

Barry Wardell
University College Dublin

Multiscale Simulations with Self-Force Collaboration

Self-force: Why?

Why gravitational self-force?
Observing gravitational waves with LISA

$$
\operatorname{Lin}_{\text {consortium }} S
$$

Detect and estimate parameters for extreme mass-ratio inspirals (EMRIs) using LISA

Why gravitational self-force?

Observing gravitational waves with LIGO

Masses in the Stellar Graveyard

[^0]
GO

Self-force: How?

Gravitational self-force

Expand exact binary spacetime about that of the primary
Schwarzschild/Kerr black hole

$$
g_{\alpha \beta}^{\text {exact }}=g_{\alpha \beta}+\epsilon h_{\alpha \beta}^{(1)}+\epsilon^{2} h_{\alpha \beta}^{(2)}+\mathcal{O}\left(\epsilon^{3}\right) \quad \epsilon=\frac{m_{2}}{m_{1}}
$$

Substitute expansion into the Einstein equation

$$
G_{\mu \nu}[g]=8 \pi T_{\mu \nu}
$$

Expand out in powers of ϵ

$$
\begin{array}{ll}
\epsilon^{0}: & G_{\alpha \beta}[g]=0 \\
\epsilon^{1}: & G_{\alpha \beta}^{1}\left[h^{(1) R}\right]=8 \pi T_{\alpha \beta}-G_{\alpha \beta}^{1}\left[h^{(1) S}\right] \\
\epsilon^{2}: & G_{\alpha \beta}^{1}\left[h^{(2) R}\right]=-G_{\alpha \beta}^{2}\left[h^{(1)}, h^{(1)}\right]-G_{\alpha \beta}^{1}\left[h^{(2) S}\right]+\partial_{\hat{i}} h^{(1)}
\end{array}
$$

This is hard.
Perform two-timescale expansion by introducing a "slow time" $\tilde{t}=\epsilon t$, use a frequency domain decomposition.

Post-adiabatic orbit evolution

The evolution of the orbit is determined by the post-adiabatic/self-force equations of motion:

$$
\frac{d \Omega}{d t}=\epsilon \underbrace{F_{0}^{\Omega}(\Omega)}+\epsilon \quad \frac{d \phi_{p}}{d t}=\Omega
$$

Adiabatic order
OPA: Adiabatic dissipation-driven rate of change, determined by first-order dissipative gravitational self-force/ energy flux (dissipative part of $h^{(1)}$)

Post-Adiabatic order
1PA: first-post-adiabatic term determined by the full (conservative and dissipative) first-order gravitational self-force (full $h^{(1)}$) and second-order dissipation (dissipative part of $h^{(2)}$).

At 1PA order have to account for evolution of the mass and spin of the primary:

$$
\frac{d \delta m_{1}}{d t}=\epsilon \mathscr{F}_{\mathscr{H}}^{(1)}(\Omega) \quad \frac{d \delta s_{1}}{d t}=\epsilon \Omega_{\mathscr{H}}^{-1} \mathscr{F}_{\mathscr{H}}^{(1)}(\Omega)
$$

Specialise (for now) to quasi-circular orbits with orbital frequency Ω and spins aligned with orbital angular momentum.

EMRI waveforms

Split the waveform into an amplitude and orbital phase:

$$
h_{\ell m}(t)=\left[\epsilon h_{\ell m}^{(1)}(\Omega(t))+\epsilon^{2} h_{\ell m}^{(2)}(\Omega(t))\right] e^{-i m \phi_{p}(t)}
$$

Amplitude is given by solving the linearised Einstein Equations.
Frequency evolution is given by solving the post-adiabatic equations of motion.
Orbital phase is given by integrating over the orbital frequencies.

Algorithm:

1. Precompute $h^{(1)}$ and $h^{(2)}$ on a grid of Ω values by solving Einstein's equations (hard)
2. Waveforms can be generated in milliseconds by solving ODEs (easy).

EMRI waveforms

Split the waveform into an amplitude and orbital phase:

$$
h_{\ell m}(t)=\left[\epsilon h_{\ell m}^{(1)}(\Omega(t))+\epsilon^{2} h_{\ell m}^{(2)}(\Omega(t))\right] e^{-i m \phi_{p}(t)}
$$

Amplitude is given by solving the linearised Einstein Equations.
Frequency evolution is given by solving the post-adiabatic equations of motion.
Orbital phase is given by integrating over the orbital frequencies.
For LISA: to $\mathcal{O}\left(\epsilon^{0}\right)$ the phase has contributions at adiabatic and post-adiabatic orders

$$
\phi_{p}(t)=\epsilon^{-1} \phi_{0}\left[\left\langle h_{\mathrm{diss}}^{1}\right\rangle\right]+\phi_{1}\left[h_{\mathrm{diss}, \mathrm{osc}}^{1}+h_{\mathrm{cons}}^{1}+\left\langle h_{\mathrm{diss}}^{2}\right\rangle\right]+\mathcal{O}(\epsilon)
$$

