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Self-force: Why?



Observing gravitational waves with LISA
Why gravitational self-force?

Detect and estimate parameters for extreme mass-ratio inspirals (EMRIs) using LISA



Observing gravitational waves with LIGO

“The mass ratio of GW191219_163120's source is inferred to be , which is extremely challenging 
for waveform modeling, and thus there may be systematic uncertainties in results for this candidate.”
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Why gravitational self-force?



Self-force: How?



ϵ2 : G1
αβ[h(2)R] = − G2

αβ[h(1), h(1)] − G1
αβ[h(2)S] + ∂t̃h(1)

Gravitational self-force

gexact
αβ = gαβ + ϵh(1)

αβ + ϵ2h(2)
αβ + 𝒪(ϵ3)

Expand exact binary spacetime about that of the primary

Gμν[g] = 8πTμν

Substitute expansion into the Einstein equation

Expand out in powers of ϵ

ϵ0 : Gαβ[g] = 0

ϵ1 : G1
αβ[h(1)R] = 8πTαβ − G1

αβ[h(1)S]

ϵ2 : G1
αβ[h(2)R] = − G2

αβ[h(1), h(1)] − G1
αβ[h(2)S]

Perform two-timescale expansion by introducing a “slow time” , use a frequency 
domain decomposition.

t̃ = ϵt

∂t̃h1 = ·Ω∂Ωh1

ϵ =
m2

m1

Schwarzschild/Kerr black hole

This is hard.

m1

m2
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1PA: first-post-adiabatic term determined by the 
full (conservative and dissipative) first-order 
gravitational self-force (full ) and second-order 
dissipation (dissipative part of ).

h(1)

h(2)

Post-Adiabatic orderAdiabatic order

0PA: Adiabatic dissipation-driven rate 
of change, determined by first-order 
dissipative gravitational self-force/
energy flux (dissipative part of )h(1)

Post-adiabatic orbit evolution m1

m2

dϕp

dt
= Ω

dΩ
dt

= ϵ [FΩ
0 (Ω) + ϵFΩ

1 (Ω)]

dδm1

dt
= ϵℱ(1)

ℋ (Ω)
dδs1

dt
= ϵ Ω−1 ℱ(1)

ℋ (Ω)

At 1PA order have to account for evolution of the mass and spin of the primary:

The evolution of the orbit is determined by the 
post-adiabatic/self-force equations of motion:

Specialise (for now) to quasi-circular orbits 
with orbital frequency  and spins aligned 
with orbital angular momentum.

Ω
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EMRI waveforms
Split the waveform into an amplitude and orbital phase:

Orbital phase is given by integrating over the orbital frequencies.

hℓm(t) = [ϵ ( ) + ϵ2 ( )]e−im

Amplitude is given by solving the linearised Einstein Equations.
Frequency evolution is given by solving the post-adiabatic equations of motion.

Ω(t) Ω(t) ϕp(t)h(1)
ℓm h(2)

ℓm

Algorithm:

1. Precompute  and  on a grid of  values by solving Einstein’s equations (hard)

2. Waveforms can be generated in milliseconds by solving ODEs (easy).

h(1) h(2) Ω

m1

m2
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Can be obtained from asymptotic 
fluxes, avoiding a local 
calculation of the self-force

Adiabatic order
Several contributions: 

• Oscillatory first order self-force 
• Spin of secondary 
• Second-order averaged self-force

Post-Adiabatic order

Split the waveform into an amplitude and orbital phase:

Orbital phase is given by integrating over the orbital frequencies.

For LISA: to  the phase has contributions at adiabatic and post-adiabatic orders𝒪(ϵ0)

hℓm(t) = [ϵ ( ) + ϵ2 ( )]e−im

ϕp(t) = ϵ−1ϕ0[⟨h1
diss⟩] + ϕ1[h1

diss,osc + h1
cons + ⟨h2

diss⟩] + 𝒪(ϵ)

Amplitude is given by solving the linearised Einstein Equations.
Frequency evolution is given by solving the post-adiabatic equations of motion.

