Analytic self-force: Bound and Unbound

-PN, PM, SF and just that

Gravitational self-force and scattering amplitudes workshop, Higgs centre, Edinburgh
Chris Kavanagh
19/03/2024

IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

PART 1: Self-Force, GWs \& computational strategy

Binary motion PN/PM

'Point particles' endowed with multipole moments, fields constrained by EFEs

- Both approaches need delicate treatments of point particle limit
- Expansion typically not valid throughout space - require 'far field' expansions, tail terms..

Binary motion using self-force

'Point particle’ endowed with multipole moments + Exact Kerr BH

Lorenz gauge field equations:

$$
\begin{aligned}
& \bar{\nabla}^{a} \bar{\nabla}_{a} h_{\mu \nu}^{(1)}+2 \bar{R}_{\mu}{ }^{a}{ }_{\nu} b_{a b}^{(1)}=16 \pi T_{\mu \nu} \\
& \bar{\nabla}^{a} \bar{\nabla}_{a} h_{\mu \nu}^{(2)}+2 \bar{R}_{\mu}{ }^{a}{ }_{\nu}{ }_{\nu} h_{a b}^{(2)}=S\left[h_{\mu \nu}^{(1)}, h_{\mu \nu}^{(1)}\right]
\end{aligned}
$$

Equations of motion:

$$
\begin{aligned}
& u^{a} \bar{\nabla}_{a} u^{\mu}=-\frac{1}{2}\left(\bar{g}^{\mu \nu}-h_{R}^{\mu \nu}\right)\left(2 h_{\nu \rho ; \sigma}^{R}-h_{\rho \sigma ; \nu}^{R}\right) u^{\rho} u^{\sigma} \\
& h_{\mu \nu}^{R}=\epsilon h_{\mu \nu}^{R,(1)}+\epsilon^{2} h_{\mu \nu}^{R,(2)}
\end{aligned}
$$

(1) $S=S_{M}\left[m_{i}\right]+S_{G R}[g]$

See Thursdays talks.
(2) $G_{\mu \nu}[g]=8 \pi T_{\mu \nu}$
$T_{\mu \nu}=m_{2} \int d \tau \delta^{4}\left(x, z_{2}\right) u_{\mu} u_{\nu}$
$g_{\mu \nu}=\bar{g}_{\mu \nu}+\epsilon h_{\mu \nu}^{(1)}+\epsilon^{2} h_{\mu \nu}^{(2)}+\ldots$
$\epsilon=\frac{m_{2}}{m_{1}}$

GW Phase evolution: what is important

For a small mass ratio binary self force gives the following approximation [Hinderer, Flanagan 2008]:

$$
\phi=\frac{\phi_{0}}{\epsilon}+\frac{\phi_{1 / 2}}{\epsilon^{1 / 2}}+\phi_{1}+O(\epsilon)
$$

Cannot have an $O(1)$ error in the phase - the approximate signal will not match that of an observed signal
$\phi_{0}:$ dissipative 1SF (e.g. fluxes) - OPA (post-Adiabatic expansion)
$\phi_{1 / 2}$: orbital resonances (lets ignore this for our conversation)
$\phi_{1}:$ conservative 1SF, dissipative 2SF, linear-in-spin dissipative SF $-1 P A$
Key observation: For 1PA terms we need $O(\epsilon)$ fewer digits of accuracy

GW Phase evolution: accuracy at 1PA

Burke et al: arXiv:2310.08927

Idea: Inject 1PA waveform into data stream, and attempt to recover parameters of the system with various approximate waveform models, check biases on recovered parameters

GW Phase evolution: accuracy at 1PA

no biases
with thanks to O Burke for plots. More detail see Capra 27 talk by O Burke

1.1 GW Phase evolution: what is important

GW Phase evolution: accuracy at 1PA

\because	True values
	Full 1PA
\square	Only OPA
Resummation	

1SF Fluxes - high accuracy numerics
2SF Fluxes - second order terms in 3PN flux

GW Phase evolution: accuracy at 1PA

Takeaways:

