A Simple Self-Tuning Universe to Solve
the Cosmological Constant Problem

- = -._—_..,ﬁ,j_ Oy __>‘-T_" —.‘.:"""\w-,,
- i _-Jt__ N AR -y g =X LT R o~ —
- - — S &~
S
B! "okt — Rty g % e
—— et A el s
el ey, — « . W\ T
! > e » T S
" ¢ ~ RN
- — NG
: Er
- - . " \
L4
‘.
.

Andy Taylor

(@nt@roe.ac.uk)
Institute for Astronomy
University of Edinburgh

Royal Observatory Edinburgh

Cosmological Frontiers in Fundamental Physics, Higgs Centre for Theoretical Physics, Edinburgh, 19-21 April 2024


mailto:ant@roe.ac.uk

» Self-tuning section based on

Arnaz Khan & ANT,
- A Minimal Self-Tuning Scalar Field Model to Solve the

Cosmological Constant Problem,
2022, JCAP, 10, 075
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Universe, 2024, In prep.
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Breaking a dark degeneracy with gravitational waves,
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Euclid’s Dark Energy MlSSlOn
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Euclid’s Dark Energy Survey

e Map 1/3rd of the sky with Weak Lensing and Galaxy Clustering.
e High-quality optical images & 8-colour distances for 1.5 Billion galaxies.
e Measure 35 Million spectroscopic distances.
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Euclid’s Dark Energy Survey

e Map 1/3rd of the sky with Weak Lensing and Galaxy Clustering
e High-quality optical images & 8-colour distances for 1.5 Billion galax
e Measure 35 Million spectroscopic distances




Standard Cosmological Model




Standard Cosmological Model

Background Friedmann and Accele atlon Equations

68.3% Dark
Energy

3nG Py,




Scalar Field Dark Energy

We can replace p, with something dynamical, like Inflation -

3H? = 872G (pm + B2+ V(¢))

V(g) | M

¢

Acceleration (H = const) if
p,, and ¢d* < V() ~ const.




Scalar Field Modified Gravity

Can also modify gravity to get acceleration:

3H(¢p + ¢') = 82Gp,,  v=1L

¢ p, & a~>, so if field decays as

d x a >
gravity gets stronger & we get

acceleration.
t



A Menagerie of Models

Scalar/Quintessence Brans-Dicke
Scalar-Tensor —@ington-Born-lnfield

Cosmological Einstein-Aether Horndeski
Constant Extra Bi-Metric Theories Rosen
Fields Tensor-Vector-Scalar Drummond
WEVES) . .
Massive gravity
Bi-Gravity
- f(R), f(G)
H_'Qh_er -Q)rava-ufschitz
Derivatives Galileons
Kaluza-Klein
Extra Randall-Sundrum
Dimensions Braneworld

Dvali-Gabadadze-Porrati (DGP)
Gauss-Bonnet

Cosmic Modified Non Ekpyrotic
Acceleration Gravity Local T ~— f|(QD|:|_:I1 F%
No
Lagrangian
Minimally Quintessence
Coupled k-essence
Dark Non-Minimally
Energy Coupled
Interacting

DE-DM



Scalar-Tensor Theories

» Horndeski Theory (1974) is the most general scalar-tensor theory
which maps to many dark energy and modified gravity models:

L = Gy, XOR + G3(p, X) D p + G5(¢h, X)
F2G,x(¢0, X)[(O)* — (VFV¥$)] + Gs(h, X) G, VH Vb

1
——Gisy(, X)[([p)’ = 3PV V¥ ) + 2(VF V¥ )]

6
|
X = 58“ "0,40,¢

 But a monster !!!



onstraining Horndeski

» Simplify Horndeski Theory for background cosmology and linear
perturbations.

- But too much freedom to be constrained by cosmologica
observations - by one free function (Lombriser & ANT, 2016).

» Can choose this function to be the speed of gravitational waves, c.

» Can measure GW and EM signal from merging neutron stars.



Constraining Horndeski

» GW speed measured by GW170817 LIGO/Virgo + FERMi/Integral
detectlons of GW and EM signal.
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» Reduces Horndeski model-space to

Z = G4(¢9X)R T G3(¢9X) |:| ¢ T G2(¢3X)

Lombriser & Taylor (2016), Baker et al. (2017), Creminelli & Vernizzi (2017), Sakstein & Jain (2017), Skater et al (2017),
Nojiri & Odinstov (2017), Jana et al (2017), Amendola et al (2017), Crisostomi & Koyaman (2017), Langois et al (2017),.....



Constraining Dark Energy Models

» SO0 we can how constrain remaining Horndeski Dark Energy models
with cosmological data,

2 = Gy(@, X)R + G3(¢, X) L1 ¢ + Gy(¢, X)
- Can further constrain G, - Lombriser & ANT 2016.

» But still a large model space.

- Can parameterise the background expansion (w,, w ) and
perturbations (forces and sound speed) to test - Euclid!

 We can also look for models which solve fundamental
problems - e.g. the Cosmological Constant Problem.



The Cosmological Constant Problem

A natural candidate for Dark Energy is vacuum energy,

3H? = 872G (p,, + Pyae)

t

» The vacuum has contributions from Einstein’s Cosmological Constant
and quantum zero-point vacuum energy

Pvac = PA T pQM



The Cosmological Constant Problem

» Dimensionally,

—2 4 120
PA ™ G~ MPlanck ~ 10 PObs

+ Or we can assume p, Is a second free parameter in gravity
(the Let’s All Go Home Conjecture).