Ω(t) Ω(t) ϕp(t)h(1)
ℓm h(2)

ℓm

m1

m2

EMRI waveforms
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Self-force: Latest Results



Adam Pound, Barry Wardell, Niels Warburton and Jeremy Miller [Phys. Rev. Lett. 124, 021101]

Binding energy ( )l = 0 = m

First law

Second-order
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Results: 1. Second order metric perturbation



Gravitational wave fluxes through  ( , )ℐ l ≥ 2 m ≠ 0

ℱlm(t) =
1

16π
| ·Alm(t) |2 , ϖ(t) = ·Φ22(t)/2

NR

3.5PN

2SF

1SF
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NR waveform: SXS:BBH:1107

Non-spinning, q=10

Results: 1. Second order metric perturbation

N. Warburton, A. Pound, B. Wardell, J. Miller and L. Durkan [Phys. Rev. Lett. 127, 151102]



EMRI Waveforms

Factor waveform into amplitudes and orbital phase

The orbital phase is given by integrating over the orbital frequencies.

The amplitude is given by solving the first and second order Einstein Equations.
The frequency evolution is given by solving the post-adiabatic equations of motion.

hℓm(t) = [ϵ ( ) + ϵ2 ( )]e−imΩ(t) Ω(t) ϕp(t)h(1)
ℓm h(2)

ℓm

dϕp

dt
= Ω

dΩ
dt

= ϵ [FΩ
0 (Ω) + ϵFΩ

1 (Ω)]

Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan and Alexandre Le Tiec [Phys. Rev. Lett. 130, 241402]

Results: 2. Gravitational waveforms
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Mass ratio  quasi-circular inspiralq = 10

Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan and Alexandre Le Tiec [Phys. Rev. Lett. 130, 241402]

Results: 2. Gravitational waveforms



Waveform comparison with Numerical Relativity
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Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan and Alexandre Le Tiec [Phys. Rev. Lett. 130, 241402]

Results: 2. Gravitational waveforms



Waveform comparison: higher modes
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Results: 2. Gravitational waveforms

Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan and Alexandre Le Tiec [Phys. Rev. Lett. 130, 241402]
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Including spin in waveforms
Results: 3. Gravitational waveforms with spin

Josh Mathews, Adam Pound, Barry Wardell [Phys. Rev. D 105, 084031], Josh Mathews, Jonathan Thompson, et al. [in preparation]



Aligned secondary spin
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Results: 3. Gravitational waveforms with spin

Josh Mathews, Adam Pound, Barry Wardell [Phys. Rev. D 105, 084031], Josh Mathews, Jonathan Thompson, et al. [in preparation]

Precessing secondary spin
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Detailed comparison of 1PA GSF waveforms with 
those from the TEOBResumS effective one body 
model and with numerical relativity.


1. Effects of transition to plunge significant over a 
large frequency interval, restricting domain of 
validity to orbital frequencies much smaller than 
ISCO frequency.


2. 1PA GSF models yield satisfactory phase errors 
for mass ratios .


3. Identified key areas for improvement in 
TEOBResumS, particularly for small mass ratios.

ϵ ≲ 1/25

Comparison with TEOBResumS

Angelica Albertini, Alessandro Nagar, et. al. [Phys. Rev. D 106 084061 & 084062]
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Results: 4. Comparisons with and calibration of EOB models



Incorporated 2SF flux information into latest 
SEOBNR models prepared for LIGO O4 data 
analysis.


1. Significant improvement in agreement with 
reference results provided by NR.


2. Reduces the need to rely on “NQC” corrections.

Calibration of SEOBNRv5

Maarten van de Meent, et. al. [arXiv:2303.18026]

Results: 4. Comparisons with and calibration of EOB models
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bhptoolkit.org

“Our goal is for less researcher time to be spent writing code and more time spent doing physics. 
Currently there exist multiple scattered black hole perturbation theory codes developed by a 
wide array of individuals or groups over a number of decades. This project aims to bring together 
some of the core elements of these codes into a Toolkit that can be used by all.


Additionally, we want to provide easy, open access to data from black hole perturbation codes 
and calculations.”


Since August 2017: 84 papers cite the Toolkit 
and 22 have contributed code or data

Black Hole Perturbation Toolkit
Results: 5. Black Hole Perturbation Toolkit

http://bhptoolkit.org


Currently available toolkit components

Spin-weighed spheroidal harmonics Kerr geodesics

Teukolsky

Quasinormal ModesGeneralRelativityTensors

Regge-Wheeler

bhptoolkit.org

EMRI Surrogates Fast EMRI Waveforms (FEW)

Time-domain SF (selfforce-1d)

Post-Newtonian series Numerical data Regularization

The black hole perturbation toolkit has several packages for doing calculations in black hole perturbation theory, 
including post-adiabatic (1PA) waveforms.

