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Motivation - Black Holes

I Black holes are singular solutions of Einstein equation

I The space-time singularity is causally shielded behind a null
hypersurface called event horizon.

I Like most natural objects, black hole geometries also evolve
with time, i.e., their event horizon becomes dynamical.

I Also they radiate a lot of energy as gravitational waves in the
process.

I According to General Theory of Relativity all these dynamics
of Black Holes are governed by Einstein’s equation.



Motivation (contd)

1. Einstein’s equation is a deceptively simple looking equation. It
relates curvature of the space-time with the energy
distribution.

2. Curvature in encoded in the Ricci Tensor Rµν and Ricci scalar
R and energy distribution is given by the stress energy tensor
Tµν .

3. However, in reality this is a set of very complicated nonlinear
partial differential equations where the basic variables are the
different components of the space-time metric.

4. Exact analytic solutions are almost impossible to construct
unless we have special symmetries and stationarity.

5. Even numerical solutions are not easy to find in a completely
dynamical situation



Motivation

1. In such a scenario perturbative techniques often prove very
useful.

2. One standard way to construct perturbative solutions around
an exact one is to slightly break any of the symmetry of the
exact solutions.

3. For example, we could have a static Black hole solution
perturbed by a time dependent component of small amplitude.

4. In this talk, our goal would be to develop another new
perturbation technique, particularly suited to handle the
dynamics of black holes.

5. We shall use the dimension of the space-time (D) as new
perturbation parameter.



Why we could use D as perturbation parameter

I It turns out that Black hole solution (even when there is
dynamics) simplifies a lot in the limit of large D.

I In fact in strict D →∞ limit, we can construct a simple and
exact dynamical black hole solution

I This leads to a natural extension of this exact solution in
powers of

(
1
D

)
I Further we could also track the non-perturbative effects falling

off like e−D .



Goal of this talk

In this talk we shall see that

I New dynamical Black hole solutions with any asymptotic
geometry could be constructed as a power series in 1

D

I Boundary data for these solutions are encoded on the horizon
- viewed as a massive codimension-1 membrane embedded in
the asymptotic geometry.

I There is a one to one duality between the dynamics of this
membrane and the a dynamical black hole solution

I The gravitational radiation out of this massive membrane
maps to the radiation out of the dynamical black hole.
This turns out to be the nonperturbative effect in the context
of the

(
1
D

)
expansion.



Plan of the Talk

I First we shall give the intuition behind the large D
simplification of the black hole type solution.

I Next using this intuition we shall propose an ansatz for the
solution at strict D →∞ limit.

I We shall show how this leading solution could be corrected
order by order in a series in

(
1
D

)
and how some components of

the Einstein’s equation lead to the dual membrane dynamics.

I Next we shall sketch the method to track the gravitational
radiation as the nonperturbative effect.

I Finally we conclude with some open questions and possible
applications of this technique for astrophysical phenomena.



Simplification at large D

I Gravitation potential around a localized spherical massive
source will fall off with distance r as

(
M

rD−3

)
in D dimensions.

here M is the energy scale associated with the problem.

I Note limD→∞
(

M
rD

)
= 0 whenever (r −M

1
D ) is finite and

positive.

I Now consider the case when r could be written as
r = M

1
D

(
1 + x

D

)
. We could take D →∞ limit keeping x

fixed.

lim
D→∞

(
1 +

x

D

)−D
= e−X

I So the first observation:
as D increases, the gravitational force of any localized massive
body confines within a thin shell of thickness (1/D) around
the outer boundary of the mass distribution.



Simplification at large D (contd)
I Now suppose the gravitational potential has the schematic

form

Potential ∼
(
M(yµ)

rD

)
, {yµ} ≡ all other transverse coordinates

I Note

∂r

(
M

rD

)
r=M

1
D

= D

(
M

M
D−1

D

)
, ∂yµ

(
M

rD

)
r=M

1
D

=

(
∂yµM

M

)

I Clearly the variation of the potential along the radial direction
is D times faster than the other {yµ} directions.