Adiabatic order

Can be obtained from asymptotic fluxes, avoiding a local calculation of the self-force

Post-Adiabatic order

Several contributions:

- Oscillatory first order self-force
- Spin of secondary
- Second-order averaged self-force

Self-force: Latest Results

Results: 1. Second order metric perturbation

\qquad

 - \square
T

Binding energy $(l=0=m)$
\square
\square

$\begin{array}{lll} & \text { Sirst law } \\ \text { Estimated error } \\ \text { in } E_{S F}\end{array}$
f

$$
0^{2}
$$

\qquad

Results: 1. Second order metric perturbation

\qquad
(

\square Second order metric
Non-spinning, $\mathrm{q}=10$

EMRI Waveforms

Factor waveform into amplitudes and orbital phase

$$
\begin{aligned}
& \qquad h_{\ell m}(t)=\left[\epsilon h_{\ell m}^{(1)}(\Omega(t))+\epsilon^{2} h_{\ell m}^{(2)}(\Omega(t))\right] e^{-i m \phi_{p}(t)} \\
& \text { The amplitude is given by solving the first and second order Einstein Equations. } \\
& \text { The frequency evolution is given by solving the post-adiabatic equations of motion. } \\
& \text { The orbital phase is given by integrating over the orbital frequencies. }
\end{aligned}
$$

$$
\frac{d \Omega}{d t}=\epsilon\left[F_{0}^{\Omega}(\Omega)+\epsilon F_{1}^{\Omega}(\Omega)\right] \quad \frac{d \phi_{p}}{d t}=\Omega
$$

hal waveforms

\qquad

\qquad

[^1]
Abstract

都

 (\qquad

$$
7
$$

$$
\square
$$

$$
>
$$ \square

T都

$$
\begin{aligned}
& \text { Fac } \\
& \text { Thea } \\
& \text { The f } \\
& \text { The c } \\
&
\end{aligned}
$$

$$
\log _{2}
$$

\qquad
x_{0}

\square
\qquad
\qquad

[^2]> 號

都

Results：2．Gravitational waveforms

Results: 2. Gravitational waveforms

Waveform comparison with Numerical Relativity

Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan and Alexandre Le Tiec [Phys. Rev. Lett. 130, 241402]

\qquad
.

Results: 3. Gravitational waveforms with spin
\qquad -

$$
\begin{array}{cc}
\chi \equiv S / \mu^{2} & S^{2} \equiv S^{\alpha} S_{\alpha}=\frac{1}{2} S_{\alpha \beta} S^{\alpha \beta} \\
\mu^{2} \chi_{\|}^{2} \equiv S^{\theta} S_{\theta} & \chi_{\perp}^{2} \equiv \chi^{2}-\chi_{\|}^{2}
\end{array}
$$

Including spin in waveforms

 (n ain$$
\theta\left(x_{\perp}^{2} \equiv \chi^{2}-\chi_{\|}^{2}\right.
$$

\square
\qquad

[^3]$$
S^{2} \equiv S^{\alpha} S_{\alpha}=\frac{1}{2} S_{\alpha \beta}
$$

Barry Wardell [Phys. Rev. D 105, 084031], Josh Mathew
.
\qquad

Results： 3 ．Gravitational wave Aligned secondary spin
 Results：3．Gravitational waveforms with spin

Precessing secondary spin

\qquad

■
保

\square

$q=4, \quad \chi \approx 0.01, \quad \chi_{\perp} \approx 0.8, \quad\left(\chi_{1}=0\right)$
Josh Mathews，Adam Pound，Barry Wardell［Phys．Rev．D 105，084031］，Josh Mathews，Jonathan Thompson，et
SXS：BBH：1909
＿
\qquad

$$
\begin{aligned}
& \text { (} \\
& \text { 正 } \\
& 9-4, \quad \chi \approx 0.01, \quad \chi \perp \approx 0.8, \quad(\chi 1-0) \\
& \text { : }
\end{aligned}
$$

$$
-
$$

.

\qquad ，
（asmen

Results: 4. Comparisons with and calibration of EOB models
 Comparison with TEOBResumS
 \qquad

2. 1PA GSF models yield satisfactory phase errors for mass ratios $\epsilon \lesssim 1 / 25$.
3. Identified key areas for improvement in
TEOBResumS, particularly for small mass ratios.

Identified key areas for improvement in
TEOBResumS, particularly for small mass ratios.