- 2SF program is obsolete, 3PN is enought
- weak-field approximations have significant potential for realistically reducing the load on numerics at 1PA
- We will only know when we have all the information

The road to observables

Step 1: Geodesic equations

$$
\begin{aligned}
& \frac{d r}{d \tau}=R[r, E, L] \\
& \frac{d \varphi}{d \tau}=\Phi[r, E, L] \\
& \frac{d t}{d \tau}=T[r, E, L]
\end{aligned}
$$

The road to observables

Step 2: Field Equations

$$
\bar{\nabla}^{a} \bar{\nabla}_{a} h_{\mu \nu}^{(1)}+2 \bar{R}_{\mu}{ }_{\nu}^{a}{ }_{\nu}^{b} h_{a b}^{(1)}=16 \pi T_{\mu \nu}
$$

- not separable in Kerr
- no analytic information known about a Green function
- solving for something gauge dependent (always cause for concern..)

The road to observables

Step 2: Field Equations $->$ Teukolsky Equation

$$
\begin{gathered}
O_{s} \psi=\mathcal{S}\left[T_{\mu \nu}\left(z, z_{p}(\tau)\right)\right] \\
{ }_{s} \psi=\sum_{l m} \int d \omega e^{-i \omega t}{ }_{s} R_{l m \omega}(r){ }_{s} S_{l m}(\theta, \phi ; a \omega) \\
\delta[T]=\sum_{l m} \int d \omega e^{-i \omega t}{ }_{s} T_{l m \omega}(r){ }_{s} S_{l m}(\theta, \phi ; a \omega) \\
{ }_{s} R_{l m \omega}(r)=\int_{r_{+}}^{\infty} d r G_{l m \omega}\left(r, r^{\prime}\right)_{s} T_{l m \omega}(r) \\
\quad=\int_{r_{+}}^{\infty} d r G_{l m \omega}\left(r, r^{\prime}\right) \int d t^{\prime} e^{i \omega t^{\prime}} \delta\left[T\left(t^{\prime}\right)\right]_{l m}
\end{gathered}
$$

The road to observables

Step 3: back again to the metric

$$
h_{\mu \nu}=\nabla_{a} \zeta^{4} \nabla_{b} C^{a}{ }_{(\mu \nu)}^{b}\left[{ }_{s} \psi\right]+\nabla_{(\mu} \xi_{\nu)}+\mathscr{N} T_{\mu \nu}+g_{\mu \nu}[\delta M, \delta a]
$$

[Wald, Cohen \& Kegeles, Chrzanowski, Steward 70s]
[Price, Whiting; Acksteiner, Andersson, Backdahl ++;] Green, Hollands, Zimmerman +; Dolan, CK, Wardell, Dolan, CK, Wardell, Durkan]

In principle this can give the Green function also, see e.g.

- Casals, Holland, Pound , Toomani 2024
- Dolan, Durkan, Wardell, CK 2023 (less explicitly a GF, but Lorenz gauge)

PART II: Bound Orbits, post-Newtonian expansions + analytic perturbation theory

$$
r_{p}(\tau) \gg M
$$

$$
\begin{aligned}
& { }_{s} R_{l m \omega}(r)=\int_{r_{+}}^{\infty} d r G_{l m \omega}\left(r, r^{\prime}\right)_{s} T_{l m \omega}(r) \\
& T_{l m \omega}=A^{0}\left(r_{p}, \omega\right) \delta\left(r-r_{P}\right)+A^{1}\left(r_{p}, \omega\right) \delta^{\prime}\left(r-r_{p}\right)+A^{2}\left(r_{p}, \omega\right) \delta^{\prime \prime}\left(r-r_{p}\right)
\end{aligned}
$$

All we need is the radial GF for asymptotically large radius.

