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A quick summary of self-force (1)

® In a two-body problem where the mass ratio e = m/V/, with V a
mass scale associate to the background, is small, it's possible to
expand the full metric

g'uV — g#l, + Eh/(j;/) + 0(62)

where g;,,, is the background metric

® Similarly it's possible to expand the stress energy tensor of the body
moving on the full metric g,,,,

T =T + ETE + 0()

where TL(L,lj) is the stress-energy of a point mass moving in the
background g,

® At leading order in the self force for radiation we simply solve the
usual linearised Einstein equation on the background g,

§Gu[hV] = 87 Tﬁ)
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A quick summary of self-force (2)

® At higher orders we see the failure of the point-particle treatment as
the equations become too singular to be integrated

® |t then becomes necessary to consider the finite size effects of the
small body, and deal with the singularities, for example using
matching. See review by | ] and previous talks
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® In this talk we will take inspiration from the leading order
contributions §G,,, [h()] = 8 Tl(ul,)
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An amplitudes-based approach to two-body mechanics

® The KMOC | ] formalism allows us to
express classical observables in terms of the classical limit of
quantities built from amplitudes

® The initial states are given by wavepackets ¢(p1), ¢(p2), with a
well-defined notion of classical particle dynamics, to form |W;,)

® For example, the waveform | lis
then constructed out of the classical limit of the expectation value
<\Uin’STR;wpU(X)S‘Win> where

K
Ryupo (x) = 5 (00 — Dpdfuhing),

hy(x) = \}ﬁ 3 /d¢(k)[an(k)egy*e—"’?'x v h.c.]
n==+
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Another approach
Amplitudes evaluated on a background spacetime?
® |n the classical limit the particles follow geodesics on the background

® \We can expect some properties of flat space amplitudes to still hold
on backgrounds |
]

® |t's an on-shell approach to self-force observables

Wy

® This has also been considered recently from an EFT and worldline
perspective [
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Classical observables in curved spacetimes

® On backgrounds, we can consider single particle scattering with
initial states [ ]

W) = / A0(p)é(p)e” /" pi)

® Just as before we construct the expectation value of our observable,
for example:

(Win| STR o (x) S| Win) = /d¢(P’)<"’in|5T|p’><P’|Ruupa(><)5|‘|’in>
+ h.o.t

® Has contributions coming from 3-point amplitude
w'm/a?(.m &)’V .;‘L:Mo &th[ﬁ—i !C{rzt; kcjiy?
X -—-—--—-o——«—«-].

® What backgrounds?
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A motivation for gravitational plane waves

A gravitational plane wave (GPW) | ]
metric has a metric of the form

ds? = 2dx~dx" — Hap(x7)xxP(dx™)? 4 dx,dx?.
® Penrose: Any spacetime looks like a plane wave spacetime when
viewed from along a null geodesic

o

—— _~_,,~———'”7~/
X

A -

® For example, a Schwarzschild black hole metric when viewed along a
null geodesic with radial component r(x~) limits to

3ML?

ds? = 2dx—dxt + (X12 — X22)(dx_)2 +dx2 + dx22

I’(X_)2 o
® We will be considering . v $

. &+ &
sandwich plane waves: r\// A
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Rest of the talk

e Gravitational waveform on plane wave backgrounds
® Three-point amplitude on Schwarzschild
® Sneak peak: coupling to gauge theory
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Gravitational waveform on plane wave backgrounds
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Gravitational plane waves

Brinkmann (1925):
ds? = 2dx~dxt 4 Hap(x 7 )xxP(dx7)? 4+ dx,dx?, HZI =0

Einstein-Rosen (1937): ds? = 2dX~dXT — (X7 )dy'dy/
® These metrics are related by the (non-unique) coordinate
transformation

1 . ,
X =x, Xt=x"+ Eaabx"xb, y' = E)(x")x?
where o, = E;’;Ebi and
Eai=HabEP, v = EGE s

and EL is the inverse of E; in the sense that E;E,-b = 0.p
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Sandwich plane waves