Detailed comparison of 1 PA GSF waveforms with
those from the TEOBResumS effective one body
model and with numerical relativity. Detailed comparison of 1PA GSF waveforms with
those from the TEOBResumS effective one body
model and with numerical relativity. Detailed comparison of 1PA GSF waveforms with
those from the TEOBResumS effective one body
model and with numerical relativity.

1. Effects of transition to plunge significant over a
with

(
$\overline{-2}$
Effects of transition to plunge significant over a
large frequency interval, restricting domain of
validity to orbital frequencies much smaller than
Effects of transition to plunge significant over a
large frequency interval, restricting domain of
validity to orbital frequencies much smaller than ISCO frequency. large frequency interval, restricting domain of

EOBResums, particularly for small
.

```
J
```

\qquad
\qquad

"Our goal is for less researcher time to be spent writing code and more time spent doing physics.
Currently there exist multiple scattered black hole perturbation theory codes developed by a
wide array of individuals or groups over a number of decades. This project aims to bring together
some of the core elements of these codes into a Toolkit that can be used by all.
Additionally, we want to provide easy, open access to data from black hole perturbation codes
and calculations."
Results: 5. Black Hole Perturbation Toolkit
Black Hole Perturbation Toolkit

Results: 5. Black Hole Perturbation Toolkit
Black Hole Perturbation Toolkit
"Our goal is for less researcher time to be spent writing co
Currently there exist multiple scattered black hole perturb
wide array of individuals or groups over a number of decal
some of the core elements of these codes into a Toolkit th
$\begin{array}{l}\text { Additionally, we want to provide easy, open access to data } \\ \text { and calculations." }\end{array}$

$\begin{aligned} & \text { goal is for less researcher time to be spent writing code and more tim } \\ & \text { ntly there exist multiple scattered black hole perturbation theory cod } \\ & \text { array of individuals or groups over a number of decades. This project } \\ & \text { of the core elements of these codes into a Toolkit that can be used } \\ & \text { zonally, we want to provide easy, open access to data from black hold } \\ & \text { calculations." }\end{aligned}$
$\begin{aligned} & \text { goal is for less researcher time to be spent writing code and more time } \\ & \text { ntly there exist multiple scattered black hole perturbation theory co } \\ & \text { array of individuals or groups over a number of decades. This project } \\ & \text { of the core elements of these codes into a Toolkit that can be used } \\ & \text { zonally, we want to provide easy, open access to data from black ho } \\ & \text { calculations." }\end{aligned}$
$\begin{aligned} & \text { Currently there exist multiple scattered black hole } \\ & \text { wide array of individuals or groups over a number } \\ & \text { some of the core elements of these codes into a Tc } \\ & \text { Additionally, we want to provide easy, open access } \\ & \text { and calculations." }\end{aligned}$
$\begin{aligned} & \text { goal is for less researcher time to be spent writing code and more ti } \\ & \text { ntly there exist multiple scattered black hole perturbation theory co } \\ & \text { array of individuals or groups over a number of decades. This project } \\ & \text { of the core elements of these codes into a Toolkit that can be used } \\ & \text { zonally, we want to provide easy, open access to data from black ho } \\ & \text { calculations." }\end{aligned}$

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

-
 Black Hole F

Results: 5 . Black Hole Perturbation Toolkit
Black Hole Perturbation Toolkit
"Our goal is for less researcher time to be
Currently there exist multiple scattered blag
wide array of individuals or groups over an
some of the core elements of these codes
Additionally, we want to provide easy, open
and calculations."
5. Black Hole Perturbation Toolkit
"Our goal is for less researcher time to b
Currently there exist multiple scattered b
wide array of individuals or groups over
some of the core elements of these code
Additionally, we want to provide easy, op
and calculations." \qquad

"Our goal is for less researcher time to be spent writing code and more time spent doing physics. Currently there exist multiple scattered black hole perturbation theory codes developed by a wide array of individuals or groups over a number of decades. This project aims to bring together some of the core elements of these codes into a Toolkit that can be used by all. Additionally, we want to provide easy, open access to data from black hole perturbation codes and calculations."
 "Our goal is for less researcher time to be spent writing code and more time spent doing physics. Currently there exist multiple scattered black hole perturbation theory codes developed by a wide array of individuals or groups over a number of decades. This project aims to bring together some of the core elements of these codes into a Toolkit that can be used by all. Additionally, we want to provide easy, open access to data from black hole perturbation codes and calculations."
 "Our goal is for less researcher time to be spent writing code and more time spent doing physics. Currently there exist multiple scattered black hole perturbation theory codes developed by a wide array of individuals or groups over a number of decades. This project aims to bring together some of the core elements of these codes into a Toolkit that can be used by all. Additionally, we want to provide easy, open access to data from black hole perturbation codes and calculations."
 "Our goal is for less researcher time to be spent writing code and more time spent doing physics. Currently there exist multiple scattered black hole perturbation theory codes developed by a wide array of individuals or groups over a number of decades. This project aims to bring together some of the core elements of these codes into a Toolkit that can be used by all. Additionally, we want to provide easy, open access to data from black hole perturbation codes and calculations."
 "Our goal is for less researcher time to be spent writing code and more time spent doing physics. Currently there exist multiple scattered black hole perturbation theory codes developed by a wide array of individuals or groups over a number of decades. This project aims to bring together some of the core elements of these codes into a Toolkit that can be used by all. Additionally, we want to provide easy, open access to data from black hole perturbation codes and calculations."

