Comparing numeric and analytic methods for black hole scattering in unequal mass systems

Oliver Long

Gravitational Self-Force and Scattering Amplitudes Workshop

20th March 2024

Contributors and collaborators

 $\log_{10}(m_2/m_1)$

Contents

ç

- Self-force numerical methods:
 - Time-domain model.
 - Hybrid frequency/time-domain model.
- Comparison to post-Minkowskian in the scalar field toy model:
 - Energy and angular momentum dissipation.
 - Self-force correction to the scattering angle.
- Extension to gravitational self-force.
- Scattering in Numerical Relativity:
 - Current status.
 - Comparison to Effective One Body.
 - Challenges for unequal masses.

Self-force vs post-Minkowskian expansions

Two independent expansions of the same system:

	1PM	$2\mathrm{PM}$	3PM	4PM	•••		
0SF	G	G^2	G^3	G^4	• • •	\rightarrow	analytical
1SF	qG	qG^2	qG^3	qG^4	• • •	\rightarrow	numerical
2SF	$\overline{q^2G}$	q^2G^2	q^2G^3	$q^2 G^4$	• • •	\rightarrow	impossible
•	•	•	•	•	•	-	(for now)
•	•	•	•	•	•		

nSF contains all orders in GnPM contains all orders in q

3

 $q := \frac{m_1}{m_2} \ll 1$

Scalar field toy model

Schwarzschild spacetime: Endow particle with a spin-0 scalar charge Q. Keep inertial mass but ignore gravitational mass.

Expansion in small parameter at fixed energy and angular momentum:

 $q_s := \frac{Q^2}{m_1 m_2}$

 m_1 : Small mass

 m_2 : Large mass

Scalar field Φ obeys the Klein-Gordon equation:

$$\Box \Phi = Q \int_{-\infty}^{\infty} \delta^4 \left(x^{\mu} - x_p^{\mu}(\tau) \right) \, d\tau$$

 $\chi = \chi^{(0)} + q_s \,\delta\chi + \dots$

Decompose into (time-domain) modes:

$$\Phi = \frac{Q}{r} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \psi_{\ell m}(t,r) Y_{\ell m}(\theta,\varphi)$$

$$\psi_{,uv} + V(\ell; r)\psi = S_{\psi}(\ell; x_p^{\mu}) \,\delta\left(r - R\right)$$

u, v: Eddington-Finkelstein coordinates

1+1D evolution scheme [Barack & OL '22]

 \mathcal{U}

Orbit parameterised by either:

- Velocity at infinity and impact parameter (v, b)
- Energy and angular momentum (E, L)

Numerically solve sourced field equation:

$$\psi_{,uv} + V(\ell; r)\psi = S_{\psi}(\ell; x_p^{\mu})\,\delta\left(r - R\right)$$

Sum over modes:

$$\Phi = \frac{Q}{r} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \psi_{\ell m}(t,r) Y_{\ell m}(\theta,\varphi)$$

Alternative hybrid frequency/time-domain method

Combine frequency and time domain methods [Whittall & Barack '23, Barack & OL '22].

Use frequency domain (FD) data near periastron where we need a larger number of modes.

FD method automatically truncates number of modes based on accuracy.

When accuracy of FD drops below time domain (TD), use TD data.

Important for strong-field orbits at large velocities.

Self-force energy and angular momentum dissipation

Self-force definition:

$$m_1 \frac{du^{\alpha}}{d\tau} = Q(\delta^{\alpha}_{\beta} + u^{\alpha} u_{\beta}) \nabla^{\beta} \Phi^R =: m_1 q_s F^{\alpha} \qquad \qquad u^{\alpha} : 4\text{-velocity} \\ \Phi^R : \text{Regular field}$$

Can split SF into conservative and dissipative pieces using symmetries about periastron:

$$F_{\alpha}^{\rm cons}(r,\dot{r}) = -F_{\alpha}^{\rm cons}(r,-\dot{r}) \qquad \qquad F_{\alpha}^{\rm diss}(r,\dot{r}) = F_{\alpha}^{\rm diss}(r,-\dot{r}) \qquad \qquad \alpha = t,\varphi$$

Dissipated energy and angular momentum as integrals over the orbit:

$$\Delta E_{1\rm SF} = -\int_{-\infty}^{\infty} F_t^{\rm diss} d\tau \qquad \Delta L_{1\rm SF} = \int_{-\infty}^{\infty} F_{\varphi}^{\rm diss} d\tau$$

Includes flux radiated to infinity and the horizon.