® For sandwich plane waves there exist x; , x; so that
Hap(x™ < x;) =0 and Hap(x™ > x.) =0

® There are therefore two natural boundary conditions one can impose
on the 2" order differential equation £,; = H,,E?:

ENi(x™ <x7)=dai, E{*(x™ > x;) = 6ais
with generic behaviour on the other side
Eami(X_>Xf_):Caf+X_baiv E;?t(x_ <Xi_):Eai+X_bai
® The solutions to this define the other geometric quantities
infout _in/out

ab 7,‘)/,_]
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Impulsive plane waves

Here the metric is
ds? = 2dx~dxT 4 Hopd(x7)xxP(dx7)2 4 dxadx?,  H = diag(\, —\).

The geometric quantities related to this metric are then

E;,: = (5ai + Haie(xi)xiv EaO;It = 53i B Hai@(X7)X77
1 —)\2
- 1 0 . (1+Xx7) 0
i,in — 1+>\X In g
o> < 0 1_ix> L ( o (- AX)2) |
—7>\7 0
O_;n — 1+()\)x o @(X_)
1-Ax—
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States on a GPW background

The key building block of amplitudes in flat space are the wavefunctions
e’**_In planewaves these get dressed by the background |
], so instead we have the dressed
scalar wavefunction ®(x) = Q(x™)e/® where
k

. 1 ;
Ok = %Jabx"xb + kiElx® + kyxT + TR (m? + kikiF"),
+

Q(x~) = |E|7Y2, Fi = [* 4. These have an associated ‘dressed
momentum’ P,dx" = d¢.

® Can be defined as either “in” or “out” depending on the boundary

conditions we're considering

® There's no mixing of positive and negative frequencies between
these two prescriptions, and so there's no pair production and the
vacua of the two regions can be identified | ]
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Metric perturbations on a GPW

® Solutions to the linearised Einstein equation
g‘“’@uﬁyhpa+4n(pn”8th)angb—nanH"bhab =0, nudx* =dx"

® These can be constructed using spin-raising operators | ]

hydxtdx” = ((g(x)-dx)2 k—.eaeba (dx)2> d(x)
+
= Eu(k; x)P(x)dxHdx”.

where dxte,(x7) = ea(kjEé'/lq + 0apxp)dXxT + €5dxT = Py etdx”.
® The tail can be associated with the tail effect in the gravitational

Green's function of this spacetime, from waves scattering off the
background metric | ]
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Constructing the waveform on a GPW

® Recall that we want to find the classical limit of

(Wi SRy () S W) = / 40P ) (Wil ST5') (7[R s (x) S [ W)
+ h.o.t

where

K
Ryvpo(x) = (9001, = 0,00010),
1 T
hu(x) = — > /dcb(k) a,(k)eM*e=ikx 4 hc.
5 [ lmade ©ane]

® The leading order terms corresponds to calculating

r—0

. K —ik-x
lim rx o 2/d¢(k,p’ p)b(p)e ik kel Koy
’]’):

X <P|5T‘Pl> <p/‘a'r/(k)5‘win>
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Neglecting velocity memory effect

® To simplify the calculation of the waveform we will assume that the
velocity memory effect is parametrically small, and can be neglected

® This means that N '
E;"(x™ >x;) =0,

but everything is still non-trivial in the wave

® The two-point is then
(Win|S|p') — P (p)

® Absorbing this shift into a redefinition of x~, we now have
k —ik-x
% Z::t/dd)(kapv p/)¢(p) p,)e , k[#ﬁz]k[géz]<P’\an(k)5|\|f,-n>
’]7:

® Upcoming work with tracking full memory effects
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Three-point amplitude on a GPW background (1)

Tree-level amplitudes can be computed using the ‘perturbiner method’.
For example, the 3-point amplitude can be calculated from the cubic ¢¢ph
part of the action

Sle] o / 49X/~ Igle" T[]

The final amplitude depends whether we're considering ‘ingoing’ or
‘outgoing’ states.
Here [ ] for all in-going states

