

Funded by the European Union

Gravitational Two-body Dynamics at NNNLO in PM Approximation

Zhengwen Liu

Niels Bohr International Academy, Copenhagen

Based on work with C. Dlapa, G. Kälin, R. Porto, J. Neef 2106.08276 2112.11296 2210.05541 2403.04853 2304.01275

Gravitational Self-Force and Scattering Amplitudes

Higgs Centre for Theoretical Physics, Edinburg March 22, 2024

Precision era of fundamental physics

Two historic breakthroughs in science:

- Higgs bosons from the LHC (2012)
- Gravitational waves from the LIGO (2016)
- High-energy and gravitational physics entered a precision era!

Modern techniques from Higgs physics are playing a crucial role in precision GW physics!

Merger: Numerical Relativity

Ringdown: black hole perturbation theory

Inspiral: the interaction between two bodies is weak

$$v^2 \sim \frac{GM}{r} \ll 1$$

- Analytic perturbation methods work: post-Newtonian/Minkowskian, EOB...
- ▶ QFT methodology, combined with modern loop techniques, shown great power.

Zhengwen Liu (NBIA)

• The gravitational two-body problem

$$S_{\rm WL} = \sum_{i=1,2} \left[-\frac{m_i}{2} \int dt \, g_{\mu\nu} \dot{x}_i^{\mu} \dot{x}_i^{\nu} + \cdots \right]$$
$$S_{\rm GR} = \frac{-1}{16\pi G} \int d^4x \, \sqrt{-g} \, R + \cdots$$

• In the inspiral phase

$$g_{\mu\nu} = \eta_{\mu\nu} + \sqrt{32\pi G} \ h_{\mu\nu}$$

• Effective action for binary systems

Goldberger-Rothstein 2004

$$e^{i\mathcal{S}_{ ext{eff}}[x_a(au)]} = \int \mathcal{D}h_{\mu
u} \, e^{i\mathcal{S}_{ ext{WL}}+i\mathcal{S}_{ ext{GR}}}$$

Zhengwen Liu (NBIA)

• EFT description

$$e^{i\mathcal{S}_{ ext{eff}}[x_a(au)]} = \int \mathcal{D}h_{\mu
u} \, e^{i\mathcal{S}_{ ext{WL}}+i\mathcal{S}_{ ext{GR}}}$$

• Post-Minkowskian expand in powers of G

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_0 + G \mathcal{L}_1 + G^2 \mathcal{L}_2 + \cdots \qquad \mathcal{L}_0 = -\sum_i rac{m_i}{2} \eta_{\mu
u} \dot{x}^\mu_i \dot{x}^
u_i$$

The equations of motion for trajectories:

$$m_i \ddot{x}_i^{\mu} = -\eta^{\mu\nu} \sum_{n=1}^{\infty} G^n \left(\frac{\partial \mathcal{L}_n}{\partial x_i^{\nu}} - \frac{d}{d\tau_i} \frac{\partial \mathcal{L}_n}{\partial \dot{x}_i^{\nu}} \right) \qquad x_i^{\mu} = b_i^{\mu} + u_i^{\mu} \tau_i + \delta x_i^{\mu} (\tau_i) + \cdots$$

• Physical observables:

$$\Delta p_i^{\mu} = p_i^{\mu}(+\infty) - p_i^{\mu}(-\infty) = -\eta^{\mu\nu} \sum_{n=1}^{\infty} G^n \int_{-\infty}^{\infty} d\tau_i \left(\frac{\partial \mathcal{L}_n}{\partial x_i^{\nu}}\right)$$

Zhengwen Liu (NBIA)

• Worldlines as sources in path integral:

••••••

• Hilbert-Einstein: $\mathcal{L}_{HE} = \mathcal{L}_{hh} + \mathcal{L}_{hhh} + \mathcal{L}_{hhhh} + \cdots$

• Classical physics: we use the saddle-point approximation in path integrals.

• Enjoy the advantages of pure classical physics and quantum field theoretic methods.