.

The black hole perturbation toolkit has several packages for doing calculations in black hole perturbation theory, including post-adiabatic (1PA) waveforms.
 \section*{\section*{Results: 5. Black Hole Perturbation Toolkit
 \section*{\section*{Results: 5. Black Hole Perturbation Toolkit

 Currently available toolkit components}

 Currently available toolkit components}
incuang post-adiabaic (1PA) waveforms
 $\square \square$ \qquad
\qquad
and
\square
\square

Results: 5. Black Hole Perturbation Toolkit

Second order Einstein equations: PerturbationEquations package

```
\(\ln [1]:=\) Block [\{Print \}, <<xAct`PerturbationEquations`]
```

In[2]:= SchwarzschildQuadraticOperator["d2G", "IngoingRadiationGauge", "Kinnersley", "Kinnersley"]["ll"]

```
Out[2] \(=\frac{1}{f[r]^{2} r^{3}}\)
\(2\left(-C^{l m \theta}{ }_{l_{2} m_{2} 0 l_{1} m_{1} \Theta}\left(r\left(-r^{2} \partial_{0} h_{K_{34}} 0 l_{1} m_{1} \partial_{0} h_{K_{34}} 0 l_{2} m_{2}+h_{K_{34}} 0 l_{2} m_{2}\left(4 M \partial_{0} h_{K_{34}} 0 l_{1} m_{1}-2 r^{2} \partial_{0} \partial_{0} h_{K_{34}} 0 l_{1} m_{1}\right)\right)-f[r] r^{2}\left(4 h_{K_{34}} 0 l_{2} m_{2} \partial_{0} h_{K_{34}} 0 l_{1} m_{1}+r \partial_{0} h_{K_{34}} 0 l_{2} m_{2} \partial_{1} h_{K_{34}} 0 l_{1} m_{1}+\right.\right.\right.\) \(\left.\left.r \partial_{0} h_{K_{34}}{ }^{0 l_{1} m_{1}} \partial_{1} h_{K_{34}}{ }^{0 l_{2} m_{2}}+4 h_{K_{34}}{ }^{0 l_{2} m_{2}} r \partial_{1} \partial_{0} h_{K_{34}}{ }^{0 l_{1} m_{1}}\right)-f[r]^{2} r^{2}\left(4 h_{K_{34}}{ }^{0 l_{2} m_{2}} \partial_{1} h_{K_{34}}{ }^{0 l_{1} m_{1}}+r \partial_{1} h_{K_{34}}{ }^{0 l_{1} m_{1}} \partial_{1} h_{K_{34}} 0 l_{2} m_{2}+2 h_{K_{34}}{ }^{0 l_{2} m_{2}} r \partial_{1} \partial_{1} h_{K_{34}}{ }^{0 l_{1} m_{1}}\right)\right)+\) \(C^{l m \theta} l_{2 m_{2}-2 l_{1} m_{1} 2}\left(-2 M h_{K_{44}}{ }^{-2 l_{2} m_{2}} r \partial_{0} h_{K_{33}}{ }^{2 l_{1} m_{1}}-2 M h_{K_{33}}{ }^{2 l_{1} m_{1}} r \partial_{0} h_{K_{44}}-2 l_{2} m_{2}+r^{3} \partial_{0} h_{K_{33}}{ }^{2 l_{1} m_{1}} \partial_{0} h_{K_{44}}{ }^{-2 l_{2} m_{2}}+h_{K_{44}}-2 l_{2} m_{2} r^{3} \partial_{0} \partial_{0} h_{K_{33}}{ }^{2 l_{1} m_{1}}+h_{K_{33}}{ }^{2 l_{1} m_{1}} r^{3} \partial_{0} \partial_{0} h_{K_{44}}{ }^{-2 l_{2} m_{2}}+\right.\) \(f[r] r^{2}\left(r\left(\partial_{0} h_{K_{44}}{ }^{-2 l_{2} m_{2}} \partial_{1} h_{K_{33}}{ }^{2 l l_{1} m_{1}}+\partial_{0} h_{K_{33}}{ }^{2 l_{1} m_{1}} \partial_{1} h_{k_{44}}{ }^{-2 l_{2} m_{2}}\right)+2 h_{k_{44}}{ }^{-2 l_{2} m_{2}}\left(\partial_{0} h_{k_{33}}{ }^{2 l_{1} m_{1}}+r \partial_{1} \partial_{0} h_{K_{33}}{ }^{2 l_{1} m_{1}}\right)+2 h_{k_{33}}{ }^{2 l_{1} m_{1}}\left(\partial_{0} h_{k_{44}}{ }^{-2 l_{2} m_{2}}+r \partial_{1} \partial_{0} h_{k_{44}}{ }^{-2 l_{2} m_{2}}\right)\right)+\) \(\left.\left.f[r]^{2} r^{2}\left(r \partial_{1} h_{K_{33}}{ }^{2 l_{1} m_{1}} \partial_{1} h_{K_{44}}{ }^{-2 l_{2} m_{2}}+h_{K_{44}}{ }^{-2 l_{2} m_{2}}\left(2 \partial_{1} h_{K_{33}}{ }^{2 l_{1} m_{1}}+r \partial_{1} \partial_{1} h_{K_{33}}{ }^{2 l_{1} m_{1}}\right)+h_{K_{33}}{ }^{2 l_{1} m_{1}}\left(2 \partial_{1} h_{K_{44}}{ }^{-2 l_{2} m_{2}}+r \partial_{1} \partial_{1} h_{K_{44}}-2 l_{2} m_{2}\right)\right)\right)\right)\)
```