As = ;3172 0"+ (p'+k—p) / Z dy” exp|[gj((yy_)|)]5w(k;y)P”(y)P’”(y)

where

V(y )= % / yoo dax’ M(ZL?(—ZEW(Z)'
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Three-point amplitude on a GPW background (2)

Ay = — 2 st L (ke p)/oo dy—MSW(k TPy TP (yT)

h3/2 —o0 [E(y™)]

® From the definition of the polarisation, we see that the integrand
has two structurally different terms

ih

[Pty VBus (b y) = o mam 205 ()| 5P )P (y)

where P, = g (v) — 2K (y)ny/ ke
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Waveformm calculation (1)

® We can now construct the full expression out of our ingredients

2iK
ViR (S W) = = 515 [ A0(KIAO(R)AO(E)o(p)()
xe ke ke 16T (p' +k—p) h dy_ie_wy_) gn,PrpY
4 o " VIEO

® Note that in general we can use stationary phase to evaluate

r—00 4rrr 27

+ complex conjugate

. P dw
lim /d(b(k)e"k‘xﬁ(k) - —'/ e wua(wg,,)
0
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Waveform calculation (2)

e Evaluating the classical limit (essentially setting p = p’ whilst
keeping k free) we arrive at

K * dwdy” vy
Wovpe(u,X) = ————=R _ WY —iw(u=V(y7T))
LV p (U X) ﬂ.hl/2 e/g 2w ‘E(y_)‘e

X k[ue;]nk[oep_]nggu(kvyi)PM(yi)PV(yi)

k=wX

® The integrand now has (schematic) scaling behaviour coming from
the graviton polarisation

~ T —jwT?
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Waveform calculation (3)
Doing the integrals the final waveform is then

WMVPU(LI?X) = —WX[#X[U/dy(s(U V(y))[ p]y](Xﬂy)_DT;}]y](X7y)

® Here
70 ()A( y_) B Pua()?ay_)]P)pﬂ()?ay_)PaPﬂ(y_) - %nl/pm2
vp ) T 9
[E(y)
Th(ky) = 2078 0)
14 Y +
g [E(y)l

® The classical orbit of the particle is encoded in V(y~) = % - X(y~)

® We introduce
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On impulsive plane waves
For example, in an impulsive wave where the metric becomes

ds? = 2dxTdx™ —dx,dx?+8(x " ) Hapx?x2(dx™)?, H,p = diag(\, —\)

the waveform can be computed explicitly in certain kinematics (p; = 0)
W,

wpo ™~ /<;2p+5+5+5a a 0?2 <V|Og(y+m)>

W% g2 1

2
where v = /\\/ﬁ%\ul.
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Three-point amplitude on Schwarzschild
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On Schwarzschild @/

L ]

® With the metric given by
-1
ds® = — (1 - 2GM> de? + <1 - 2GM> dr® + r?dQ?
r r

the massive scalar and metric perturbations are solved respectively
using spherical harmonics by confluent Heun functions and solutions
to the Regge-Wheeler-Zerilli equations

® Taking these as ingoing and outgoing states, we seek to calculate
the 3-point amplitude
(Pph|T|®p)

® This is given by the integral over spacetime of the cubic part of the
action

M3 (61, ba, h) = & / N
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Semi-classical scattering on linearised Schwarzschild (1)

® For a tractable calculation we make a WKB ansatz
o(p;x) = e*(¥)/1 solving the Klein-Gordon equation

on the background.

® |n the classical limit, to first order in the WKB expansion, we solve
the Hamilton-Jacobi equations for the background g#¥9,,59,S = m?
® For linearised Schwarzschild we have to first order in G

GP* Py
1]
® We then match this onto the full solution as |r| — oo to extract
matching coefficients

Sp(x)=p-x+ log(|plr +p-7)+ ...