MST solutions give us the exact retarded Green function:

[Leaver 85/86, Mano Suzuki and Takasugi+ ~96]

$$
\begin{gathered}
R_{l m \omega}^{\mathrm{in}}(r)=C_{l m \omega}^{\mathrm{in}} \sum_{n=-\infty}^{\infty} a_{n}^{\nu}(\omega){ }_{2} F_{1}(a, b, c, 1-r / 2 M) \\
R_{l m \omega}^{\mathrm{up}}(r)=C_{l m \omega}^{\mathrm{up}} \sum_{n=-\infty}^{\infty} a_{n}^{\nu}(\omega) U(d, e, r \omega) \\
G_{l m \omega}^{\mathrm{ret}}\left(r, r^{\prime}\right)=\frac{R_{l m \omega}^{\mathrm{in}}\left(r^{\prime}\right) R_{l m \omega}^{\mathrm{up}}(r)}{W\left[R_{l m \omega}^{\mathrm{im}}(r), R_{l m \omega}^{\mathrm{im}}(r)\right]} \theta\left(r-r^{\prime}\right)+\frac{R_{l m \omega}^{\mathrm{in}}(r) R_{l m \omega}^{\mathrm{up}}\left(r^{\prime}\right)}{W\left[R_{l m \omega}^{\mathrm{im}}(r), R_{m \omega}^{\mathrm{im}}(r)\right]} \theta\left(r^{\prime}-r\right)
\end{gathered}
$$

Formally valid to all orders in weak-field expansions

$$
a_{n}^{\nu} \sim(G M \omega)^{|n|}
$$

Sum naturally truncates in PN/PM expansion.

$$
\begin{gathered}
R_{l m \omega}^{\mathrm{in}}(r)=C_{l m \omega}^{\mathrm{in}} \sum_{n=-\infty}^{\infty} a_{n}^{\nu}{ }_{2} F_{1}(a, b, c, 1-r / 2 M) \\
R_{l m \omega}^{\mathrm{up}}(r)=C_{l m \omega}^{\mathrm{up}} \sum_{n=-\infty}^{\infty} a_{n}^{\nu} U(d, e, r \omega) \\
G_{l m \omega}^{\mathrm{ret}}\left(r, r^{\prime}\right)=\frac{R_{l m \omega}^{\mathrm{in}}\left(r^{\prime}\right) R_{l m \omega}^{\mathrm{up}}(r)}{W\left[R_{l m \omega}^{\mathrm{in}}(r), R_{l m \omega}^{\mathrm{in}}(r)\right]} \theta\left(r-r^{\prime}\right)+\frac{R_{l m \omega}^{\mathrm{in}}(r) R_{l m \omega}^{\mathrm{up}}\left(r^{\prime}\right)}{W\left[R_{l m \omega}^{\mathrm{in}}(r), R_{l m \omega}^{\mathrm{in}}(r)\right]} \theta\left(r^{\prime}-r\right)
\end{gathered}
$$

Put in standard PN scalings

$$
r \sim \eta^{-2}
$$

$$
\omega \sim \eta^{3}
$$

- PN expansions purely from near zone
- No near zone/far zone matching
- .. no far zone integrations (the hard part!)
- solutions are pure polynomials + log(r)

MST solutions now used frequently in Amplitudes/EFT calculations. Recent examples:

- Ivanov et al (arXiv:2401.08752) - "Gravitational Raman Scattering .."
- Saketh, Zhou, Ivanov (arXiv:2307.10391)
- Y F Bautista et al (arXiv:2312.05965) - "BHPT meets CFT"
- Bautista, Guevara, CK, Vines (arXiv:2212.07965, arXiv:2107.10179)

What we know analytically:

- Dissipative 1SF
- ~10PN circular equatorial fluxes for Kerr (i.e. ‘aligned spin’) [Fujita++]
- low eccentricity limit but high order $\sim e^{10}$ or higher (equatorial) e.g. [Evans, Munna++]
- small particle spin -7PN, aligned, Schwarzschild
- Generic Kerr, closed form in inclinations 5PN [Fujita, Sago et al]
- Conservative 1SF
- ~10PN circular Redshift for Kerr (i.e. ‘aligned spin’) [CK, Wardell, Kavanagh]
- low eccentricity limit + low spin limit [Bini, Geralico +] (all orders in spin possible!)
- Linear in spin + quadratic in spin redshift [Bini ++]
- Successful program generating high order PN terms for EOB
- Damour et al 'tutti frutti' approach

What we don't know analytically:

- High eccentricies i.e. $e \sim 1$

Is it possible to gain some control of the poor numerical convergence beyond $e \sim 0.3$?

