑘) runs with 𝑘 as 𝛼#'(𝑘), as 𝑘 → 0 

This leads to the prediction	𝑛5−1 ≡
$ %& 𝒫ℛ )
* %& ) = 2 +,

+,
= −-

.;,(</)

Since this is a critical exponent we can extrapolate from the Planck length 
to today’s Hubble radius traced (comoving) right back to the Planck time.
                       (30 orders of magnitude in length scale!)

Remarkably, the amplitude and tilt then agree with Planck’s observations

𝛽



Prediction for primordial perturbations

𝒫ℛ 𝑘 = 4565

7 5	8 9
:;
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𝒩?@@
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C 7D48 ;     𝑘.= comoving Planck wavenumber

with 𝑐!"# ≡ $%&
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%  and 𝒩CDD = 106I9

Now use  ⁄𝑘E 𝑘∗ GHIJ = 14.8 ± 5.1, 	 𝑘∗ ≡0.05 Mpc-1

Thus, we predict	𝒫ℛ = J A
A∗

LJCI
,	 𝐴 = (13 ± 5)×10HGK; 	𝑛L = 0.958

 
cf. Planck satellite:    𝐴 = 21 ± 0.3 ×10HGK; 	 𝑛L = 0.959 ± 0.006



Interacting dimension zero scalars

The most general renormalizable action consistent with 
classical scale invariance and shift symmetry 𝜑 → 𝜑 + 𝑐

B. Holdom 2303.06723

𝑆 = ∫[−!
$ (	 𝜑)!+𝜆"	 𝜑(𝜕𝜑)!+ 𝜆#((𝜕𝜑)!)!]



𝑆 = ∫[−!
$ (	 𝜑)!+𝜆"	 𝜑(𝜕𝜑)!+ 𝜆#((𝜕𝜑)!)!]

1 loop divergences

2 loop divergences

w/ Maegan Anderson
      and Franz Herzog



The curve 𝜆M = −!
$𝜆#
' 	, i.e.,                                     

    is special: it is preserved under RG flow (𝑍M = 𝑍#')

𝑆 = -−!$ [	 𝜑 − 𝜆/(𝜕𝜑)
$] $

       

1 loop 2 loop

asymptotic freedom
        in the UV

strong coupling in IR

𝜆#

𝜆M



• On the special curve, action is a perfect square 𝑆 = −)
*∫((	 𝜑))+(𝜕𝜑))))

• Alternative formulation 𝑆 = ∫(𝜕𝑈𝜕𝑉 + )
*(𝑈𝑉)

));   𝑈 ≡ 𝑒*

• Equations of motion 𝑈 = − 𝑈𝑉 𝑈, 	 𝑉 = − 𝑈𝑉 𝑉
• Infinite number of conservation laws: if	 𝛼 = − 𝑈𝑉 𝛼, i.e, 𝛼	sats KG eq with
    spacetime-dependent “mass squared”, then both of the currents
 𝐽+, = 𝑈𝜕+𝛼	 − 𝛼	𝜕+𝑈 and  𝐽+- = 𝑉𝜕+𝛼 − 𝛼	𝜕+𝑉 are conserved

Setting all the corresponding conserved charges to zero eliminates the negative 
norm states, leaving the vacuum as the unique physical state.

(with S. Bateman)



Summary
• a minimal, testable explanation for the cosmic dark matter
• a thermodynamic explanation for the large scale geometry
• a minimal mechanism to cancel the SM’s vacuum energy and trace anomalies
     (as well as nasty SM corrections to the graviton propagator)
• requires 3 generations of fermions, each with a RH neutrino
   (and a composite Higgs which may help to explain the gauge hierarchy)
• the same mechanism quantitatively seems to explain the cosmological density
   perturbations and predicts zero tensors – a complete treatment is under way



Thank you for listening!

Boyle, Finn & NT,  Phys. Rev. Lett. 121 (2018) 251301; Annals of Physics 438 (2022) 168767
Boyle & NT arXiv: 2110.06258, Phys. Lett. B849 (2024) 138442 
                     arXiv: 2201.07279, Phys. Lett. B849 (2024) 138443 
                     arXiv: 2302.00344 and references therein