Zhengwen Liu (NBIA)

The in-in effective action is obtained by performing a closed-time-path integral

$$e^{i\mathcal{S}_{\rm eff}[x_{a,1},x_{a,2}]} = \int \mathcal{D}h_1 \mathcal{D}h_2 \ e^{i(S_{\rm GR}[h_1] - S_{\rm GR}[h_2] + S_{\rm WL}[h_1,x_{a,1}] - S_{\rm WL}[h_2,x_{a,2}])}$$

It is convenient to use the Keldysh basis

$$h_{\mu\nu}^{-} = \frac{1}{2}(h_{1\mu\nu} + h_{2\mu\nu}) \qquad x_{a,+}^{\alpha} = \frac{1}{2}(x_{a,1}^{\alpha} + x_{a,2}^{\alpha}) \\ h_{\mu\nu}^{+} = h_{1\mu\nu} - h_{2\mu\nu} \qquad x_{a,-}^{\alpha} = x_{a,1}^{\alpha} - x_{a,2}^{\alpha}$$

for which the matrix of (classical) propagators for the metric field becomes

$$i \begin{pmatrix} 0 & -\Delta_{adv}(x-y) \\ -\Delta_{ret}(x-y) & 0 \end{pmatrix}$$

The worldline equations of motion:

$$m_{i}\frac{d}{d\tau}\dot{x}_{i}^{\mu}(\tau) = -\eta^{\mu\nu}\frac{\delta\mathcal{S}_{\mathrm{eff,\,int}}[x_{a,\pm}]}{\delta x_{i,-}^{\nu}(\tau)}\Big|_{\mathsf{PL}}, \quad \Delta p_{i}^{\mu} = -\eta^{\mu\nu}\int_{-\infty}^{\infty}d\tau\frac{\delta\mathcal{S}_{\mathrm{eff,\,int}}[x_{a,\pm}]}{\delta x_{i,-}^{\nu}(\tau)}\Big|_{\mathsf{PL}}$$

Physical Limit (PL): $x_{a,-} \rightarrow 0$, $x_{a,+} \rightarrow x_a$.

Zhengwen Liu (NBIA)

- In practise, Feynman rules are still simple in the physical limit!
- Worldline source: $\downarrow k \checkmark = -\frac{im}{2M_{\rm Pl}} \int d\tau \, e^{i \, k \cdot x} \dot{x}^{\mu} \dot{x}^{\nu}$
- Variation of worldline: $\downarrow k \bigwedge^{\otimes} = -\frac{im}{2M_{\text{Pl}}} e^{i k \cdot x} \left(i \, k^{\alpha} \dot{x}^{\mu} \dot{x}^{\nu} i \, k \cdot \dot{x} \, \eta^{\mu \alpha} \dot{x}^{\nu} \eta^{\mu \alpha} \ddot{x}^{\nu} i \, k \cdot \dot{x} \, \eta^{\nu \alpha} \dot{x}^{\mu} \eta^{\nu \alpha} \ddot{x}^{\mu} \right)$
- Variation of effective action:

2207.00580 2304.01275

- In practise, Feynman rules are still simple in the physical limit!
- Worldline source: $\downarrow k \checkmark = -\frac{im}{2M_{\rm Pl}} \int d\tau \, e^{i \, k \cdot x} \dot{x}^{\mu} \dot{x}^{\nu}$
- Variation of worldline: $\downarrow k \bigwedge^{\otimes} = -\frac{im}{2M_{\rm Pl}} e^{ik \cdot x} \left(i \, k^{\alpha} \dot{x}^{\mu} \dot{x}^{\nu} i \, k \cdot \dot{x} \, \eta^{\mu\alpha} \dot{x}^{\nu} \eta^{\mu\alpha} \ddot{x}^{\nu} i \, k \cdot \dot{x} \, \eta^{\nu\alpha} \dot{x}^{\mu} \eta^{\nu\alpha} \ddot{x}^{\mu} \right)$
- Variation of effective action:

Zhengwen Liu (NBIA)

• Impulse at $\mathcal{O}(G^N)$

2304.01275

$$\Delta p_i^{\mu} \sim \int d^D q \, \frac{e^{iq \cdot b} \, \delta(q \cdot u_1) \delta(q \cdot u_2)}{|q^2|^{\sharp}} \int \left(\prod_{i=1}^{N-1} d^D \ell_i \, \frac{\delta(\ell_j \cdot u_a)}{(\ell_i \cdot u_b - i0)^{\nu_i}} \right) \frac{\mathcal{N}^{\mu}(q, u_a)}{D_1 D_2 D_3 \cdots}$$

Graviton propagators:

$$\frac{1}{D_i} \longrightarrow \frac{1}{(\ell^0 \pm i0)^2 - \vec{\ell}^2} \quad \text{or} \quad \frac{1}{\ell^2 + i0}$$

- Cut: always one delta function $\delta(\ell_i \cdot u_a)$ for each loop
- ▶ Kinematics: $q \cdot u_a = 0$, $u_a^2 = 1$, $u_1 \cdot u_2 = \gamma \implies \text{single scale } \gamma$ to all orders
- Multi-loop technology from collider physics can be used to solve gravitational problems!