The Cosmological Constant Problem

p =it
=), g 2, E
(23 x'\"*‘ ;*/,4-’

* |n Quantum Field Theory we should be able to calculate the vacuum enerqgy,
from the zero-point energy of a quantum harmonic oscillator

I J d’k R
= — m
FM =5 | (23

~ m*In(m*/u*) ~ 10> poy,

- But there are higher order terms, new massive particles,....



The Cosmological Constant Problem

* Also need to account for Phase Transitions

40 O \

—>¢




The Cosmological Constant Problem

» Vacuum energy resistant to Renormalisation - too unstable.
* |s there a physical mechanism to explain a small vacuum energy?

 Can a field cancel a large
Cosmological Constant”?

» A barrier is Weinberg’s No-Go Theorem (1989)



The Cosmological Constant Problem

* Weinberg’s No-Go Theorem
- Not possible to relax to a static cancellation without fine tuning.

« A static solution will not account
for vacuum instability

- Needs constant cancellation.

» Cannot account for phase
transitions.




A Self-Tuning Universe

» But what about a dynamical solution?

» Charmousis et al (2012) & Copeland et al. (2012) found Horndeski theory does,
IN principle, permit a dynamical solution - Fab Four Theory.

~ .

» But could not find a working example
- Tuned to Minkowski space, so no acceleration phase.
- No matter-dominated phase.

» Measurement of ¢ adds strong constraints on Modified Gravity sector.



A Self-Tuning Universe

» Appleby & Linder (2018) ‘Well-Tempered’ model looked promising.
« A de Sitter limit, so acceleration.
» Found models with matter-dominated regimes.

~ .

- Made strong mathematical assumptions - severely limits choices.
» Very complex model - mechanism unclear.




A Self-Tuning Universe

« Khan & ANT (2022) looked for simpler solutions.

. Start with models satisfying gravitational wave constraint and set G, = M}Z,l/ 2
Mp,

- Kinetic Gravity Braiding (KGB) sector.

* Drop strong mathematical conditions, and use weaker, physical, constraints.

* FInd model with accelerating attractor solutions, which can cancel a large
cosmological constant term.

M3, 1

QCZ:TR+M(\/§(D¢—3HCZSX) IR V(¢)



Scalar Field Dark Energy

* Let’'s remind ourselves of the basic scalar field model:

|
+ Energy-density: Py = 5¢2 + V(¢)

. : dV
- Field Equation: d+3Hp = — —

de

W)v



Self-Tuning Universe

» Khan & ANT (2022) minimal self-tuning model in Horndeski Theory:

R :
+ Energy-density:  p, = W(ZH — HdS)q§2 + V(@)
A%

- Field Equation: (¢ + 3H¢p)(H — Hyo) + Hp = — o

Q L — V() = — M ¢

» Linear potential ‘eats’ vacuum, modified kinetic term and field equation has
accelerating attractor solution.



Time

T

|
- -
— —




Energy
Density

7
<)
E
%
-
)
O
o>
@)
—
<)
-
]

Time




7
<)
E
%
-
)
O
o>
@)
—
<)
-
]

Time




Energy
Density

7
<)
E
%
-
)
O
o>
@)
—
O
-
]

Time




0, With a Phase [ransition
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Energy Scales

» To match observations the scalar field need an ultralight mass scale,

M ~ Hy ~ 1079M,, ~ 107eV
- And we set  H o = H,,

- Large ¢ field values, but may be protected by Shift Symmetry ¢ — @ + c.

» Quantum corrections are suppressed (Shift Symmetry and small 45).
- Satisfies Null Energy Condition, Laplace condition and is Ghost-free.

« Stable to initial conditions for attractor solution.

» Need slow-roll initial conditions to allow matter-domination, but wide range of
values, ¢@*12 < MZMIZ)Z.



Structure Formation in MSTM

» The MSTM Is simple enough we can calculate linear perturbations.

- As the background is not ACDM, cannot use existing solvers, eg EFTCAMB,
Hi-CLASS.



Structure Formation in MSTM

- In the Quasi-Static Approximation k¢, > aH, and X < HX, vields
modified evolution of overdensities, & = (p,, — (p,,))/{p,,),

o+ 2HS = 4-7T//t(t)Gpm5 Gia()

u(t) =

G

Enhanced force
between particles

« Scalar field induces extra forces
between particles

G cnMd?
u(t) = B _ 4 +
G 2M3 (Ml p + 4H — 3H;5) — coM?



Enhanced force
between particles

matter-dominatior

Expansion

damping

a=1, y; =100
— a=1, y; =0.01
—— a=0.5, vy, =0.01

a=0.25, y; = 0.01

a=0.1, y; = 0.01
—— ACDM




Multipole moment, ¢
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—— Planck best fit
- = ACDM
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Closing Comments

A simple, physical mechanism can solve the (Old) Cosmological Constant Problem.
- Dynamical scalar field avoid’s Weinberg’s No-Go Theorem.

» Allows for matter-domination and acceleration phases.
» Avoids fine-tuning initial conditions (wide range, but requires slow-roll).

* Enhanced forces for structure formation possibly a problem for this model.
* Investigating ways to alleviate this in the wider model space.

- Euclid data will soon provide strong constrains on all DE/MG models.






