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Figure 6. Left panel : 68% and 95% marginalized posterior constraints in the w0–wa plane for the
flat w0waCDM model, from DESI BAO alone (black dashed), DESI + CMB (pink), and DESI +
SN Ia, for the PantheonPlus [24], Union3 [25] and DESY5 [26] SNIa datasets in blue, orange and
green respectively. Each of these combinations favours w0 > �1, wa < 0, with several of them
exhibiting mild discrepancies with ⇤CDMat the & 2� level. However, the full constraining power is
not realised without combining all three probes. Right panel : the 68% and 95% marginalized posterior
constraints from DESI BAO combined with CMB and each of the PantheonPlus, Union3 and DESY5
SN Ia datasets. The significance of the tension with ⇤CDM (w0 = �1, wa = 0) estimated from the
��

2

MAP
values is 2.5�, 3.5� and 3.9� for these three cases respectively.

from DESI alone, while combining DESI BAO with BBN and ✓⇤ significantly tightens the
constraint on w to w = �1.002+0.091

�0.080
. Adding CMB data shifts the contours slightly along

the CMB degeneracy direction, giving

⌦m = 0.281 ± 0.013,

w = �1.122+0.062

�0.054
,

)

DESI BAO+CMB. (5.2)

Finally, the tightest constraints are obtained from the combination of these data with SN Ia.
For example for the PantheonPlus SN Ia dataset:

⌦m = 0.3095 ± 0.0069,

w = �0.997 ± 0.025,

)
DESI+CMB
+PantheonPlus.

(5.3)

Similar constraints are obtained when substituting PantheonPlus SN Ia for DESY5 or Union3
(though with slightly larger uncertainties in the latter case). These results are summarised
in Table 3. In summary, DESI data, both alone and in combination with other cosmological
probes, do not show any evidence for a constant equation of state parameter di↵erent from
�1 when a flat wCDM model is assumed.

5.2 Flat w0waCDM model

Taking into account the physical dynamics of dark energy, the parametrization w(a) = w0 +
wa (1 � a) was derived and has been demonstrated to match the background evolution of
distances arising from exact dark energy equations of motion to an accuracy of ⇠ 0.1%
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Euclid’s Dark Energy Mission

• Measure the properties of Dark Energy.

• Probe Dark Matter and measure the mass of neutrinos.


• Test Einstein’s Theory of Gravity on the largest scales.


• Probe the very earliest moments of the Universe.



Euclid Satellite and Launch



Euclid Deep Fields

Euclid DR1

Euclid’s Dark Energy Survey
● Map 1/3rd of the sky with Weak Lensing and Galaxy Clustering. 
● High-quality optical images & 8-colour distances for 1.5 Billion galaxies. 
● Measure 35 Million spectroscopic distances.
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Standard Cosmological Model



Standard Cosmological Model

2 ·H + 3H2 = − 8πG PΛ

3 (
·a
a )

2

= 3H2 = 8πG (ρm + ρΛ)

Background Friedmann and Acceleration Equations



Scalar Field Dark Energy

a

t

Acceleration ( ) if 

 and .

H = const
ρm

·ϕ2 ≪ V(ϕ) ≈ const

3H2 = 8πG (ρm + ·ϕ2/2 + V(ϕ))
V(ϕ)

ϕ

We can replace  with something dynamical, like Inflation -ρΛ



Scalar Field Modified Gravity

a

t

3H2(ϕ + ϕ′ ) = 8πGρm

, so if field decays as 
 

gravity gets stronger & we get 
acceleration.

ρm ∝ a−3

ϕ ∝ a−3

Can also modify gravity to get acceleration:

ϕ′ =
dϕ

d ln a
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Scalar-Tensor Theories
• Horndeski Theory (1974) is the most general scalar-tensor theory 

which maps to many dark energy and modified gravity models:

ℒ = G4(ϕ, X)R + G3(ϕ, X) □ ϕ + G2(ϕ, X)

+2G4X(ϕ, X)[(□ϕ)2 − (∇μ ∇νϕ)2] + G5(ϕ, X) Gμν∇μ ∇νϕ

−
1
6

G5X(ϕ, X)[(□ϕ)3 − 3 □ ϕ(∇μ ∇νϕ)2 + 2(∇μ ∇νϕ)3]

X =
1
2

gμν∂μϕ∂νϕ

• But a monster !!!