四

```

```

$$
\begin{aligned}
& \left.\left.h_{K_{34}}{ }^{022} r \partial_{1} \partial_{0} h_{K_{34}}{ }^{020}\right)-f[r]^{2} r^{2}\left(4 h_{K_{34}}{ }^{022} \partial_{1} h_{K_{34}}{ }^{02 \theta}+r \partial_{1} h_{K_{34}}{ }^{020} \partial_{1} h_{K_{34}}{ }^{022}+2 h_{K_{34}}{ }^{022} r \partial_{1} \partial_{1} h_{K_{34}}{ }^{020}\right)\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.f[r]^{2} r^{2}\left(r \partial_{1} h_{k_{33}}{ }^{220} \partial_{1} h_{k_{44}}{ }^{-222}+h_{K_{44}}{ }^{-222}\left(2 \partial_{1} h_{K_{33}}{ }^{22 \theta}+r \partial_{1} \partial_{1} h_{K_{33}}{ }^{22 \theta}\right)+h_{k_{33}}{ }^{220}\left(2 \partial_{1} h_{k_{44}}{ }^{-222}+r \partial_{1} \partial_{1} h_{k_{44}}{ }^{-222}\right)\right)\right)\right) \\
& \frac{1}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{In}[3]:=\operatorname{lmReplacerule}[\%, 2,2,2,0,2,2] \\
& \text { Out }[3]=\frac{1}{f[r]^{2} r^{3}}
\end{aligned}
$$

```


\[
\begin{gathered}
f[r]^{2} r^{2}\left(r \partial_{1} h_{K_{33}} 2 l_{1} m_{1} \partial_{1} h_{K_{4}}\right. \\
\text { cerule }[\%, 2,2,2,0,2,2]
\end{gathered}
\] R

= Block[{Print}, << xAct`PerturbationEquations`]
f
f
f






            *)
            *)
            *)
            *)
            *)
            *)






-
-
Andrew Spiers, Adam Pound and Barry Wardell [arXiv:2306.17847, bhptoolkit.org/PerturbationEquations








\section*{Parameter estimation}

Incorporated 1PA waveform into Fast EMRI Waveforms package. Fast enough to be used in LISA MCMC parameter estimation studies ( \(\sim 6\) hours on a GPU per configuration). Focus on three configurations:
\begin{tabular}{c|c|c|c|c|c|c}
\hline \hline Config. & \(\epsilon\) & \(M\left[M_{\odot}\right]\) & \(r_{0} / M\) & \(D_{\mathrm{S}}[\mathrm{Gpc}]\) & \(T_{\mathrm{obs}}[\mathrm{yrs}]\) & \(\rho_{A E T}\) \\
\hline\((1)\) & \(10^{-5}\) & \(10^{6}\) & 10.6025 & 1.0 & 2.0 & 70 \\
\((2)\) & \(10^{-4}\) & \(10^{6}\) & 15.7905 & 2.0 & 1.5 & 65 \\
\((3)\) & \(10^{-3}\) & \(5 \cdot 10^{6}\) & 16.8123 & 1.0 & 1.0 & 340 \\
\hline \hline
\end{tabular}


Parameter estimation: Case (
cirlPA w/ spin
CirlPA who spin
CirOPA whO spin
Marginalized posteriors with shaded \(68 \%\) credible intervals generated by
injecting a true reference model cir1PA and recovering using different models Parameter estimation: Case (
cirlPA w/ spin
CirlPA who spin
CirOPA whO spin
Marginalized posteriors with shaded \(68 \%\) credible intervals generated by
injecting a true reference model cir1PA and recovering using different models Parameter estimation: Case (
cirlPA w/ spin
CirlPA who spin
CirOPA whO spin
Marginalized posteriors with shaded \(68 \%\) credible intervals generated by
injecting a true reference model cir1PA and recovering using different models
\(\qquad\)

\section*{Parameter estimation: Case (3)}

\section*{Intermediate Mass Ratio Inspiral: \(q=10^{-3}\)}

Marginalized posteriors with shaded \(68 \%\) credible intervals generated by injecting a true reference model cir1PA and recovering using different models

Results: 6. Parameter estimation


\(\square\)
-

\footnotetext{

}



\section*{Results: 6. Parameter estimation
Dephasing, mismatches and degeneracy}


\begin{tabular}{c|c|c|c|c|c|c|c|c}
\(\epsilon\) & Model Waveform & \(\Delta \Phi^{(\mathrm{inj})}\) & \(\Delta \Phi^{(\mathrm{bf})}\) & \(\mathcal{M}^{(\mathrm{inj})}\) & \(\mathcal{M}^{(\mathrm{bf})}\) & \(\rho^{(\mathrm{inj})} / \rho^{(\mathrm{opt})}\) & \(\rho^{(\mathrm{bf})} / \rho^{(\mathrm{opt})}\) & \(\log \mathcal{L}^{(\mathrm{inj})}\)
\end{tabular} \(\log \mathcal{L}^{(\mathrm{bf})}\)

Ollie Burke, Gabriel Piovano, et al. [arXiv:2310.08927]

.



年



列

\(\square\)


Results: 7. Post-Newtonian Comparisons
.
ォ