Zhengwen Liu (NBIA)

Collider physics toolbox

Post-Minkowskian Loop Integrals at $\mathcal{O}(G^N)$

$$\int \left(\prod_{i=1}^{N-1} d^{D} \ell_{i} \frac{\delta(\ell_{j} \cdot u_{a_{i}})}{(\ell_{i} \cdot u_{b_{i}} - i0)^{\alpha_{i}}}\right) \frac{1}{D_{1}^{\nu_{1}} D_{2}^{\nu_{2}} \cdots}$$

• Reverse Unitarity: replace the delta-function by the cut-propagator Anastasiou-Melnikov 2002

$$\delta(k_i \cdot u_a) \rightarrow \frac{1}{2\pi i} \left(\frac{1}{k_i \cdot u_a - i0} - \frac{1}{k_i \cdot u_a + i0} \right)$$

Then standard loop-integral techniques can be applied straightforwardly!

• IBP reduction: any integral = a linear combination of a small number of basis integrals

$$\vec{f} = \{I_1, I_2, \ldots\}$$

- Publicly-available programs: Reduze, FIRE, LiteRed, Kira, FiniteFlow
- ▶ New developments: NeatIBP, FIRE6.5, Kira3

Zhengwen Liu (NBIA)

Collider physics toolbox

• Differential equations:

$$\frac{d\vec{f}(x,\epsilon)}{dx} = A(x,\epsilon)\,\vec{f}(x,\epsilon) \qquad D = 4 - 2\epsilon \qquad \gamma = \frac{x^2 + 1}{2x}$$

Canonical form

Henn 2013 Lee 2014

$$\vec{g} = T \cdot \vec{f} \implies \frac{d\vec{g}(x,\epsilon)}{dx} = \epsilon M(x) \vec{g}(x,\epsilon)$$

• We can solve iteratively.

$$\vec{g}(x,\epsilon) = \sum_{k} \epsilon^{k} \vec{g}^{(k)}(x) \qquad \vec{g}^{(k)}(x) = \int_{x_{0}}^{x} M(t) \vec{g}^{(k-1)}(t) \, \mathrm{d}t + \vec{g}_{0}^{(k)}(t) \, \mathrm{d}t$$

• *M* is rational in *x*: multiple polylogarithms

$$G(a_1,\ldots,a_n;z) = \int_0^z \frac{dt}{t-a_1} G(a_2,\ldots,a_n;t), \quad G(z) = 1$$

• Boundary constants \vec{g}_0 can be computed in PN limit using the method of regions. potential: $\ell^{\mu} \sim (v, 1)$ radiation: $\ell^{\mu} \sim (v, v)$ Beneke-Smirnov 1997

Zhengwen Liu (NBIA)

Gravitational two-body dynamics at NNNLO

10/24

Elliptic differential equations

- The majority of 4PM integrals can be solved in terms of multiple polylogarithms.
- Elliptic integrals appear in post-Minkwskian gravity for the first time.

$$\frac{d}{dx} \begin{pmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \end{pmatrix} = \begin{pmatrix} \frac{1-x^2}{2x(1+x^2)} & \frac{1+x^2}{4x(1-x^2)} & \frac{3x}{(1-x^2)(1+x^2)} \\ -\frac{1-x^2}{x(1+x^2)} & \frac{3(1+x^2)}{2x(1-x^2)} & -\frac{6x}{(1-x^2)(1+x^2)} \\ \frac{1-x^2}{x(1+x^2)} & -\frac{1+x^2}{2x(1-x^2)} & -\frac{1-4x^2+x^4}{x(1-x^2)(1+x^2)} \end{pmatrix} \begin{pmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \end{pmatrix} + \mathcal{O}(\epsilon)$$

It can then be written as a third-order differential equation:

$$\left[\frac{d^3}{dx^3} - \frac{6x}{1-x^2}\frac{d^2}{dx^2} - \frac{1-4x^2+7x^4}{x^2(1-x^2)^2}\frac{d}{dx} - \frac{1+x^2}{x^3(1-x^2)}\right]f_1(x) = 0$$