Constraining Horndeski
• Simplify Horndeski Theory for background cosmology and linear 

perturbations.

• But too much freedom to be constrained by cosmological 
observations - by one free function (Lombriser & ANT, 2016).


• Can choose this function to be the speed of gravitational waves, .

• Can measure GW and EM signal from merging neutron stars.

cT



Constraining Horndeski
• GW speed measured by GW170817 LIGO/Virgo + FERMi/Integral 

detections of GW and EM signal.

• Reduces Horndeski model-space to

Lombriser & Taylor (2016), Baker et al. (2017), Creminelli & Vernizzi (2017), Sakstein & Jain (2017), Skater et al (2017), 
Nojiri & Odinstov (2017), Jana et al (2017), Amendola et al (2017), Crisostomi & Koyaman (2017), Langois et al (2017),…..

ℒ = G4(ϕ, X)R + G3(ϕ, X) □ ϕ + G2(ϕ, X)



Constraining Dark Energy Models
• So we can now constrain remaining Horndeski Dark Energy models 

with cosmological data,
ℒ = G4(ϕ, X)R + G3(ϕ, X) □ ϕ + G2(ϕ, X)

• But still a large model space.

• Can parameterise the background expansion ( ) and 

perturbations (forces and sound speed) to test - Euclid!
w0, wa

• We can also look for models which solve fundamental 
problems - e.g. the Cosmological Constant Problem.  

• Can further constrain  - Lombriser & ANT 2016. G4



The Cosmological Constant Problem

• The vacuum has contributions from Einstein’s Cosmological Constant 
and quantum zero-point vacuum energy 

ρvac = ρΛ + ρQM

• A natural candidate for Dark Energy is vacuum energy, 

3H2 = 8πG (ρm + ρvac) a

t



The Cosmological Constant Problem

ρvac = ρΛ + ρQM
• Dimensionally, 

• Or we can assume  is a second free parameter in gravity                       
(the Let’s All Go Home Conjecture).

ρΛ

ρΛ ∼ G−2 ∼ M4
Planck ∼ 10120ρObs



The Cosmological Constant Problem

ρvac = ρΛ + ρQM

• But there are higher order terms, new massive particles,….

∼ m4 ln(m2/μ2) ∼ 1054ρObs

ρQM =
1
2 ∫

d3k
(2π)3

k2 + m2

• In Quantum Field Theory we should be able to calculate the vacuum energy, 
from the zero-point energy of a quantum harmonic oscillator 



The Cosmological Constant Problem

ρvac = ρΛ + ρQM + ρPT
•  Also need to account for Phase Transitions 

V(ϕ)

ϕ



• Vacuum energy resistant to Renormalisation - too unstable.

• Is there a physical mechanism to explain a small vacuum energy?

The Cosmological Constant Problem

• A barrier is Weinberg’s No-Go Theorem (1989)

ρvac

V(ϕ)

ρvac + ρ(ϕ)• Can a field cancel a large 
Cosmological Constant?



• Weinberg’s No-Go Theorem  
- Not possible to relax to a static cancellation without fine tuning. 

The Cosmological Constant Problem

• A static solution will not account 
for vacuum instability


- Needs constant cancellation.


• Cannot account for phase 
transitions. 

ρvac

V(ϕ)

ρvac + ρ(ϕ)



•  But could not find a working example

- Tuned to Minkowski space, so no acceleration phase.

-  No matter-dominated phase.


•  Measurement of  adds strong constraints on Modified Gravity sector.cT

A Self-Tuning Universe
•  Charmousis et al (2012) & Copeland et al. (2012) found Horndeski theory does, 

in principle, permit a dynamical solution - Fab Four Theory.

