A Simple Self-Tuning Universe to Solve the Cosmological Constant Problem

Cosmological Frontiers in Fundamental Physics, Higgs Centre for Theoretical Physics, Edinburgh, 19-21 April 2024

Andy Taylor (ant@roe.ac.uk) Institute for Astronomy University of Edinburgh Royal Observatory Edinburgh

- Self-tuning section based on Arnaz Khan & ANT,
 - A Minimal Self-Tuning Scalar Field Model to Solve the Cosmological Constant Problem, 2022, JCAP, 10, 075
 - Structure formation and test of a Minimal Self-Tuning Universe, 2024, in prep.

 Horndeski model work based on Lucas Lombriser & ANT, 2016, JCAP, 03, 31

Lucas Lombriser

Arnaz Khan

Breaking a dark degeneracy with gravitational waves,

+ Euclid Consortium

Dark Energy

 w_0

Euclid's Dark Energy Mission

 Measure the properties of Dark Energy. • Probe Dark Matter and measure the mass of neutrinos. Test Einstein's Theory of Gravity on the largest scales. Probe the very earliest moments of the Universe.

Euclid Satellite and Launch

Euclid's Dark Energy Survey

• Map 1/3rd of the sky with Weak Lensing and Galaxy Clustering. • Measure 35 Million spectroscopic distances.

• High-quality optical images & 8-colour distances for 1.5 Billion galaxies.

Euclid's Dark Energy Survey

Map 1/3rd of the sky with Weak Lensing and Galaxy Clustering. Measure 35 Million spectroscopic distances.

High-quality optical images & 8-colour distances for 1.5 Billion galaxies.

Standard Cosmological Model

68.3% Dark Energy

Standard Cosmological Model Background Friedmann and Acceleration Equations

$8\pi G(\rho_m + \rho_\Lambda)$

68.3% Dark Energy

 $8\pi G P_{\Lambda}$

Acceleration (H = const) if ρ_m and $\dot{\phi}^2 \ll V(\phi) \approx \text{const.}$

Scalar Field Dark Energy

 $3H^2 = 8\pi G \left(\rho_m + \dot{\phi}^2 / 2 + V(\phi) \right)$

Scalar Field Modified Gravity

$\rho_m \propto a^{-3}$, so if field decays as $\phi \propto a^{-3}$ gravity gets stronger & we get acceleration.

Scalar-Tensor Theories

 $\mathscr{L} = \overline{G_4(\phi, X)R} + \overline{G_3(\phi, X)} \square \phi + \overline{G_2(\phi, X)}$ $+2G_{4X}(\phi,X)[(\Box\phi)^2 - (\nabla^{\mu}\nabla^{\nu}\phi)^2] + G_5(\phi,X) G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi$ $-\frac{1}{6}G_{5X}(\phi,X)[(\Box\phi)^3 - 3\Box\phi(\nabla^{\mu}\nabla^{\nu}\phi)^2 + 2(\nabla^{\mu}\nabla^{\nu}\phi)^3]$

• But a monster !!!

 Horndeski Theory (1974) is the most general scalar-tensor theory which maps to many dark energy and modified gravity models:

 $X = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$

Constraining Horndeski

 Simplify Horndeski Theory for background cosmology and linear perturbations.

- But too much freedom to be constrained by cosmological observations - by one free function (Lombriser & ANT, 2016).
- Can measure GW and EM signal from merging neutron stars.

• Can choose this function to be the speed of gravitational waves, c_T .

Constraining Horndeski GW speed measured by GW170817 LIGO/Virgo + FERMi/Integral

detections of GW and EM signal.

Reduces Horndeski model-space to

Lombriser & Taylor (2016), Baker et al. (2017), Creminelli & Vernizzi (2017), Sakstein & Jain (2017), Skater et al (2017), Nojiri & Odinstov (2017), Jana et al (2017), Amendola et al (2017), Crisostomi & Koyaman (2017), Langois et al (2017),....

$\mathscr{L} = G_4(\phi, X)R + G_3(\phi, X) \Box \phi + G_2(\phi, X)$

Constraining Dark Energy Models So we can now constrain remaining Horndeski Dark Energy models

with cosmological data,

$$\mathscr{L} = G_4(\phi, X)R + C$$

- $G_3(\phi, X) \Box \phi + G_2(\phi, X)$ • Can further constrain G_4 - Lombriser & ANT 2016.
- But still a large model space.
- Can parameterise the background expansion (w_0, w_a) and perturbations (forces and sound speed) to test - *Euclid*!
 - We can also look for models which solve fundamental problems - e.g. the Cosmological Constant Problem.

A natural candidate for Dark Energy is vacuum energy,

$3H^2 = 8\pi G \left(\rho_m + \rho_{\rm vac}\right)$

and quantum zero-point vacuum energy

The vacuum has contributions from Einstein's Cosmological Constant

 $\rho_{\rm vac} = \rho_{\Lambda} + \rho_{\rm QM}$

• Dimensionally,

$\rho_{\Lambda} \sim G^{-2} \sim M_{\text{Planck}}^4 \sim 10^{120} \rho_{\text{Obs}}$

• Or we can assume ρ_{Λ} is a second free parameter in gravity (the Let's All Go Home Conjecture).

$\rho_{\rm vac} = \rho_{\Lambda} + \rho_{\rm QM}$

$\rho_{\rm vac} = \rho$

from the zero-point energy of a quantum harmonic oscillator

$\rho_{\rm QM} = \frac{1}{2} \left[\frac{1}{2} \right]$

 $\sim m^4 \ln(m^2/\mu^2) \sim 10^{54} \rho_{\rm Obs}$

• But there are higher order terms, new massive particles,....