(p; x) = /dd)(/)/\P(/)efSp(x)
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Matching conditions on the scalar wavefunction

® \We match onto the general solutions of the Klein-Gordon equation

o) = 47" ZZ Y{(R) V{(B) Rim()

1=0 m=—1

® Only require the asymptotic behaviour of Ry, (r) which after some
analysis means that we match the WKB ansatz to the full solution
using

bp(x) 2 il / 0 F(|5], D))

£0=p0

where
(7, 1) = ilp] / Rk e (1-7) iU -l )

and I(|x*]) = I‘ﬁ||xl|7%(r = 00), in terms of the radial action.
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Semi-classical scattering on linearised Schwarzschild (2)
® Graviton can be constructed similarly by making the ansatz

By (x) = Eu ()€™
solving the linearised Einstein equations
V2hu + 2R, peh™ =0
® Using the same solution to the Hamilton-Jacobi equation
GPH k, k,
||
the dressed polarisation is given by
Euw(x) = € + GE (1)(X) + O(G?) where

Si(x) = k- x+ log(|k|r + k - 7) + O(G?)

. —it-z
EW(x) = —2ep0, k® / d'e ¢ (H,/)// by HE — Hypo )

22 -k+ie
. T &(1..
1s,w/d ¢ 7«? S S0
. eitw - o - -
o / e (_uy Hog + lyly Hyy + Lol Hy — €51, H,,,,)
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Semi-classical scattering on linearised Schwarzschild (3)

® Can then match onto the correct asymptotics again,using
Regge-Wheeler-Zerilli in Lorenz gauge [ ]

oo () = / AO(K YK (K)E e (K; )5
® The ‘semiclassical’ graviton emission amplitude is then constructed

just as before, with new versions of dressed polarisation and
momentum

(9 KISIp) = <26 [ d*xd(e.£,K)y/ gl MDA (EIN(K)

X Euy 0" S0 Spe! G +5u=51)
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Semi-classical scattering on linearised Schwarzschild (3)
® |n the weak field limit we have the explicit contribution

(%HSMMR%{@w“ (Sthik+a) + 5+ gk +a) — Sk +q))

e ¢ (Swik+ )+ S+ ak+ ) + ED(k+ )" (0 + @)

1 -~ . .
+3 HI(k+q)euwp'p” —H" (k+q)epwp” 0+ q)o —H (k+q) €Wp“pa]

® This matches the tree-level 5-point in the classical weak-field limit,
neglecting the recoil of the background

e

gH
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Sneak peak: coupling to gauge theory
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Plane waves in Einstein-Maxwell | ]

® The metric is now coupled to electromagnetism via Einstein's
equations
1 8 1

1
R,uzl - Egul/R = ?Tum T;u/ = % F;LOLFI? - ZguuFaﬂFa'B

® In plane waves this means that for an electromagnetic field with

potential A, = n,A;(x")x? (and field strength F,, = 2ny,A,), the
metric must now satisfy [ ]
ds® = 2dxTdx™ 4+ Hap(x 7 )x?xP(dx7)? + dx,dx?,
8 . .
Hi(x7) = ———AA%(x~
) = = Anhe ()
® All other geometric quantities E,;, 0ap,yjj continue satisfying the
same relations (E = HE,o = E~1E, = EE) as before

® We will again consider sandwich plane waves
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Example: impulsive plane waves in Einstein-Maxwell

® The impulsive solution is

i) = (1) a6y )= (5 5t

8m
where X=X+ — (2 + 12
,UO"G(MI 143)

® The related geometric quantities are
; 14+ A~ 0 ;
Eai = < 0 1-— Xx‘) o

1 A
Eini _ 1-+Ax— 0 in __ 1+Ax— 9
a - 0 1 v Oab = 0 A
1-Ax— 1-Ax—

Il

RN
—~~
[E=Y
+

o >
><|
N—r
N

—~~

[y

|

1O

X

N—r

N

~__
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Free fields in EM plane waves

® The expressions for the gauge and metric perturbations follow easily
from before:

hu(x7) = Eu(xT)O(x7),  au(x7) = Eu(x7)O(x7),

where &, dx* = (kjEé./lq + 0apxP)e2dx™ + e,dx?.