It is easy to find the three solutions:

$$x \,\mathsf{K}^2 \,(1 - x^2), \qquad x \,\mathsf{K} (1 - x^2) \,\mathsf{K} (x^2), \qquad x \,\mathsf{K}^2 (x^2)$$

Complete elliptic integrals:
$$K(x) \equiv \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-xt^2)}}$$

Zhengwen Liu (NBIA)

Elliptic differential equations

With the knowledge of leading- ϵ solutions, one may transform the elliptic diagonal block into

$$\frac{d}{dx}\vec{g}(x,\epsilon) = \epsilon \,\tilde{D}_{\rm ell}(x)\,\vec{g}(x,\epsilon) + \dots$$

with

$$\tilde{D}_{\mathsf{ell}} = \begin{pmatrix} -\frac{4(1+x^2)}{3x(1-x^2)} & \frac{\pi^2}{x(1-x^2)\mathsf{K}^2(1-x^2)} & 0\\ \frac{2(1+110x^2+x^4)\mathsf{K}^2(1-x^2)}{3\pi^2x(1-x^2)} & -\frac{4(1+x^2)}{3x(1-x^2)} & \frac{\pi^2}{x(1-x^2)\mathsf{K}^2(1-x^2)}\\ \frac{16(1+x^2)(1-18x+x^2)(1+18x+x^2)\mathsf{K}^4(1-x^2)}{27\pi^2x(1-x^2)} & \frac{2(1+110x^2+x^4)\mathsf{K}^2(1-x^2)}{3\pi^2x(1-x^2)} & -\frac{4(1+x^2)}{3x(1-x^2)} \end{pmatrix}$$

• Elliptic integrals appear in the transformation matrix: found by INITIAL

• Higer $\mathcal{O}(\epsilon)$: Iterated integrals involving elliptic kernels.

Zhengwen Liu (NBIA)

Method of Regions

• Regions: classical soft regions contains potential and radiation regions Beneke-Smirnov 1997

potential: $\ell^{\mu} \sim (w, \ell) \sim (v, 1) |q|$ radiation: $\ell^{\mu} \sim (w, \ell) \sim (v, v) |q|$

• A 4PM example:

$$\begin{split} & \ell_1 \uparrow \underbrace{\underbrace{\downarrow}}_{\ell_1 \uparrow \ell_2} \underbrace{\underbrace{\downarrow}}_{\ell_1 - \ell_2} \ell_2 - q \\ & \ell_3 \uparrow \underbrace{\downarrow}_{\ell_3 - \ell_1} \underbrace{\ell_2 - \ell_3}_{\ell_2 - \ell_3} \underbrace{\downarrow}_{\ell_3 - q} = \int_{\ell_1 \ell_2 \ell_3} \frac{\delta(\ell_1 \cdot u_1) \,\delta(\ell_2 \cdot u_1) \,\delta(\ell_3 \cdot u_2)}{\ell_1^2 \,\ell_3^2 \,(\ell_2 - q)^2 \,(\ell_3 - q)^2 \,(\ell_1 - \ell_2)^2 \,(\ell_2 - \ell_3)^2 \,(\ell_3 - \ell_1)^2} \end{split}$$

Relabeling $k_1 = \ell_3 - \ell_1$, $k_2 = \ell_2 - \ell_3$, $\ell = \ell_3$, we found 2304.01275 pot (ppp): $k_1 \sim (v, 1)|\mathbf{q}|$, $k_2 \sim (v, 1)|\mathbf{q}|$, $\ell \sim (v, 1)|\mathbf{q}|$ $1 \operatorname{rad}^{(1)}(\operatorname{rpp})$: $k_1 \sim (v, v)|\mathbf{q}|$, $k_2 \sim (v, 1)|\mathbf{q}|$, $\ell \sim (v, 1)|\mathbf{q}|$ $1 \operatorname{rad}^{(2)}(\operatorname{prp})$: $k_1 \sim (v, 1)|\mathbf{q}|$, $k_2 \sim (v, v)|\mathbf{q}|$, $\ell \sim (v, 1)|\mathbf{q}|$ $\operatorname{rad2}(\operatorname{rrp})$: $k_1 \sim (v, v)|\mathbf{q}|$, $k_2 \sim (v, v)|\mathbf{q}|$, $\ell \sim (v, 1)|\mathbf{q}|$

Confirmed using asy2.m in Feynman parameterization.