- Precession effects to all orders

Kerr fluxes known to all-orders-in-inclination + Kerr spin parameter.
Conservative sector?

- 2SF

Scalar model demonstration [Pound + CK - in prep]
GR calculation at v. early stages
-independent calculations are going to be essential.

PART III: Unbound Orbits + PM expansion

Aim: can we do a PM expansion of the mp along a scattering trajectory:

$$
\begin{aligned}
& g_{\mu \nu}=\bar{g}_{\mu \nu}+\epsilon h_{\mu \nu}^{(1)}+\epsilon^{2} h_{\mu \nu}^{(2)}+\ldots \\
& h_{\mu \nu}^{(1)}=\sum G^{i} M^{i} h_{\mu \nu}^{(1, i)}
\end{aligned}
$$

i.e. can we construct Teukolsky solutions along a weak-field scattering orbit?

Barack+Long, Barack, Whitall, Bern+ have been paving the way for this type of question
-See C Whittall, O Long's talks on Wednesday.

Scalar self-force

$$
\begin{aligned}
& \bar{\nabla}^{a} \bar{\nabla}_{a} h_{\mu \nu}^{(1)}+2 \bar{R}_{\mu \nu}^{a}{ }_{\nu} h_{a b}^{(1)}=16 \pi T_{\mu \nu} \\
& u^{a} \bar{\nabla}_{a} u^{\mu}=-\frac{1}{2}\left(\bar{g}^{\mu \nu}-h_{R}^{\mu \nu}\right)\left(2 h_{\nu \rho ; \sigma}^{R}-h_{\rho \sigma ; \nu}^{R}\right) u^{\rho} u^{\sigma}
\end{aligned}
$$

Scalar self-force

$$
\begin{aligned}
& \bar{\nabla}^{a} \bar{\nabla}_{a} h_{\mu \nu}^{(1)}+2 \bar{R}_{\mu}{ }^{a}{ }_{\nu} b_{a b}^{(1)}=16 \pi T_{\mu \nu} \\
& u^{a} \bar{\nabla}_{a} u^{\mu}=-\frac{1}{2}\left(\bar{g}^{\mu \nu}-h_{R}^{\mu \nu}\right)\left(2 h_{\nu \rho ; \sigma}^{R}-h_{\rho \sigma ; \nu}^{R}\right) u^{\rho} u^{\sigma}
\end{aligned}
$$

$\bar{\nabla}^{a} \bar{\nabla}_{a} \Phi=4 \pi T$
$u^{a} \bar{\nabla}_{a} u^{\mu}=Q \bar{\nabla}^{\mu} \Phi^{\mathrm{R}}$

$$
T=-Q \int_{-\infty}^{\infty} \frac{\delta^{4}\left(z-z_{p}(\tau)\right)}{\sqrt{-g}} d \tau
$$

Scalar self-force

$$
\begin{array}{ll}
\bar{\nabla}^{a} \bar{\nabla}_{a} \Phi=4 \pi T \\
u^{a} \bar{\nabla}_{a} u^{\mu}=Q \bar{\nabla}^{\mu} \Phi^{\mathrm{R}}
\end{array} \quad T=-Q \int_{-\infty}^{\infty} \frac{\delta^{4}\left(z-z_{p}(\tau)\right)}{\sqrt{-g}} d \tau
$$

- Same analytic GF structure
- Same geodesic eq structure
- No metric gauge ambiguities
- No metric reconstruction issues
- There are results in the literature.