L. Blanchet, L. Durkan, G. Faye, Q. Henry, F. Larrouturou, J. Miller, A. Pound, D. Trestini, N. Warburton, B. Wardell

\subsection*{4.5PN Gravitational Wave Energy Flux for Quasicircular Binaries}

Luc Blanchet, Guillaume Faye, Quentin Henry, Francois Larrouturou, David Trestini [Phys.Rev. Lett.131.121402 (2023)]
\[
\begin{aligned}
& \mathcal{F}= \frac{32 c^{5}}{5 G} \nu^{2} x^{5}\left\{1+\left(-\frac{1247}{336}-\frac{35}{12} \nu\right) x+4 \pi x^{3 / 2}+\left(-\frac{44711}{9072}+\frac{9271}{504} \nu\right)+\frac{65}{18} \nu^{2}\right) x^{2}+\left(-\frac{8191}{672}\left(-\frac{583}{24} \nu\right) \pi x^{5 / 2}\right. \\
&+\left[\frac{6643739519}{69854400}+\frac{16}{3} \pi^{2}-\frac{1712}{105} \gamma_{\mathrm{E}}-\frac{856}{105} \ln (16 x)\left(+\left(-\frac{134543}{7776}+\frac{41}{48} \pi^{2}\right) \nu-\frac{94403}{3024} \nu^{2}-\frac{775}{324} \nu^{3}\right] x^{3}\right. \\
&+\left(-\frac{16285}{504}\left(+\frac{214745}{1728} \nu+\frac{193385}{3024} \nu^{2}\right) \pi x^{7 / 2}\right. \\
&+\left[-\frac{323105549467}{3178375200}+\frac{232597}{4410} \gamma_{\mathrm{E}}-\frac{1369}{126} \pi^{2}+\frac{39931}{294} \ln 2-\frac{47385}{1568} \ln 3+\frac{232597}{8820} \ln x\right. \\
&+\left(-\frac{1452202403629}{1466942400}+\frac{41478}{245} \gamma_{\mathrm{E}}-\frac{267127}{4608} \pi^{2}+\frac{479062}{2205} \ln 2+\frac{47385}{392} \ln 3+\frac{20739}{245} \ln x\right) \nu \\
&\left.+\left(\frac{1607125}{6804}-\frac{3157}{384} \pi^{2}\right) \nu^{2}+\frac{6875}{504} \nu^{3}+\frac{5}{6} \nu^{4}\right] x^{4} \\
&+[\frac{265978667519}{745113600}-\frac{6848}{105} \gamma_{\mathrm{E}}-\frac{3424}{105} \ln (16 x) \underbrace{}_{+\left(\frac{2062241}{22176}+\frac{41}{12} \pi^{2}\right) \nu} \\
&\left.\left.-\frac{133112905}{290304} \nu^{2}-\frac{3719141}{38016} \nu^{3}\right] \pi x^{9 / 2}+\mathcal{O}\left(x^{5}\right)\right\} .
\end{aligned}
\]
(2023)]
\[
\mathcal{F}==
\]


\begin{abstract}

\end{abstract}



 1
\(\qquad\)
\(\qquad\)







\subsection*{4.5PN comparison against second order GSF}

Results: 7. Post-Newtonian Comparisons

\(e^{2}+2\)



\(\qquad\)
Newionian Comparisons
(


L. Blanchet, L. Durkan, G. Faye, Q. Henry, F. Larrouturou, J. Miller, A. Pound, D. Trestini, N. Warburton, B. Wardell
.

\footnotetext{
L. Blanchet, L. Durkan, G. Faye, Q. Henry, F. Larrouturou, J. Miller, A. Pound, D. Trestini, N. Warburton,
}




\begin{tabular}{ccc}
1 & 0.05 & 0.10 \\
\hline 0.02 & \(x\)
\end{tabular}

\footnotetext{
\[
0.02 \quad 0.05
\]
}
\(\qquad\)
號
\begin{tabular}{c} 
Results: 7. P \\
4.5PN CO \\
\\
\\
\hline
\end{tabular}
Brer
(20.10
het, L. Durkan, G. Faye, Q. Henry, F. Larrouturou, J. Miller, A. Pound, D. Trestini, N. Warburton, B. War

\section*{\(\qquad\)}
- :

(20.10

\(\qquad\)
\(\qquad\)


\subsection*{4.5PN comparison against second order GSF}


\section*{Resuits: 7. Post-Newtonian Comparisons}




\section*{Near future improvements}

Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime

Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime
Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime
Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime

Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime
Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime
\(\quad \begin{array}{r}\text { Existing 2SF results limited to quasicircular } \\ \text { orbits in Schwarzschild spacetime }\end{array}\)
spinning primary，complicated orbits with precession a
and eccentricity，and a spinning secondary．
Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime

\section*{Improvements：1．Precession（Kerr）}



\begin{tabular}{c} 
Existing 2SF results limited to quasicircular \\
orbits in Schwarzschild spacetime \\
\hline
\end{tabular}
\(\qquad\)