Results: 5. Black Hole Perturbation Toolkit

PerturbationEquations

http://bhptoolkit.org


Andrew Spiers, Adam Pound and Barry Wardell [arXiv:2306.17847, bhptoolkit.org/PerturbationEquations]

Results: 5. Black Hole Perturbation Toolkit

Second order Einstein equations: PERTURBATIONEQUATIONS package

http://bhptoolkit.org/PerturbationEquations


Parameter estimation
Incorporated 1PA waveform into Fast EMRI Waveforms package. Fast enough to be used in 
LISA MCMC parameter estimation studies (~6 hours on a GPU per configuration).

Ollie Burke, Gabriel Piovano, et al. [arXiv:2310.2310.08927]

Focus on three configurations:

Results: 6. Parameter estimation



Ollie Burke, Gabriel Piovano, et al. [arXiv:2310.2310.08927]

Results: 6. Parameter estimation

Marginalized posteriors with shaded 68% credible intervals generated by 
injecting a true reference model cir1PA and recovering using different models

Parameter estimation: Case (1) 



Results: 6. Parameter estimation

Ollie Burke, Gabriel Piovano, et al. [arXiv:2310.2310.08927]

Marginalized posteriors with shaded 68% credible intervals generated by 
injecting a true reference model cir1PA and recovering using different models

Parameter estimation: Case (3) 



12

✏ Model Waveform ��(inj) ��(bf) M(inj) M(bf) ⇢(inj)/⇢(opt) ⇢(bf)/⇢(opt) logL(inj) logL(bf)

10�5

Cir1PA w/o spin 0.779 0.0165 0.143 4.497⇥ 10�5 83.4% 99.9% �846 -0.250

Cir0PA 1PA-3PN w/o spin 0.786 0.00179 0.163 4.293⇥ 10�6 81.5% 99.8% �943 -0.0324

Cir0PA w/o spin 3.002 0.00532 0.889 2.412⇥ 10�6 6.4% 99.8% �4800 -0.0234

10�4

Cir1PA w/o spin 3.994 0.00702 0.511 8.601⇥ 10�6 30.3% 99.9% -5019 -0.336

Cir0PA 1PA-3PN w/o spin 4.310 0.0179 0.486 1.26⇥ 10�4 34.2% 99.9% -4799 -0.441

Cir0PA w/o spin 13.093 0.0354 0.653 2.573⇥ 10�5 19.0% 99.9% -5506 -0.122

10�3

Cir1PA w/o spin 4.518 0.00559 0.922 3.643⇥ 10�6 3.3% 99.9% -112938 -0.226

Cir0PA 1PA-3PN w/o spin 4.882 0.0218 0.949 3.443⇥ 10�5 3.4% 99.9% -112827 -2.132

Cir0PA w/o spin 14.958 0.153 0.938 6.854⇥ 10�3 4.9% 99.1% -122173 -524.798

Table II. Here we present a summary of computed statistics for various mass ratios ✏ = {10�5, 10�4, 10�3} (first column)
when comparing an injected cir1PA waveform and approximate model templates (second column). We compute the orbital
dephasings (Eqs. 39-40) (third and fourth columns); mismatch (Eqs. 37-38) (fifth and sixth columns); accumulated SNRs
(Eqs. 41-42) (seventh and eighth columns); and, finally the log-likelihood function, Eq. (34), at the injected/recovered
parameters. The top, middle, and bottom panels of this table correspond to the top, middle, and bottom panels of Fig. 1,
respectively.

This is alarming: not only are the incorrect parameters
recovered, but our confidence that they are the “correct”
ones is largely inflated due to the tightness of the pos-
teriors. Finally, we see that the cir0PA w/o spin model
features much stronger biases and constraints than both
the cir0PA + 1PA-3PN w/o spin and cir1PA w/o spin
models. In light of Eq. (35), we conclude that all models
are unsuitable for parameter inference of the cir1PA w/
spin model at ⇢AET ⇠ 340.

In Table II, we give a summary of details regard-
ing the individual MCMC simulations for each small-
mass-ratio binary configuration presented in Table I.
The details of the specific computations can be found
in the caption of the table. One of the main features
of this table is the small mismatch, and accumulated
SNR normalized by the optimal SNR. In the worst case,
M ⇠ 10�3 and ⇢(bf)/⇢(opt)

⇠ 99.1% for ✏ = 10�3,
between the injected cir1PA waveform and adiabatic
cir0PA w/o spin model evaluated at the recovered pa-
rameters. This approximate template nearly matches
the optimal matched filtering SNR, the SNR that would
be attained if the exact model was used during inference.
This is further evidence that, for quasicircular binaries,
adiabatic models could be used for detection purposes.
Finally, we remark from Table II that all unbiased re-
sults satisfy the condition ��(inj) . 1 radian.