So the second observation:

I In the strict D →∞ limit, it is the derivative along the radial
direction that contributes to the equations ;

I As D →∞, the metric acquires effective translational
invariance along all the non-radial directions.



Simplification at Large D - Summary

As D →∞
I The gravitational force of any localized massive body confines

within an infinitesimally thin shell (of thickness of the order
O(1/D).

In strict D =∞ limit

I It is the derivative along the radial direction that contributes
to the equations ;

I The metric acquires effective translational invariance along all
the non-radial directions.

Deviation from the strict D →∞ limit amounts to a breaking of
the translational invariance along the {yµ} directions within this
infinitesimally thin strip.

Every derivative along yµ directions will have a factor of 1
D

compared to the radial derivatives, which could be handled
perturbatively in a series in

(
1
D

)
.



The leading solution
I As it is true for any perturbative technique, the starting point

is the exact leading solution.
I We shall use the exact stationary black hole solutions to

determine this starting ansatz.
I Schwarzschild black holes in Kerr Schild (chk) coordinates:

ds2 = −dt2 + dr2 + rD−2dΩ2
d−2︸ ︷︷ ︸

Flat space

+M r−(D−3)(dt + dr)2

I We evaluate each component of Einstein’s equation on this
metric

I Inspecting their large D limit we distill out the those
structures of the above metric that are essential for solving
the leading large D equation and therefore must be there in
the leading ansatz.

I We should emphasise that the we do not have any systematic
derivation for the leading ansatz. In the end it is an educated
guess that could be used as the starting point for the whole
technique.



Our final ansatz for the leading solution

Our final ansatz (in asymptotically flat space)

ds2 = GAB dxA dxB = ds2
flat + ψ−D(OA dxA)2

where ds2
flat = Flat space metric = ηAB dxA dxB

I Here ψ is a smooth function where ψ = 1 defines the event
horizon.
Hence dψ is null on ψ = 1 hypersurface.

I Define

1. norm of dψ w.r.t the flat metric = N ≡
√

(∂Aψ) (∂Bψ) ηAB

2. nA dxA = dψ
N

unit normal to the ψ = const surface, viewed as embedded in the flat space.

I O ≡ OA dxA is null oneform satisfying

1. OA nB GAB = 1 OA OB GAB = 0 - everywhere.



Metric at leading order
ds2 =

[
ηAB + ψ−D OAOB

]
dxA dxB ,

Event Horizon: ψ = 1, O is a null oneform, N ≡ norm of (dψ) w.r.t ηAB , n ≡ dψ
N

I There are two sources of O(D) terms.

1. when a derivative act on ψ−D

2. When we trace over the (D − 1) transverse derivatives.
A single derivative along a transverse direction is of O(1). But when we sum up the derivatives in all
transverse directions it will be of O(D).

i.e., ∂AOB ∼ O(1) but
∑

A ∂AOA = ∇ · O = sum of (D − 1) terms, each of order O(1) ∼ O(D)

I We could easily see that the leading term in Einstein tensor ,
once evaluated on the above metric will be a product of the
above two types of terms and therefore is of O(D2).

I The final form of the Einstein tensor on ψ = 1 hypersurface;

EAB |ψ=1 =

(
DN

2

)[
(∇ · n +∇ · O − 2DN) OAOB

+ (∇ · O − DN) (OAnB + OBnA)

]
+O(D)

here ∇ denotes derivative w.r.t the flat space metric and all index contractions are also w.r.t ηAB



Metric at leading order (contd)
ds2 =

[
ηAB + ψ−D OAOB

]
dxA dxB ,

Event Horizon: ψ = 1, O is a null oneform, N ≡ norm of (dψ) w.r.t ηAB , n ≡ dψ
N

So we conclude
I Any metric of the above form will satisfy the Einstein

equation at leading order provided on the horizon ψ = 1

∇ · n = ∇ · O = DN (1)

I Note it is enough to satisfy the Einstein tensor only at ψ = 1
because
I The metric and therefore the Einstein tensor is nontrivial only

within a thin shell of width (1/D) around ψ = 1 hypersurface.
I Within this shell, any deviation from ψ = 1 hypersurface will

therefore be multiplied by extra factors of
(

1
D

)
and hence

suppressed compared to the leading term.