® The only difference is for charged matter which also pick up
contributions from the gauge background in addition to the
gravitational background. E.g. for a charged massive scalar with
charge g and mass m

¢(x) =

k .
exp i <k+x+ + %Jabxaxb + El(ki + qAi)x?

1
VIE|

1 _
‘|‘m ds

m? + (ki + qA;) (ki + qu)VU(S)])
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Feynman rules in EM on a background

® We can derive the Feynman rules governing the amplitudes either by
using the perturbiner or looking at the action

S— / d*xy/~glh][RIN) — gu [ 716, 2, ]

this now contains an aAh contribution

® We obtain a new Feynman rule describing the 'back-reaction’ of
gluons and gravitons in the background
L

K‘/ .
~ EAa (Ku2nul - k+g#2;t1)552 - (Kuzézl - Kagﬂzm)”l/z

1
-+ *g;LQVz(Ka”ul - k+521)]

; Pavy 2
® QOther massless interaction vertices are also dressed by the
background
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Amplitudes in EM plane waves (1)

® The existence of this extra Feynman rule is that we have an extra
contribution to the 3-point describing scalar scattering with graviton

emission
i~ w;’{'i ol
= A A
f ‘7_2; /5,}7,.' ¥
Ay o i
{ 1 9 T 1 ot
i 4~ N

® This explicitly captures the presence of a "backreaction” term in
these amplitudes, from the radiation backreacting on the charged
background

® Requires the calculation of the photon propagator in this theory
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Amplitudes in EM plane waves (2)

® The photon propagator dressed on the background is given by the
following object:

. / d4) elt(x)—isi(y)
v X’ = .
" Y 12 + je [E(X)[|E(y)]

0 0 1
Li(x)—L,
oo s, L)~ Laty)
1 ZLe()+le(y)  (LI=L()) X H 4+ IAS
Ir 27 T

DNV (X7.y)

where S H = Hop(x)x?x? 4 Hap(y)y?y? and
S(x) = Tr(y 19y~ 1(x))
® Has some nice contraction properties such as

Dy (%, Y)A? (x)Ep(x) = —(A(x) - €)Eu(y)
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Amplitudes in EM plane waves (3)

® The momentum conserving d-function in the 2-point means that the
propagator should be evaluated with on-shell momenta
® Evaluating these expressions, the 3-point amplitude is

Asz(p, p', k) o / dx™ [guVP#P/V(X_)

(NG

—q(P+ P’))uf”(X)/dy(A(y) ' 6)] ¢™Vinst 07)

A(0)-€

® In the weak-field limit for the electromagnetic background this
would correspond to

& 17
fo I =t}
/8 Tl i
: e e 4 k"” n
(= 4 9 1 9
D |
9 // "y 7 Wrad
1 i " &7 PR
SRR S——
1 1
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Summary

® \We propose natural objects to study in the context of self-force:
amplitudes on backgrounds and classical observables built from them

® We constructed the 3-point amplitude in Schwarzschild,
schemetically using the exact solutions, and explicitly using WKB
and weak-field approximations

® We calculated the waveform on a gravitational planewave, with full
non-linear contributions from the background

® We looked at introducing charged matter, in an Einstein-Maxwell
plane background
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Outlook

® More work needed to connect these amplitudes explicitly to the
self-force expansion - e.g. how do loop amplitudes contribute?

® Further properties of scattering amplitudes on backgrounds (not just
classically) - analyticity, double copy?

e Simplifications in the EM/EYM amplitudes on plane wave
backgrounds, coming from YM + ¢> theory?
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Outlook

® More work needed to connect these amplitudes explicitly to the
self-force expansion - e.g. how do loop amplitudes contribute?

® Further properties of scattering amplitudes on backgrounds (not just
classically) - analyticity, double copy?

e Simplifications in the EM/EYM amplitudes on plane wave
backgrounds, coming from YM + ¢> theory?

Thank you!
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