 $\tau \cdot \text{Proper time}$

Expansion around flat space in powers of *G*. 2PM:

$$\Delta E_{2\rm PM} = 0 \qquad \Delta L_{2\rm PM} = \underbrace{\frac{2(1+v^2)}{3(1-v^2)}\frac{Gm_2}{b}}_{b} \qquad v: \text{ Velocity at infinity}}_{b: \text{ Impact parameter}}$$
3PM:

$$\Delta E_{3\text{PM}} = \left(r_1 + r_2 \operatorname{arctanh}(v) + r_3 \log\left[\frac{1}{2}\left(\frac{1}{\sqrt{1-v^2}} + 1\right)\right] + \left(\frac{\pi}{2}\frac{v}{\sqrt{1-v^2}}\right)\left(\frac{Gm_2}{b}\right)^3\right)$$

$$\Delta L_{3\text{PM}} = \Delta L_{2\text{PM}} + \left(r_3 + r_4 \operatorname{arctanh}(v) + r_6 \log\left[\frac{1}{2}\left(\frac{1}{\sqrt{1-v^2}} + 1\right)\right]\right) \left(\frac{Gm_2}{b}\right)^2$$

 $r_i = rational coefficients$

Flux radiated to the horizon appears due to monopole term.

Flux to infinity Flux to horizon

Energy flux comparison

Angular momentum flux comparison

11

b : Impact parameter

Scattering angle:

Can get dissipative angle directly from radiated fluxes:

$$\delta \chi^{\rm diss} = \frac{1}{2} \left(\alpha_E E \, \Delta E_{\rm 1SF} + \alpha_L L \, \Delta L_{\rm 1SF} \right)$$

Functions of geodesics

 χ

Scattering angle results: v = 0.2 [Barack & OL '22]

Expansion around flat space:

$$\delta \chi^{\rm PM} = \sum_{i=0}^{\infty} \delta \chi_i \left(\frac{Gm_2}{b}\right)^{i}$$

2PM [Gralla & Lobo '22]: $\delta \chi_2^{\text{cons}} = -\frac{\pi}{4} \left(\frac{m_2}{L}\right)^2$

$$\delta \chi_2^{\rm diss} = 0$$

3PM:

$$\delta \chi_3^{\rm cons} = -\frac{4\left(3 - v^2\right)}{3v^2\sqrt{1 - v^2}} \left(\frac{m_2}{b}\right)^3$$

$$\delta \chi_3^{\text{diss}} = \frac{2\left(v^2 + 1\right)^2}{3v^3\sqrt{1 - v^2}} \left(\frac{m_2}{b}\right)^3$$

4PM dissipative:

$$\delta\chi_4^{\text{diss}} = \left(r_1 + r_2 \operatorname{arcsech}\left(\sqrt{1 - v^2}\right) + r_3 \log\left[\frac{1}{2}\left(\frac{1}{\sqrt{1 - v^2}} + 1\right)\right]\right) \left(\frac{m_2}{b}\right)^4$$

 $r_i = rational coefficients$

Weak-field orbits

4

Conservative: v = 0.5 [Barack et al. '23]

Extraction of high-order conservative PM results [Barack et al. '23]

PM expansion with free parameters:

$$\delta\chi^{\rm cons} = \frac{a_2}{b^2} + \frac{a_3}{b^3} + \frac{a_4}{b^4} + \frac{a_5}{b^5} + \dots$$

Up to **3PM** can fit value or use **analytic value**.

a_2	a_3	a_4	a_5
-1.0886	<u> </u>	-	-
-0.7535	-21.77	—	—
-0.7899	-16.17	-206.5	—
-0.7803	-18.49	-25.0	-4620
-0.785398	-19.18	—	_
-0.785398	-16.93	-176.2	_
-0.785398	-17.20	-131.1	-1793
-0.785398	-16.9356	-175.9	_
-0.785398	-16.9356	-174.4	-107
< 1%	$\sim 1\%$	~ -175	< 0(?)