$$
\begin{align*}
\delta \chi_{1}^{\text {cons }}= & 0, \tag{5.19}\\
\delta \chi_{2}^{\text {cons }}= & -\frac{\pi}{4} G \frac{m_{2}^{2}}{b^{2}}, \tag{5.20}\\
\delta \chi_{3}^{\text {cons }}= & -\frac{4}{3} G^{2} \frac{\sigma\left(1+2 \sigma^{2}\right)}{\left(\sigma^{2}-1\right)} \frac{m_{2}^{3}}{b^{3}}, \tag{5.21}\\
\delta \chi_{4}^{\text {cons }}= & \pi G^{3} \frac{3 m_{2}^{4}}{8\left(\sigma^{2}-1\right) b^{4}}\left\{-\left[4 \mathcal{M}_{4}^{\mathrm{t}} \log \left(\frac{\sqrt{\sigma^{2}-1}}{2}\right)+\mathcal{M}_{4}^{\pi^{2}}+\mathcal{M}_{4}^{\mathrm{rem}}\right]\right. \\
& \left.\quad+c_{1}\left(\sigma^{2}-5\right)+\left(c_{2}(\bar{\mu})-\frac{31}{3}+2 \log \left[2 b^{2} e^{2 \gamma_{\mathrm{E}}} \bar{\mu}^{2}\right]\right)\left(\sigma^{2}-1\right)\right\} . \tag{5.22}
\end{align*}
$$

Solving the field equations

$$
\Phi_{l m}(r, t)=\int d r^{\prime} \int d \omega \int d t^{\prime} e^{-i \omega\left(t-t^{\prime}\right)} G_{l m \omega}\left(r, r^{\prime}\right) T_{l m}\left(r^{\prime}, t^{\prime}\right)
$$

Solving the field equations

$$
\Phi_{l m}(r, t)=\int d r^{\prime} \int d \omega \int d t^{\prime} e^{-i \omega\left(t-t^{\prime}\right)} G_{l m \omega}\left(r, r^{\prime}\right) T_{l m}\left(r^{\prime}, t^{\prime}\right)
$$

Plan: PM expand our MST Green function
PM expansion:

- Introduce PM scaling: scale all dimensional variables with impact parameter (Large b equivalent to $M \rightarrow 0$)

$$
\begin{aligned}
r & =b \bar{r} \\
\omega & =\frac{1}{b} \bar{\omega} \quad b \gg M \\
t & =b \bar{t}
\end{aligned}
$$

$$
G=c=1
$$

Solving the field equations

End up with nasty functions from MST, e.g. $\quad \partial_{a}^{k} U(a, b, c, \bar{r} \bar{\omega})$

- Also include scaling with velocity (at ∞) $v \rightarrow>\mathrm{PN}$ expansion

$$
\begin{array}{ll}
r=b \bar{r} & \\
\omega=\frac{v}{b} \bar{\omega} & b \gg M \\
t=\frac{b}{v} \bar{t} & v \ll 1
\end{array}
$$

i.e. at each PM order, expand also in low velocity.

- PM-PN expanded Green function $(l=m=1)$:

$$
\left.\begin{array}{l}
\frac{\frac{r}{3 r b^{2}}+\left(\frac{r}{6}-\frac{r^{3}}{30 r b^{2}}\right) \omega^{2} v^{2}+0[v]^{3}}{b}+\frac{\left(\frac{2 r}{3 r b^{3}}-\frac{1}{3 r b^{2}}\right)+\left(-\frac{1}{6}-\frac{r^{3}}{15 r b^{3}}-\frac{7 r^{2}}{30 r b^{2}}+\frac{2 r}{3 r b}\right) \omega^{2} v^{2}+0[v]^{3}}{b^{2}}+ \\
\frac{\left(\frac{6 r}{5 r b^{4}}-\frac{2}{3 r b^{3}}\right)+\omega^{2}\left(-\frac{3 r^{3}}{25 r b^{4}}-\frac{7 r^{2}}{15 r b^{3}}-\frac{2}{3 r b}+\frac{r\left(\frac{1244}{675}-\frac{38 \log [r]}{45}+\frac{38 \log [r b]}{45}\right)}{r b^{2}}\right) v^{2}+0[v]^{3}}{b^{3}}+ \\
\frac{\left(\frac{32 r}{15 r b^{5}}-\frac{6}{5 r b^{4}}\right)+\omega^{2}\left(-\frac{16 r^{3}}{75 r b^{5}}-\frac{21 r^{2}}{25 r b^{4}}+\frac{\frac{631}{675}+\frac{38 \log [r]}{45}-\frac{38 \log [r b]}{45}}{r b^{2}}+\frac{r\left(\frac{1108}{675}-\frac{76 \log [r]}{45}+\frac{76 \log [r b]}{45}\right)}{r b^{3}}\right) v^{2}+0[v]^{3}}{b^{4}}+ \\
\left(\frac{80 r}{21 r b^{6}}-\frac{32}{15 r b^{5}}\right)+\frac{4 i \omega}{9 r^{2} r b^{2}}+\omega^{2}\left(-\frac{8 r^{3}}{21 r b^{6}}-\frac{112 r^{2}}{75 r b^{5}}+\frac{4}{3 r r b^{2}}+\frac{\frac{2642}{675}+\frac{76 \log [r]}{45}-\frac{76 \log [r b]}{45}}{r b^{3}}+\frac{r\left(\frac{614}{875}-\frac{76 \log [r]}{25}+\frac{76 \log [r b]}{25}\right)}{r b^{4}}\right) v^{2}+0[v]^{3} \\
b^{5}
\end{array}\right)
$$

This can be taken to essentially arbitrary PM order.

GF structure and the field modes

$$
\begin{gathered}
G_{l m \omega}=\sum_{k=0} G_{l m o}^{k .0}\left(\bar{r}, \bar{r}^{\prime}, b, v\right) \bar{\omega}^{k}+\sum_{k=2} G_{l m \omega}^{k, 1}\left(\bar{r}, \bar{r}^{\prime}, b, v\right) \bar{\omega}^{k} \log (\bar{\omega})+\sum_{k=4} G_{l m \omega}^{k, 2}\left(\bar{r}, \bar{r}^{\prime}, b, v\right) \bar{\omega}^{k} \log ^{2}(\bar{\omega})+\ldots \\
\text { 4PM }
\end{gathered}
$$

Working at 4PM we just need the following distributional Fourier transforms:

$$
\begin{aligned}
& \int \omega^{k} e^{i \omega t} d \omega=\frac{2 \pi}{i^{k}} \delta^{k}(t) \\
& \int \omega^{k} e^{i \omega t} \log (\omega) d \omega=\frac{1}{2}\left(\frac{1}{t}\right)_{1}-\frac{1}{2}\left(\frac{1}{|t|}\right)_{1}-\gamma_{\mathrm{E}} \delta^{k}(t)
\end{aligned}
$$

GF structure and the field modes

$$
\begin{gathered}
G_{\text {lmo }}=\sum_{k=0} G_{l m o}^{k, 0}\left(\bar{r}, \bar{r}^{\prime}, b, v\right) \bar{\omega}^{i}+\sum_{k=2} G_{\ln \omega}^{k, 1}\left(\bar{r}, \bar{r}^{\prime}, b, v\right) \bar{\omega}^{k} \log (\bar{\omega})+\sum_{k=4} G_{\operatorname{lno\omega }}^{k, 2}\left(\bar{r}, \bar{r}^{\prime}, b, v\right) \bar{\omega}^{k} \log ^{2}(\bar{\omega})+\ldots \\
\text { 4PM }
\end{gathered}
$$