In Quantum Field Theory we should be able to calculate the vacuum energy,

$$\frac{d^3k}{(2\pi)^3}\sqrt{k^2+m^2}$$

Also need to account for Phase Transitions

- Vacuum energy resistant to Renormalisation too unstable.

 Can a field cancel a large **Cosmological Constant?**

• A barrier is Weinberg's No-Go Theorem (1989)

Is there a physical mechanism to explain a small vacuum energy?

Weinberg's No-Go Theorem

- A static solution will not account for vacuum instability
 - Needs constant cancellation.
- Cannot account for phase transitions.

- Not possible to relax to a static cancellation without fine tuning.

A Self-Tuning Universe

- But what about a dynamical solution?
- in principle, permit a dynamical solution Fab Four Theory.

- But could not find a working example
 - Tuned to Minkowski space, so no acceleration phase.
 - No matter-dominated phase.
- Measurement of c_T adds strong constraints on Modified Gravity sector.

Charmousis et al (2012) & Copeland et al. (2012) found Horndeski theory does,

A Self-Tuning Universe

- Appleby & Linder (2018) 'Well-Tempered' model looked promising.
- A de Sitter limit, so acceleration.
- Found models with matter-dominated regimes.

- Made strong mathematical assumptions severely limits choices.
- Very complex model mechanism unclear.

A Self-Tuning Universe

- Khan & ANT (2022) looked for simpler solutions.
- Start with models satisfying gravitational wave constraint and set $G_4 = M_{Pl}^2/2^2$

$$\mathscr{L} = \frac{M_{Pl}^2}{2}R + G(\phi, X) \Box \phi + K(\phi, X)$$

- Kinetic Gravity Braiding (KGB) sector.
- Drop strong mathematical conditions, and use weaker, physical, constraints.
- Find model with accelerating attractor solutions, which can cancel a large cosmological constant term.

$$\mathscr{L} = \frac{M_{Pl}^2}{2}R + \frac{1}{M}\left(\sqrt{2X} \Box \phi - 3H_{dS}X\right) - V(\phi)$$

Scalar Field Dark Energy

- Let's remind ourselves of the basic scalar field model:
 - Energy-density:

 $\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$ • Field Equation: $\ddot{\phi} + 3H\dot{\phi} = -\frac{dV}{d\phi}$

Self-Tuning Universe

- Khan & ANT (2022) minimal self-tuning model in Horndeski Theory:
 - Energy-density: $\rho_{\phi} = \frac{3}{2M}(2H H_{dS})\dot{\phi}^2 + V(\phi)$

accelerating attractor solution.

• Field Equation: $(\ddot{\phi} + 3H\dot{\phi})(H - H_{dS}) + \dot{H}\dot{\phi} = -\frac{dV}{d\phi}$

$V(\phi) = -M^3 \phi$

Linear potential 'eats' vacuum, modified kinetic term and field equation has

Energy Density ρ_X

ACDM, No Self-Tuning

Add Self-Tuning Field

Energy Density ρ_X

Add Self-Tuning Field

Energy Density ρ_X

Time

 $H_{ds}t$

Add Self-Tuning Field

Energy Density ρ_X

With a Phase Transition

Energy Density ρ_X

Energy Scales To match observations the scalar field need an ultralight mass scale, $M \sim H_0 \sim 10^{-60} M_{Pl} \sim 10^{-33} eV$

- And we set $H_{dS} = H_0$
- Quantum corrections are suppressed (Shift Symmetry and small ϕ).
- Satisfies Null Energy Condition, Laplace condition and is Ghost-free.
- Stable to initial conditions for attractor solution.
- Need slow-roll initial conditions to allow matter-domination, but wide range of values, $\dot{\phi}^2/2 < M^2 M_{_{Pl}}^2$.

• Large ϕ field values, but may be protected by **Shift Symmetry** $\phi \to \phi + c$.

The MSTM is simple enough we can calculate linear perturbations.

Hi-CLASS.

Structure Formation in MSTM • In the Quasi-Static Approximation $kc_s \gg aH$, and $\dot{X} \leq HX$, yields modified evolution of overdensities, $\delta = (\rho_m - \langle \rho_m \rangle) / \langle \rho_m \rangle$,

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi\mu(t)G\rho_m$$

 Scalar field induces extra forces between particles

$$\mu(t) = \frac{G_{\text{Eff}}}{G} = 1 + \frac{1}{2M_{Pl}^2(M\ddot{\phi}/\dot{\phi} + \phi)}$$

 $4H - 3H_{dS}) - c_0 M \dot{\phi}^2$

- Evolution of linear overdensities,

$\delta = \frac{\rho - \langle \rho \rangle}{\rho}$		1.10
$\langle \rho \rangle$		1.00
	δ	0.95
	a	0.90
		0.85
		0.80
		0.75

Integrated Sachs-Wolfe (ISW) Effect - decay of dark matter potentials

So model tends to enhance ISW.

 $f\sigma_8(z)$

- Growth rate of structure and clustering amplitude, $f\sigma_8(z)$:
- Growth rate $d\ln\delta$ $d \ln a$
- Clustering variance:

$$\sigma_8^2(z) = \langle \delta^2(R = 8h^{-1}\text{Mpc}, z) \rangle$$

Model slightly too high.

- A simple, physical mechanism can solve the (Old) Cosmological Constant Problem. • Dynamical scalar field avoid's Weinberg's No-Go Theorem.
- Allows for matter-domination and acceleration phases.
- Avoids fine-tuning initial conditions (wide range, but requires slow-roll).
- Enhanced forces for structure formation possibly a problem for this model. Investigating ways to alleviate this in the wider model space.
- Euclid data will soon provide strong constrains on all DE/MG models.

Closing Comments