I Further all terms on the constraint equation (1) is defined
w.r.t flat space metric.
So this equation could be viewed as constraints on some
membrane embedded in flat space defined by the equation
ψ = 1.



The leading solution compared to exact Black hole solution
I Our leading ansatz: ds2 = ds2

flat + ψ−DOAOB dxA dxB

I Sch Black Hole solution:

ds2 = ds2
flat +M r−(D−3)(dt +dr)2 ≈ ds2

flat +M r−D(dt +dr)2

I Comparing we could see that on Sch BH

ψ(Sch) = M−( 1
D )r , O

(Sch)
A dxA = dr + dt, n

(Sch)
A dxA = dr

I It is easy to check that ψ(Sch), O(Sch), n(Sch) also satisfy the
two constraints

∇ · n(Sch) = ∇ · O(Sch) = DN(Sch) +O(1) ∼ D M
1
D︸︷︷︸

BH radius

+O(1)

I It turns out that locally we could always cast it in the form of
Sch BH provided we identify

1. N (local norm of dψ) −→ radius of the BH
2. uA dxA ≡ (OA − nA) dxA = dt −→ differential of local time



Our leading ansatz - schematic diagram



Subleading corrections
Once we have the leading ansatz, it is straightforward (though a
bit tedious at higher order) to compute the subleading corrections
in the metric.

I Metric is corrected as

ds2
flat+ψ−D

[
OA OB +

(
1

D

)
g

(1)
AB +

(
1

D

)2

g
(2)
AB + · · ·

]
dxA dxB

I To determine g
(1)
AB we evaluate Einstein equation on the above

metric upto order O(D). Recall at leading order Einstein equation was of order O(D2)

I This will give a linear inhomogeneous ODE on the

components of g
(1)
AB , which could be solved

It is an ODE as opposed to PDE because variation of gAB along all transverse directions are further
suppressed by factors of (1/D).

ODE is inhomogeneous because the leading ansatz itself will generate some O(D) terms involving

derivatives of ψ and O.

I We could show that the same pattern will be repeated at all
orders.



The data of the solution and the constraints on it
I The data that generates these class of perturbative BH

solutions

1. The horizon ψ = 1 viewed as a dynamic membrane embedded
in flat space-time

2. The null oneform OA or more precisely the timelike oneform
uA ≡ OA − nA to be identified locally as the time coordinate.
Recall nA ∝ dψ and unit-normalized w.r.t flat metric.

I It turns out that we could consistently solve higher order

corrections g
(n)
AB provided the ψ = 1 hypersurface and the

velocity-like field uA satisfies a set of coupled constraint
equations.

I These constraint equations have the structure of the
‘equations of motion’ of a dynamical massive membrane,
embedded in flat space-time coupled with a velocity.

I For every solution of these membrane equations we could
generate a unique BH type solution, thus establishing the
membrane-BH duality in large D expansion.



Field redifinition ambiguity

I Note we shall express our geometry in terms of the field ψ.
But this function is constrained to have value 1 only on the
horizon but other than that we have the freedom of redefining
it.

I If one geometry is expressed in terms of the function ψ and its
derivatives, we could also choose it to express in terms of a
different function ψ̃ defined as

ψ̃ = ψ +

(
1

D

)
∆ψ

so that ∆ψ vanishes when ψ = 1

I Such a redefinition will affect the expression of the subleading
corrections (though not the actual geometry).

I it turns out that all of the first subleading correction to the
metric could be absorbed into some appropriate redefinition of
the ψ field.



Metric correction at first subleading order

ds2 = ds2
flat + ψ−D

[
OA OB +

(
1
D

)
g

(1)
AB

+
(

1
D

)2
g

(2)
AB

+ · · ·
]

dxA dxB

I If we fix the field redefinition ambiguity in ψ and OA, by
imposing the conditions

∇2ψ−D = 0, (O · ∇)OA ∝ OA

the first metric correction g
(1)
AB vanishes.

ds2 = ds2
flat + ψ−D

[
OA OB dxA dxB +O

(
1

D2

)]

I But the constraint equation on the membrane is invariant
under these type of field redefinitions and is nontrivial at first
subleading order.