Extraction of high-order conservative PM results [Barack et al. '23]

Subtract known analytic parts of conservative 4PM:

PM comparison: Conservative v = 0.5 [Barack et al. '23]

PM comparison: Conservative v = 0.5

Kavanagh, Usseglio, Pound, Bini, Geralico:

$$c_1 = \frac{1}{6}$$

 $c_2 = -2.76$

1

Barack et al	'23 (wit	h fitting	errors)
--------------	----------	------------------	---------

b/m_2	c_1	c_2
80	0.94 ± 0.04	-21.2 ± 0.2
100	0.68 ± 0.14	-25.9 ± 0.8
125	0.31 ± 0.38	-33.6 ± 2.5
80	0	-25.1 ± 0.1
100	0	-29.4 ± 0.3
125	0	-35.5 ± 0.9

Dissipative: v = 0.5 [Barack et al. '23]

Extraction of high-order dissipative PM results [Barack et al. '23]

PM expansion with free parameters:

$$\delta \chi^{\rm diss} = \frac{\alpha_3}{b^3} + \frac{\alpha_4}{b^4} + \frac{\alpha_5}{b^5} + \frac{\alpha_6}{b^6} + \dots$$

Up to **4PM** can fit value or use **analytic value**.

Formulation:

- Have several methods to calculate GSF (Teukolsky equation, Lorenz gauge).
- Correction to the scatter angle formula valid for GSF in large BH rest frame.
- Need additional corrections to move to centre-of-mass (CoM) frame.

Calculation:

- Current methods not applicable to hyperbolic GSF calculation:
 - Most bound GSF codes cannot be easily extended to the unbound case.
 - Hyperbolic time-domain code has growing modes for spin ± 2 Teukolsky equation.
 - Hyperbolic frequency-domain code currently only formulated for the scalar case.
- Hyperbolic time-domain code with hyperboloidal slicing [with R. Panosso Macedo]:
 - Currently only scalar case.
 - Relatively easy extension to spin ±2 Teukolsky.

Scattering in Numerical Relativity

Numerical solving of Einstein's equations:

 $G^{\mu\nu} = \frac{8\pi G}{c^4} T^{\mu\nu}$

Spacetime split into 3-hypersurfaces.

Two types of equations:

- 4 elliptic constraint equations.
- 12 first-order hyperbolic evolution equations.
- Plus 4 coordinate gauge degrees of freedom.

Scattering with SpEC uses $\sim 10^4$ core hours:

• \sim 1-2 weeks on a cluster.

The outputs of Numerical Relativity

Spacetime:

- Curvature scalars.
- Black hole horizons.
- Induced spin.

Dynamics:

- Scattering angle.
- Centre of mass (CoM) recoil velocity.

Asymptotics:

- Waveforms.
- Radiated energy and angular momentum.

Current status of hyperbolic NR

Two known codebases that can produce NR scattering simulations:

- Einstein toolkit (ETK) [Damour et al '14, Hopper et al '22, Rettegno et al '23, Yeong-Boket et al '23]:
 - Equal mass, non-spinning 48
 - Equal mass, aligned spin 34
- Spectral Einstein Code (SpEC):
 - Equal mass, non-spinning 10
 - Equal mass, aligned spin 2
 - Unequal mass, non-spinning 27
 - E: Energy
 - J: Angular momentum

$$q := \frac{m_1}{m_2} > 1$$

Effective One Body models for scattering

 EOB Hamiltonian and radiation-reaction (RR) forces built by re-summing PN results: (e.g. SEOBNRv5, TEOBResumS)
 Dissipative terms

$$\dot{r} = \frac{\partial H_{\rm EOB}}{\partial p_r} \qquad \dot{\phi} = \frac{\partial H_{\rm EOB}}{\partial p_{\phi}} \qquad \dot{p}_r = -\frac{\partial H_{\rm EOB}}{\partial r} + \mathcal{F}_r \qquad \dot{p}_{\phi} = \frac{\partial H_{\rm EOB}}{\partial \phi} + \mathcal{F}_{\phi} \qquad H: \text{Hamiltonian}$$

$$p_i: \text{Momentum}$$

2. Expanded or resummed PM potential from mass-shell constraint:

$$p_r^2 = p_\infty^2(E) - \frac{J^2}{r^2} + w(E, J, r) \qquad \qquad \theta = -\pi - 2 \int_{r_{\min}}^{\infty} dr \frac{\partial}{\partial J} p_r$$

Fix coefficients of PM expanded w by matching to PM expanded scattering angle. The potential w contains both conservative and dissipative information from the scattering angle

w PM

Uses PM-expanded *w*. [Damour & Rettegno '23, Rettegno et al '24] $\begin{array}{c} {\rm SEOB-PM} \\ {\rm Uses \ PM-resummed \ } w \ {\rm from \ SEOB-PM} \\ {\rm Hamiltonian, \ that \ reduces \ to \ the \ test-body \ limit.} \end{array}$

[Buonanno, Jakobson & Mogull '24]

Extracting the scattering angle from NR

Only have trajectory for finite values for radius.