\(\begin{gathered}\text { Existing 2SF results limited to quasicircular } \\ \text { orbits in Schwarzschild spacetime }\end{gathered}\)
\(\begin{gathered}\text { Most astrophysical EMRIs expected to have a }\end{gathered}\)
spinning primary，complicated orbits with precession
and eccentricity，and a spinning secondary．
Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime
Existing 2SF results limited to quasicircular
orbits in Schwarzschild spacetime

保


\section*{Improvements: 1. Precession (Kerr)}

\subsection*{4.5PN Gravitational Wave Energy Flux for Quasicircular Binaries}

Challenges for incorporating precession
- Need to solve Einstein equations on a Kerr background
- Less straightforward separability (spheroidal vs spherical) Recent progress on second order source construction by Spiers [arXiv:2402.00604] \& Nasipak.
- Need first order metric perturbation in a nice gauge
- More complicated orbits
- Many more modes to compute
- Extended sourced region, even at first order
 [Leather \& Warburton, Phys. Rev. D 108, 084045]

\section*{Lorenz gauge metric perturbation}
\[
\square \bar{h}_{\mu \nu}+2 R^{\alpha}{ }_{\mu}{ }^{\beta}{ }_{\nu} \bar{h}_{\alpha \beta}=-16 \pi T_{\mu \nu} \quad \nabla^{\alpha} \bar{h}_{\alpha \beta}=0
\]

\section*{- Basic idea:}

6 degrees of freedom in the metric perturbation captured by 6 scalars, which are solutions of Teukolsky equations
[S. Dolan, L. Durkan, C. Kavanagh, B. Wardell, arXiv:2306.16459 and Phys. Rev. Lett. 128, 151101]
\[
s= \pm 2 \quad s= \pm 1 \quad s=0
\]
\[
\begin{gathered}
\mathcal{O} \psi_{0}=8 \pi \mathcal{S}_{0} T \quad \mathcal{O}_{0}^{T}=8 \pi \tilde{\mathcal{S}}_{0} T \quad \mathcal{O} h=8 \pi T \\
\mathcal{O}^{\prime} \psi_{4}=8 \pi \mathcal{S}_{4} T \quad \mathcal{O}^{\prime} \phi_{2}^{T}=8 \pi \tilde{\mathcal{S}}_{2} T \quad \mathcal{O} \chi^{T}=8 \pi \mathcal{\delta}_{\chi} T \\
\mathscr{L}_{T} h_{\alpha \beta}^{\mathrm{L}}=h_{\alpha \beta}^{\mathrm{AAB}}-2 \xi_{(\alpha ; \beta)}
\end{gathered}
\]
- Also "completion pieces" that capture mass and angular momentum perturbations.
- Other similar-but-different option: GHZ-Teukolsky puncture scheme [Bourg, et al.].

\section*{Transition to plunge}














and plunge \(\square\)I

\[
0^{2}+2
\]





.



Improvements: 2. Transition and plunge

\section*{Transition to plunge}










\(\qquad\)
 
 Improvements：3．Local and conservative calculations \(\qquad\)

都

 
 （
 \(\square\)

列
\(\qquad\)
\(\qquad\)
2
2
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
－We should also be able to drive an inspiral using the local self－force，computed from the metric
perturbation on the worldline．
－At first order flux balance tells us the two are equivalent：energy dissipated through local self－force is
equal to energy carried away in flux through \(\mathscr{J}\) ．
－We should also be able to drive an inspiral using the local self－force，computed from the metric
perturbation on the worldline．
－At first order flux balance tells us the two are equivalent：energy dissipated through local self－force is
equal to energy carried away in flux through \(\mathscr{J}\) ．
－We should also be able to drive an inspiral using the local self－force，computed from the metric
perturbation on the worldline．
－At first order flux balance tells us the two are equivalent：energy dissipated through local self－force is
equal to energy carried away in flux through \(\mathscr{\mathscr { F }}\) ．
－We should also be able to drive an inspiral using the local self－force，computed from the metric
perturbation on the worldline．
－At first order flux balance tells us the two are equivalent：energy dissipated through local self－force is
equal to energy carried away in flux through \(\mathscr{J}\) ．