B. Constraining the secondary spin

We now focus our attention on constraining the spin
� of the CO. Similar to Sec. IVA, we study each mass
ratio ✏ = {10�5, 10�4, 10�3

} with parameters given by
Table I, and perform three parameter estimation simu-
lations. The injection is a cir1PA w/ spin model, and
approximate waveforms are similar to (43) but with spin
included:

hm =

(
cir0PA+1PA-3PN w/ spin,
cir0PA w/ spin.

(44)

Our corner plots for each of the ✏ = {10�5, 10�4, 10�3
}

are displayed in Figs. 2, 3 and 4, respectively. We will
first discuss the ✏ = 10�5 case.

From Fig. 2, we see that the parameter � cannot be
constrained for the ✏ = 10�5 case at ⇢AET ⇠ 70. The
marginalized posterior distribution for � is almost flat.
This implies that our posterior information is not dom-
inated by the likelihood (a function of the data), but
instead dominated by the prior (a function of the pa-
rameters, irrespective of the data). We have tested var-
ious values of � = {�1, 0.5, 0, 0.5, 1}, and in no situa-
tion can the secondary spin be constrained. The exact
model cir1PA w/ spin and approximate cir0PA + 1PA-
3PN w/ spin model are indistinguishable. When recov-
ering the exact cir1PA w/ spin with the exact model

Dephasing, mismatches and degeneracy
Bias in the parameters is degenerate with mis-modelling errors

Ollie Burke, Gabriel Piovano, et al. [arXiv:2310.08927]

Results: 6. Parameter estimation



4.5PN Gravitational Wave Energy Flux for Quasicircular Binaries

L. Blanchet, L. Durkan, G. Faye, Q. Henry, F. Larrouturou, J. Miller, A. Pound, D. Trestini, N. Warburton, B. Wardell

Results: 7. Post-Newtonian Comparisons

Luc Blanchet, Guillaume Faye, Quentin Henry, Francois Larrouturou, David Trestini [Phys.Rev. Lett.131.121402 (2023)]

evolution of the frequency and phase (or “chirp”) is entirely
driven by the energy flux-balance equation,

dE
dt

¼ −F ; ð2Þ

where E denotes the invariant energy of the compact binary
andF the total energy flux (or GW luminosity). Both E and
F in the balance equation are unique functions of the PN
parameter x and the two masses. They have to be evaluated
with the same relative PN precision, in the present case
4.5PN (∼x9=2). From Eq. (2), we derive a simple ordinary
differential equation for the frequency as a function of time,
and, once it is solved, a further integration yields the phase as
a function of frequency.
The invariant energy E follows from the conservative

dynamics of the compact binary at 4PN order, which have

been obtained by various groups using different methods:
(i) the Arnowitt-Deser-Misner (ADM) Hamiltonian formal-
ism [31–34] yielded the first derivation of the 4PN energy,
althoughwith an ambiguity parameter obtained bymatching
the near-zone computation to results imported from gravi-
tational self-force (GSF) [35]; (ii) the Fokker Lagrangian
formalism in harmonic coordinates [36–39] derived the
complete result, without ambiguity and without resorting to
GSF, by using a specific regularization procedurewhichwas
proven to be equivalent to dimensional regularization;
(iii) the effective field theory approach [40–47] rederived
the 4PN energy by using dimensional regularization. From
this series of works, the binary’s invariant energy was
obtained as the Noetherian quantity associated with tem-
poral translation, and reads at 4PN order (see, e.g.,
Refs. [48,49] for partial results up to 6PN order):

E ¼ −
mνc2x
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We denote by ν≡m1m2=m2 the symmetric mass ratio (γE is the Euler constant). Since there are no terms of half-integer PN
order for circular orbits, this expression is actually valid up to 4.5PN order (as indicated by the final error term).
The second input is the energy flux, which we have computed using the PNMPM formalism applied to compact binaries

at 4.5PN beyond the leading quadrupole formula. Crucial to this computation was the recently completed source mass
quadrupole moment at 4PN order [50–53], the source current quadrupole moment at 3PN order [54], and the nonlinear tail-
of-memory effect [55,56]. We provide the technical details of the derivation in the companion paper [24], and report here
only the final result:
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Near future improvements



Improvements: 1. Precession (Kerr)
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Existing 2SF results limited to quasicircular 

orbits in Schwarzschild spacetime

Most astrophysical EMRIs expected to have a 
spinning primary, complicated orbits with precession 

and eccentricity, and a spinning secondary.