Working at 4PM the time-domain field is then:

$$
\Phi_{l m}(t, r)=\sum_{k} \frac{i^{k}}{k!} \frac{d^{k}}{d \bar{t}^{k}} \int d \bar{r}^{\prime} G_{l m \omega}^{k, 0}\left(\bar{r}, \bar{r}^{\prime}\right) T_{l m}\left(\bar{r}^{\prime}, \bar{t}^{\prime}\right)-i^{k} \int d \bar{r}^{\prime} G_{l m \omega}^{k, 1}\left(\bar{r}, \bar{r}^{\prime}\right)\left[\left(\gamma_{\mathrm{E}}-\log \left(\frac{v}{b}\right)\right) \frac{d^{k}}{d \bar{t}^{k}} T_{l m}\left(\bar{r}^{\prime}, \bar{t}^{\prime}\right)+F_{l m}^{(k)}\left(\bar{r}^{\prime}, \bar{t}^{\prime}\right)\right]
$$

Evaluate functions on geodesic worldline with no explicit integrations-'easy'

$$
F_{l m}^{(k)}=\int_{0}^{\infty} d y \log (y) T_{l m}^{(k+1)}\left(\bar{t}-y, r^{\prime}\right)
$$

can be reduced to a set of master integrals

Results: preliminary!!

w/ Adam Pound, Davide Usseglio, Donato Bini, Andrea Geralico

Putting everything together, we can use Barack and Long formulation to calculate e.g. the conservative scattering angle:

$$
\delta \chi=\delta \chi^{2 \mathrm{PM}}+\delta \chi^{3 \mathrm{PM}}+\delta \chi^{4 \mathrm{PM}}+\ldots
$$

$\delta \chi_{2 \mathrm{PM}}^{\mathrm{Cons}}=-\frac{\pi q^{2} M^{2}}{4 b^{2}}$,
$\delta \chi_{3 \mathrm{PM}}^{\mathrm{Cons}}=-\frac{q^{2} M^{3}}{b^{3} v^{2}}\left(4+\frac{2 v^{2}}{3}+\frac{5 v^{4}}{6}+O\left(v^{6}\right)\right)$,
$\delta X_{4 \mathrm{PM}}^{\text {Cons }}=\frac{\pi q^{2} M^{4}}{b^{4} v^{4}}\left[\frac{9}{4}+v^{2}\left(\frac{91}{24}+\frac{21 \pi^{2}}{128}-\log (2)+\log (v)\right)+v^{4}\left(\frac{493}{480}+\frac{4335 \pi^{2}}{8192}-2 \log (2)-\frac{3 \log (b / M)}{2}+2 \log (v)\right)+O\left(v^{6}\right)\right]$

- free from any undetermined constants.

Results: preliminary!!

Compare our result with Barack, Bern et al, at 4PM we have:

$$
\delta \chi_{4 \mathrm{PM}}^{\mathrm{Cons}}=\frac{\pi q^{2} M^{4}}{b^{4} v^{4}}\left[\frac{9}{4}+v^{2}\left(\frac{91}{24}+\frac{21 \pi^{2}}{128}-\log (2)+\log (v)\right)+v^{4}\left(\frac{493}{480}+\frac{4335 \pi^{2}}{8192}-2 \log (2)-\frac{3 \log (b / M)}{2}+2 \log (v)\right)+O\left(v^{6}\right)\right]
$$

Expanding in low v, their result gives:

$$
\begin{array}{ll}
v^{0}: & \frac{9}{4} \\
v^{2}: & \left(-\frac{3 c_{1}}{2}-\frac{85}{24}\right)-\log (v)-\frac{21 \pi^{2}}{128}+\log (2) \\
v^{4}: & -\frac{313}{480}+\frac{15 c_{1}}{8}+\frac{3 c_{2}(\mu)}{8}+\frac{3 \log (b \mu)}{2}-2 \log (v)-\frac{4335 \pi^{2}}{8192}+\frac{3 \gamma_{\mathrm{E}}}{2}+\frac{11 \log (2)}{4} \\
& \Longrightarrow c_{1}=\frac{1}{6} \\
& \Longrightarrow c_{2}(\mu)=-\frac{11}{6}-4 \gamma_{E}-2 \log \left(2 \mu^{2} M^{2}\right)
\end{array}
$$