Constraint equation at first subleading order

I The constraint equations constrain the data on the dual
membrane dynamics.

I It is a set of equations involving extrinsic curvature KAB of
the dual membrane at ψ = 1, embedded in flat space and the
velocity field uA on it.

I The equation takes the following form

PC
A

[
∇̂2uC −∇CK

K
+ uDKDC − (u · ∇)uC

]
= 0

∇̂ · u = 0

Here KAB is the extrinsic curvature of the membrane, K is the
trace of the extrinsic curvature and PAB is the projector
perpendicular to both n and u.
∇̂ is derivative projected along the hypersurface.



Extensions

I At the second subleading order both the metric and the
membrane equations receive nontrivial corrections.

I Though it has been explicitly computed, the answer looks
cumbersome and so we are not presenting it here.

I This technique, almost without any modification, could be
extended to any other asymptotic geometry, in particular AdS
or even more singular situations where the background itself
contains other black holes.

I It has also been extended to

1. Einstein Maxwell equations, leading to a dual charged
membrane

2. Higher derivative gravity theories like Einstein-Gauss Bonnet
gravity.



Radiation
I It turns out that the constraint equation could be recast as an

equation of the form of stress tensor conservation.

Tµν =

(
1

8π

)[(
K

2

)
uµuν + Kµν −

(
∇̂µuν + ∇̂νuµ

2

)

−

(
uµ∇̂2uν + uν∇̂2uµ

K

)

−
(

1

2

)[
uαuβKαβ +

(
K

D

)]
g ind
µν

]
Here g ind

µν is the induced metric on the membrane, which is

used to define the covariant derivative ∇̂µ.
Kαβ = the extrinsic curvature of the membrane embedded in
the flat space-time.

I This stress tensor is completely intrinsic to the membrane and
conserved as a consequence of the constraint equations.



Radiation (contd)

I So in these geometries the horizon ψ = 1 could also be viewed
as a massive dynamical membrane embedded in flat
space-time and associated with a conserved stress tensor.

I Therefore this membrane will act as a source of gravitational
radiation which could be computed simply by convoluting this
stress tensor with retarded Green’s function in flat space.

I The radiation thus constructed would be dual to the
gravitational radiation emitted from a dynamical black hole.

I The fact that the radiation is nonperturbative (goes as D−D)
is a consequence of the properties of Green’s function in large
number of space-time dimension.

I However, it has been precisely computed in the first few
orders.



Application

I As mentioned before, it is very difficult to construct dynamical
BH solutions though we know that there is a rich physics
hidden behind such solutions.

I Therefore any technique generating dynamical BH solutions
also provides a nice toolkit to analyse formal theoretical
questions that necessarily involve time-evolution.
For example
I We could use such solutions to address the question entropy

production in higher derivative theories of gravity.
(already has been addressed in the context of Einstein Gauss
Bonnet theory)

I Instabilities and their end points (explored in detail in the
context of black string to black hole transition)

I But we hope that such solutions could be used to model real
astrophysical phenomena in some limit and therefore provide a
quantitative matching point for numerics.



Application and future direction

I Here the BH dynamics has been mapped to the dynamics of
membrane or soap bubbles which are well studied in some
completely different context.

I In the soap bubble picture, the violent astrophysical
phenomenon of two BHs merging mapped to the merging two
soap bubbles and this analogy has already been explored in a
quantitative.

I It might be possible to adapt the radiation calculation to the
dynamics of such merging and thus we could analytically
compute the radiation coming out of such merging process
(though in the unrealistic corner of large D, but still might be
useful)



Future direction

I Finally it is a perturbative technique to solve complicated
differential equation based on a simple property of the
background solution that
it depends exponentially on the number of dimensions, but
such dependence is there only along one coordinate.

I Therefore it might be possible to use this method to any other
system of equations where the background has this property.



Thank you