Challenges for incorporating precession


• Need to solve Einstein equations on a Kerr background


• Less straightforward separability (spheroidal vs spherical) 
Recent progress on second order source construction by 
Spiers [arXiv:2402.00604] & Nasipak.


• Need first order metric perturbation in a nice gauge


• More complicated orbits


• Many more modes to compute


• Extended sourced region, even at first order 
[Leather & Warburton, Phys. Rev. D 108, 084045]

Improvements: 1. Precession (Kerr)

4.5PN Gravitational Wave Energy Flux for Quasicircular Binaries



• Basic idea:  
6 degrees of freedom in the metric perturbation captured by 
6 scalars, which are solutions of Teukolsky equations 
[S. Dolan, L. Durkan, C. Kavanagh, B. Wardell, arXiv:2306.16459 and Phys. Rev. Lett. 128, 151101]


• Also “completion pieces” that capture mass and angular momentum perturbations.


• Other similar-but-different option: GHZ-Teukolsky puncture scheme [Bourg, et al.].

𝒪ψ0 = 8π𝒮0T

s = ± 2 s = ± 1 s = 0

∇αh̄αβ = 0

𝒪′ ψ4 = 8π𝒮4T

𝒪ϕT
0 = 8π�̃�0T

𝒪′ ϕT
2 = 8π�̃�2T

𝒪h = 8πT

𝒪χT = 8π𝒮χT

□ h̄μν + 2Rα
μ

β
νh̄αβ = − 16πTμν

ℒThL
αβ = hAAB

αβ − 2ξ(α;β)

Improvements: 1. Precession (Kerr)

Lorenz gauge metric perturbation
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Improvements: 2. Transition and plunge

Transition to plunge
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Figure credit: Leanne Durkan, Lorenzo Küchler, Geoffrey Compère, Adam Pound

Improvements: 2. Transition and plunge

Transition to plunge
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• Existing second-order self-force waveforms based on inspiral driven by energy flux calculated from 
metric perturbation at . 

• We should also be able to drive an inspiral using the local self-force, computed from the metric 
perturbation on the worldline.


• At first order flux balance tells us the two are equivalent: energy dissipated through local self-force is 
equal to energy carried away in flux through .


• No flux balance law yet at second order.

ℐ

ℐ

Improvements: 3. Local and conservative calculations

Flux balance



• Connections with scattering amplitudes calculations achieved via local conservative calculations.


• Not yet any calculation of the second-order redshift, but we can compute the second-order 
metric perturbation.


• Challenges:


• Difficult to accurately compute the metric perturbation near the worldline.


• Static modes ( ) not yet computed and potentially challenging. 


• Challenging to identify an appropriate “conservative” second-order spacetime.

m = 0 = ω

Improvements: 3. Local and conservative calculations

Second order redshift



Outlook



❖ We can now produce (quasi-circular) waveforms for arbitrary mass ratios in the 
time it takes to evaluate an interpolating function (milli-seconds).


❖ Can be used for LISA data analysis.

❖ For a complete waveform, we will need to attach a transition to plunge and 

ringdown at the point where our adiabatic approximation breaks down.

❖ Detailed comparisons with existing NR, PN and EOB show excellent agreement.

❖ Could be useful in the future as a test case for new EOB and PN results.

❖ Could be suitable for modelling IMRIs for LIGO once we have attached a model 

for the transition, plunge and ringdown.

❖ Used to calibrate other models (TEOBResumS and SEOBNRv5)

❖ It is relatively easy to add non-aligned spin on the secondary (precession), small 

spin on the primary, small eccentricity.

Current state-of-the-art
Outlook



❖ We are near the end of the beginning, but there are many more important things to get EMRI 
waveforms ready for LISA and IMRI waveforms for LIGO:

❖ Improved formulations: Teukolsky, Regge-Wheeler gauges are much easier to work with 

as they only require us to solve a single scalar equation, but some foundational issues still 
to be worked out.


❖ Check that certain components of the calculation can be left out without significant effects 
on waveform. For example, how well justified are we to ignore the slow evolution of the 
mass and angular momentum of the big black hole?


❖ Everything described here extends in principle to generic orbits, but significant human 
effort required in practice.


❖ Need a practical method for doing things in Kerr spacetime.

❖ Incorporate finite-size (e.g. spin effects from smaller body) into waveform.

❖ Can second order be done analytically (using MST-PN expansions)?

Future directions
Outlook



Thank you!