• But what about a dynamical solution?



A Self-Tuning Universe
•  Appleby & Linder (2018) ‘Well-Tempered’ model looked promising.

•  A de Sitter limit, so acceleration.

•  Found models with matter-dominated regimes.

•  Made strong mathematical assumptions - severely limits choices.  

•  Very complex model - mechanism unclear.



A Self-Tuning Universe
•  Khan & ANT (2022) looked for simpler solutions.

•  Start with models satisfying gravitational wave constraint and set G4 = M2

Pl/2

ℒ =
M2

Pl

2
R + G(ϕ, X) □ ϕ + K(ϕ, X)

-  Kinetic Gravity Braiding (KGB) sector. 

• Drop strong mathematical conditions, and use weaker, physical, constraints. 


• Find model with accelerating attractor solutions, which can cancel a large 
cosmological constant term.

ℒ =
M2

Pl

2
R +

1
M ( 2X □ ϕ − 3HdSX) − V(ϕ)



Scalar Field Dark Energy
• Let’s remind ourselves  of the basic scalar field model:

• Energy-density: ρϕ =
1
2

·ϕ2 + V(ϕ)

• Field Equation: ··ϕ + 3H ·ϕ = −
dV
dϕ

V(ϕ)



Self-Tuning Universe
•  Khan & ANT (2022) minimal self-tuning model in Horndeski Theory:

ρϕ =
3

2M
(2H − HdS)

·ϕ2 + V(ϕ)

V(ϕ) = − M3ϕ

( ··ϕ + 3H ·ϕ)(H − HdS) + ·H ·ϕ = −
dV
dϕ

• Energy-density:

• Field Equation:

• Linear potential ‘eats’ vacuum, modified kinetic term and field equation has 
accelerating attractor solution.



CDM, No Self-TuningΛ
JCAP10(2022)075

Figure 2. The evolution of energy densities, in units of M
4
P l, for various components with time in

dimensionless units of Hdst, for initially slow-roll values (ÂÕ
i = 102 or „̇i = 10≠4

M
2
P l.) flm is matter

energy density, fl� is vacuum energy density, K is kinetic energy density of the field, |fl� + fl„| is the
absolute value of e�ective dark energy. The total energy density is 3M

2
P lH

2 and the attractor energy
density is given by 3M

2
P lH

2
ds.

Figure 3. L.h.s.: this plot shows the evolution of kinetic energy density K and the absolute value of
potential energy density |V | with time in dimensionless units (in Hdst) for di�erent values of initial
field speed „̇i(= M

2
Â

Õ
i). Each colour, across the panels, corresponds to the same „̇i. R.h.s.: this plot

shows the corresponding evolution of the field speed „̇(= M
2
Â

Õ) with time in dimensionless units (in
Hdst). The initial value of Hubble constant, Hi, is fixed for all lines at


flm,i/3M

2
P l.

where A and B are real constants. As discussed previously, the growing term is driven by
the potential, while the decaying term is due the expansion, and the denominator modifies
the e�ects of both as the attractor is approached. At early times (· π 1), the decaying mode
is dominant and Â

Õ decreases with time as 1/· . The scalar field kinetic energy density K,
decays rapidly as K Ã ·

≠3
Ã a

≠9/2. In figure 3 (right-panel), the gradual decay in „̇ can be
seen clearly for slow-roll (blue line). As H is always decreasing, the combined decaying e�ect
of H and „̇ can be observed in the kinetic energy in figure 3 (left-panel) for slow-roll.
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Add Self-Tuning Field
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Energy Scales

• Large  field values, but may be protected by Shift Symmetry .


• Quantum corrections are suppressed (Shift Symmetry and small ).

• Satisfies Null Energy Condition, Laplace condition and is Ghost-free.

• Stable to initial conditions for attractor solution.