Results: preliminary!!

$$
\begin{array}{r}
c_{1}=\frac{1}{6} \quad c_{2}(\mu)=-\frac{11}{6}-4 \gamma_{E}-2 \log \left(2 \mu^{2} M^{2}\right) \\
S^{\text {tidal }}=G^{3} \int d^{D} x \sqrt{-\mathrm{g}}\left[\left(4 \pi c_{1}\right)\left[m_{2}^{2}\left(\partial_{\mu} \phi_{2} \partial^{\mu} \psi\right)^{2}-m_{2}^{4} \phi_{2}^{2}\left(\partial_{\mu} \psi\right)\left(\partial^{\mu} \psi\right)\right]\right. \\
\left.+\left(4 \pi c_{2}^{\text {bare }}\right) m_{2}^{2}\left(\partial_{\mu} \phi_{2} \partial^{\mu} \psi\right)^{2}\right]+\mathcal{O}\left(G^{4}\right), \tag{3.11}
\end{array}
$$

$c_{1}-$ scalar equivalent of static love number \sim scalarizability?
c_{2} - related to UV divergence

> Gravitational Raman Scattering in Effective Field Theory: a Scalar Tidal Matching at $\mathcal{O}\left(G^{3}\right)$

Mikhail M. Ivanov, ${ }^{1, *}$ Yue-Zhou Li, ${ }^{2, \dagger}$ Julio Parra-Martinez, ${ }^{3, \ddagger}$ and Zihan Zhou ${ }^{2, \S}$

$$
\begin{align*}
& S_{\mathrm{fs}}^{\mathrm{ct}}=\sum_{\ell} \frac{1}{2 \ell!} \int d \tau\left[C_{\ell}\left(\boldsymbol{\partial}_{L} \phi\right)^{2}+C_{\ell, \omega^{2}}\left(\boldsymbol{\partial}_{L} \dot{\phi}\right)^{2}+\cdots\right] \tag{6}\\
& =\frac{1}{2} \int d \tau\left[C_{1}(\boldsymbol{\partial} \phi)^{2}+C_{0, \omega^{2}} \dot{\phi}^{2}+C_{1, \omega^{2}}(\boldsymbol{\partial} \dot{\phi})^{2}+\cdots\right]
\end{align*}
$$

Takeaways

- 1 post-Adiabatic effects may be modelled well by analytic approximations for sizeable portions of the parameter space
- Still more places to meet, e.g. Precession effects? can the road to nonlinear SF (analytic or not) be made more efficient using other methods?
- SF can now give PM expansions. GR version should come soon. What can we do with these?
- low- v to all-orders
- GR wilson coefficients
- B-2-B mappings in SF
- how bad will our master integrals get..?
- higher power logs seem doable, are there surprises waiting?
- WQFT have 5PM 1SF!! This will be a big target of comparison. (arXiv:2403.07781)

Thanks for listening

extra slide: Master Integrals

$$
F_{l m}^{(k)}=\int_{0}^{\infty} d y \log (y) T_{l m}^{(k+1)}\left(\bar{t}-y, r^{\prime}\right)
$$

$$
I_{1}=\int d u \frac{\operatorname{ArcSinh}(u)}{(t+u)^{k} \sqrt{1+u^{2}}} \quad \rightarrow\left\{\operatorname{ArcSinh}[t], \operatorname{ArcTan}[t], \operatorname{PolyLog}\left[2, \frac{t+\sqrt{1+t^{2}}}{t-\sqrt{1+t^{2}}}\right]\right\}
$$

$$
I_{2}=\int d u \frac{\operatorname{ArcSinh}^{2}(u)}{(t+u)^{k}}
$$

$$
I_{2}=\int d u \log \left(1+u^{2}\right) u^{k}
$$