Can expand azimuthal angle as a function of radius:

$$\varphi = \varphi^{(0)} + \frac{\varphi^{(1)}}{r} + \frac{\varphi^{(2)}}{r^2} + \dots$$
 Asymptotic value

Fit polynomial to NR data on ingoing and outgoing legs of orbit to extrapolate to infinity:

$$\theta = \varphi_{\mathrm{out}}^{(0)} - \varphi_{\mathrm{in}}^{(0)} - \pi$$

Vary the range and order of the fit gives the dominant error on the scattering angle.

Current status of hyperbolic NR

Two known codebases that can produce NR scattering simulations:

- Einstein toolkit (ETK) [Damour et al '14, Hopper et al '22, Rettegno et al '23, Yeong-Boket et al '23]:
 - Equal mass, non-spinning 48
 - Equal mass, aligned spin 34
- Spectral Einstein Code (SpEC):
 - Equal mass, non-spinning 10
 - Equal mass, aligned spin 2
 - Unequal mass, non-spinning 27
 - E:Energy
 - J: Angular momentum

$$q := \frac{m_1}{m_2} > 1$$

Equal mass comparison: (E,q) = (1.02264, 1)

Comparison with SEOB-4PM [Buonanno et al '23], *w*4PM [Damour & Rettegno '23, and SEOBNRv5 (with quasi-circular RR forces) [Ramos-Buades et al '23]:

Equal mass comparison: (E, q) = (1.02264, 1)

Comparison with SEOB-4PM [Buonanno et al '23], *w*4PM [Damour & Rettegno '23, and SEOBNRv5 (with quasi-circular RR forces) [Ramos-Buades et al '23]:

Equal mass comparison:
$$(E, q) = (1.02264, 1)$$

Comparison with SEOB-4PM [Buonanno et al '23], *w*4PM [Damour & Rettegno '23, and SEOBNRv5 (with quasi-circular RR forces) [Ramos-Buades et al '23]:

Challenges for unequal masses

Simulations are in initial CoM frame.

Length of orbits:

- Get a shorter trajectory for increasing mass ratio.
- Extracting angle of larger BH unfeasible.
- Have more data to extract angle of smaller BH .

Centre of mass recoil:

- Asymmetric emission causes a CoM 'kick'.
- CoM recoil not in current PM/EOB models.

Current status of hyperbolic NR

Two known codebases that can produce NR scattering simulations:

- Einstein toolkit (ETK) [Damour et al '14, Hopper et al '22, Rettegno et al '23, Yeong-Boket et al '23]:
 - Equal mass, non-spinning 48
 - Equal mass, aligned spin 34
- Spectral Einstein Code (SpEC):
 - Equal mass, non-spinning 10
 - Equal mass, aligned spin -2
 - Unequal mass, non-spinning 27
 - E: Energy
 - J: Angular momentum

$$q := \frac{m_1}{m_2} > 1$$

Unequal mass comparison: $(\gamma, j) = (1.02, 4.8)$

Slices of constant (γ, j) correspond to the geodesic limit as $\nu \to 0$.

To compare to PM/EOB:

- Ensure the same angle definition.
- Account for CoM recoil.

Future work in NR

Comparison between NR and PM/EOB scattering angles for unequal masses.

Expand the NR parameter space:

- More unequal masses.
- More extreme energies/angular momenta.
- More extreme spins.
- Generic/precessing spins.

Waveform comparisons.

CoM recoil calculations.

Comparison to/extraction of the GSF correction to the scattering angle.

What is useful to the scattering amplitude community?

Scalar field toy model:

- Energy absorption appears at lower PM order in scalar toy model.
- Numerical self-force results agree to high order with PM results in the weak field.
- Higher numerical precision is needed to reliably extract higher-order PM.

Scattering in Numerical Relativity:

- Have ~100 NR scattering simulations.
- Equal mass, non-spinning results from different codes agree with each other.
- Equal mass, non-spinning Effective One Body agrees with NR to within a few percent.
- Starting to expand parameter space by adding spin and using unequal masses.