• Need slow-roll initial conditions to allow matter-domination, but wide range of 

values,   .

ϕ ϕ → ϕ + c
·ϕ

·ϕ2/2 < M2M2
Pl

M ∼ H0 ∼ 10−60MPl ∼ 10−33eV
• To match observations the scalar field need an ultralight mass scale,

HdS = H0• And we set



Structure Formation in MSTM
• The MSTM is simple enough we can calculate linear perturbations.

• As the background is not , cannot use existing solvers, eg EFTCAMB, 
Hi-CLASS. 

ΛCDM



Structure Formation in MSTM
• In the Quasi-Static Approximation , and , yieldskcs ≫ aH ·X ≤ HX

··δ + 2H ·δ = 4πμ(t)Gρmδ

μ(t) =
GEff

G
= 1 +

c0M ·ϕ2

2M2
Pl(M

··ϕ/ ·ϕ + 4H − 3HdS) − c0M ·ϕ2

• Scalar field induces extra forces 
between particles

in the e�ective gravitational constant. However, our model does not include the
e�ects of radiation and other relevant considerations of early Universe physics
which would a�ect the value of Ge�, and is outside the scope of this thesis.

4.5.3 Growth of structure

Figure 4.3 This plot shows upper-left: the evolution of the e�ective gravitational
constant Ge�/G, upper-right: the evolution of linear density perturbation
over the scale factor ”/a, lower-left: the growth factor f = �“

m, and
lower-right: the growth index “ with redshift for initial conditions of
slow-roll (ÂÕ

i
= 0.01) and Hubble attractor values (– = 1, 0.5, 0.25, 0.1).

We also include the toy model parameters from the previous chapter
(ÂÕ

i
, –) = (100, 1) for comparison.

In Fig. 4.3, we plot the numerical solution for the e�ective gravitational constant,
Ge�/G, the linear density perturbation over the scale factor, ”/a, the linear growth
rate given by f(= �“

m
) = d ln ”/d ln a, and the corresponding growth index, “,

with redshift for our model with slow-roll initial conditions (ÂÕ
i

= 0.01) and four
Hubble attractor values of (– = 1, 0.5, 0.25, 0.1). We also include the toy-model
parameters considered in Chapter 3 for comparison (ÂÕ

i
= 100, – = 1). The

present era, z = 0, is defined such that the matter energy density is �m,0 =
0.3. The background is solved fully as elaborated in sec. 3.4, with the QSA
applied to the linear perturbation equations. For the density contrast, we initially

81

modified evolution of overdensities, , δ = (ρm − ⟨ρm⟩)/⟨ρm⟩

μ(t) =
GEff(t)

G

Enhanced force 

between particles



Structure Formation in MSTM
• The MSTM is simple enough we can calculate evolution of linear perturbations.

• Evolution of linear overdensities,  

δ =
ρ − ⟨ρ⟩

⟨ρ⟩

in the e�ective gravitational constant. However, our model does not include the
e�ects of radiation and other relevant considerations of early Universe physics
which would a�ect the value of Ge�, and is outside the scope of this thesis.

4.5.3 Growth of structure

Figure 4.3 This plot shows upper-left: the evolution of the e�ective gravitational
constant Ge�/G, upper-right: the evolution of linear density perturbation
over the scale factor ”/a, lower-left: the growth factor f = �“

m, and
lower-right: the growth index “ with redshift for initial conditions of
slow-roll (ÂÕ

i
= 0.01) and Hubble attractor values (– = 1, 0.5, 0.25, 0.1).

We also include the toy model parameters from the previous chapter
(ÂÕ

i
, –) = (100, 1) for comparison.