－No flux balance law yet at second order． equal to energy carried away in flux through －No flux balance law yet at second order． －
\(\qquad\)
－We should also be able to drive an inspiral using the local self－force，computed from the metric
perturbation on the worldline．
－At first order flux balance tells us the two are equivalent：energy dissipated through local self－force is
equal to energy carried away in flux through \(\mathscr{J}\) ．都
```

```


 ？都 ． － － equal to energy carried away in flux through \(\mathscr{F}\) ．
－No flux balance law yet at second order． 
路

都

\(\qquad\)
\(\square\)
 ．







\author{
\section*{Flux balance} －Existing second－order self－force waveforms based on inspiral driven by energy flux calculated from
metric perturbation at \(\mathscr{F}\) ． Existing second－order self－force waveforms based on inspiral driven by energy flux calculated from
metric perturbation at \(\mathscr{F}\) ． 

\footnotetext{

} \(\square\) \\  \\ －Exilic perturbation at \(\mathscr{F}\) ．
正

}

Improvements: 3. Local and conservative calculations

\section*{Second order redshift}
- Connections with scattering amplitudes calculations achieved via local conservative calculations.
- Not yet any calculation of the second-order redshift, but we can compute the second-order metric perturbation.
- Challenges:
- Difficult to accurately compute the metric perturbation near the worldline.
- Static modes \((m=0=\omega)\) not yet computed and potentially challenging.
- Challenging to identify an appropriate "conservative" second-order spacetime.

Clalenging to idenify an appropiate "conservative" second-order spaceime.


\section*{Outlook}

\section*{Current state-of-the-art}
* We can now produce (quasi-circular) waveforms for arbitrary mass ratios in the time it takes to evaluate an interpolating function (milli-seconds).
* Can be used for LISA data analysis.
* For a complete waveform, we will need to attach a transition to plunge and ringdown at the point where our adiabatic approximation breaks down.
* Detailed comparisons with existing NR, PN and EOB show excellent agreement.
* Could be useful in the future as a test case for new EOB and PN results.
* Could be suitable for modelling IMRIs for LIGO once we have attached a model for the transition, plunge and ringdown.
* Used to calibrate other models (TEOBResumS and SEOBNRv5)
* It is relatively easy to add non-aligned spin on the secondary (precession), small spin on the primary, small eccentricity.

\section*{Outlook}

\section*{Future directions}
* We are near the end of the beginning, but there are many more important things to get EMRI waveforms ready for LISA and IMRI waveforms for LIGO:
* Improved formulations: Teukolsky, Regge-Wheeler gauges are much easier to work with as they only require us to solve a single scalar equation, but some foundational issues still to be worked out.
* Check that certain components of the calculation can be left out without significant effects on waveform. For example, how well justified are we to ignore the slow evolution of the mass and angular momentum of the big black hole?
* Everything described here extends in principle to generic orbits, but significant human effort required in practice.
* Need a practical method for doing things in Kerr spacetime.
* Incorporate finite-size (e.g. spin effects from smaller body) into waveform.
* Can second order be done analytically (using MST-PN expansions)?

\section*{Thank you!}```


[^0]:    "The mass ratio of GW191219_163120's source is inferred to be $0.038_{-0.004}^{+0.005}$, which is extremely challenging for waveform modeling, and thus there may be systematic uncertainties in results for this candidate."

[^1]:    (

[^2]:    $($

[^3]:    $\qquad$