In Fig. 4.3, we plot the numerical solution for the e�ective gravitational constant,
Ge�/G, the linear density perturbation over the scale factor, ”/a, the linear growth
rate given by f(= �“

m
) = d ln ”/d ln a, and the corresponding growth index, “,

with redshift for our model with slow-roll initial conditions (ÂÕ
i

= 0.01) and four
Hubble attractor values of (– = 1, 0.5, 0.25, 0.1). We also include the toy-model
parameters considered in Chapter 3 for comparison (ÂÕ

i
= 100, – = 1). The

present era, z = 0, is defined such that the matter energy density is �m,0 =
0.3. The background is solved fully as elaborated in sec. 3.4, with the QSA
applied to the linear perturbation equations. For the density contrast, we initially

81
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Structure Formation in MSTM
• Integrated Sachs-Wolfe (ISW) Effect - decay of dark matter potentials

Figure 5.6 The CMB temperature anisotropy for 2 Æ l Æ 15. This plot shows Planck
2018 data and best-fit line along with our �m0 = 0.3 flat �CDM lines and
our dark energy model lines for four varying initial conditions of (ÂÕ

i
, –).

Our model lines contain the constant Sachs-Wolfe contribution and the
Integrated Sachs-Wolfe e�ect.

measurements of the growth rate from Weak Lensing, Redshift Space Distortions
and Cluster Counts probes show values lower than predicted by Planck/�CDM
parameter values at tension of 2 ≠ 3‡ [41, 42] (see [43] for a review). The
tension may imply a lower matter density or weaker gravity compared to the
GR prediction. Given that our model alters linear structure formation, it would
therefore be interesting to compare the predictions of linear growth rate in our
dark energy model with observational data.

The linear growth rate, f‡8 © f(a)‡8(a), which measures the growth of matter
perturbations at di�erent redshifts is thus, a useful probe in testing the dynamical
nature of the underlying theory of gravity.

f(a)‡8(a) = d ln ”

d ln a
‡8

”

”(1) , (5.27)

where ‡8(a) is the amplitude of density fluctuations at a scale of 8 Mpc h
≠1 (see

eq. (5.4)) as a function of scale factor, ” is the matter density perturbation and
”(a = 1) is its present-day value. Previous analyses of cosmic growth (eg. [157–
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• So model tends to enhance ISW.
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•  Growth rate of structure and clustering amplitude, :fσ8(z)

Figure 5.10 This plot shows the best-fit �CDM (corresponding to ‡8 = 0.76), and
varying dark energy parameters with the f‡8 data between 0 < z < 2.

Ge�, leading to increased large-scale structure formation. In [149], it was indeed
found that constraints obtained using the same f‡8 data showed an excellent fit
for a decreasing Ge� at low redshift, at odds with what is found in our model.
Based on the above analysis, we can confidently conclude that the model can be
observationally excluded.

5.3 Hubble tension

Finally, to conclude this chapter we include a short discussion about the e�ect of
our dark energy model on the Hubble tension. The measured value of H0 using
low redshift probes is higher (73.04±1.04 km/s/ Mpc [38]) [39, 40], than the value
inferred from CMB fluctuations (67.4±0.5 km/s/ Mpc) [20]. This 4≠5‡ tension,
known as the Hubble or H0 tension, can be potentially explained by the existence
of an appropriate dark energy component. The dark energy component would
need to alter expansion history such that H(z) is deformed at late times to better
match local measurements.

Scalar field dark energy models have the potential to alleviate the Hubble tension
as the additional degree of freedom can be used to alter the expansion history. The
Galileon Ghost Condensate, for example, is a relatively simple model belonging
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f =
d ln δ
d ln a

σ2
8(z) = ⟨δ2(R = 8h−1Mpc, z)⟩

• Growth rate

• Clustering variance:

• Model slightly too high.



Closing Comments
• A simple, physical mechanism can solve the (Old) Cosmological Constant Problem.

• Dynamical scalar field avoid’s Weinberg’s No-Go Theorem.


• Allows for matter-domination and acceleration phases.

• Avoids fine-tuning initial conditions (wide range, but requires slow-roll).


• Enhanced forces for structure formation possibly a problem for this model.

• Investigating ways to alleviate this in the wider model space. 


• Euclid data will soon provide strong constrains on all DE/MG models.



End