Zhengwen Liu (NBIA)

Method of Regions

$$\begin{array}{c} \ell_{1}\uparrow \\ \downarrow \ell_{1}-\ell_{2}\downarrow \ell_{2}-q \\ \ell_{3}\uparrow \\ \downarrow \ell_{3}-\ell_{1} \\ \ell_{2}-\ell_{3}\downarrow \ell_{3}-q \end{array} = \int_{\ell_{1}\ell_{2}\ell_{3}} \frac{\delta(\ell_{1}\cdot u_{1})\,\delta(\ell_{2}\cdot u_{1})\,\delta(\ell_{3}\cdot u_{2})}{\ell_{1}^{2}\,\ell_{3}^{2}\,(\ell_{2}-q)^{2}\,(\ell_{3}-q)^{2}\,(\ell_{1}-\ell_{2})^{2}\,(\ell_{2}-\ell_{3})^{2}\,(\ell_{3}-\ell_{1})^{2}} \end{array}$$

Expanding around each region we have

$$\begin{split} I_{\text{pot}} &= \int_{\boldsymbol{\ell} \, \boldsymbol{k}_{1} \boldsymbol{k}_{2}} \frac{1}{\left[(\boldsymbol{\ell} - \boldsymbol{k}_{1})^{2}\right] \left[\boldsymbol{\ell}^{2}\right] \left[(\boldsymbol{k}_{2} + \boldsymbol{\ell} - \boldsymbol{q})^{2}\right] \left[(\boldsymbol{\ell} - \boldsymbol{q})^{2}\right] \left[(\boldsymbol{k}_{1} + \boldsymbol{k}_{2})^{2}\right] \left[\boldsymbol{k}_{2}^{2}\right] \left[\boldsymbol{k}_{1}^{2}\right]} + \mathcal{O}(v_{\infty}^{2})} \\ I_{\text{1rad}}^{(1)} &= \int_{\boldsymbol{\ell} \, \boldsymbol{k}_{2}} \frac{1}{\left[\boldsymbol{\ell}^{2}\right] \left[\boldsymbol{\ell}^{2}\right] \left[(\boldsymbol{k}_{2} + \boldsymbol{\ell} - \boldsymbol{q})^{2}\right] \left[(\boldsymbol{\ell} - \boldsymbol{q})^{2}\right] \left[\boldsymbol{k}_{2}^{2}\right]^{2}} \int_{\boldsymbol{k}_{1}} \frac{v_{\infty}^{d-2}}{\boldsymbol{k}_{1}^{2} - (\boldsymbol{\ell}^{z})^{2}} + \mathcal{O}(v_{\infty}^{d}) \\ I_{\text{1rad}}^{(2)} &= \int_{\boldsymbol{\ell} \, \boldsymbol{k}_{1}} \frac{1}{\left[(\boldsymbol{\ell} - \boldsymbol{k}_{1})^{2}\right] \left[\boldsymbol{\ell}^{2}\right] \left[(\boldsymbol{\ell} - \boldsymbol{q})^{2}\right] \left[(\boldsymbol{\ell} - \boldsymbol{q})^{2}\right] \left[\boldsymbol{k}_{1}^{2}\right]^{2}} \int_{\boldsymbol{k}_{2}} \frac{v_{\infty}^{d-2}}{\boldsymbol{k}_{2}^{2} - (\boldsymbol{\ell}^{z})^{2}} + \mathcal{O}(v_{\infty}^{d}) \\ I_{\text{2rad}} &= \int_{\boldsymbol{\ell}} \frac{1}{\left[\boldsymbol{\ell}^{2}\right] \left[\boldsymbol{\ell}^{2}\right] \left[(\boldsymbol{\ell} - \boldsymbol{q})^{2}\right]^{2}} \int_{\boldsymbol{k}_{1} \boldsymbol{k}_{2}} \frac{v_{\infty}^{2d-6}}{\left[(\boldsymbol{k}_{1} + \boldsymbol{k}_{2})^{2}\right] \left[\boldsymbol{k}_{2}^{2} - (\boldsymbol{\ell}^{z})^{2}\right]} \left[\boldsymbol{k}_{1}^{2} - (\boldsymbol{\ell}^{z})^{2}\right]} + \mathcal{O}(v_{\infty}^{2d-4}) \end{split}$$

- These integrals can be straightforwardly evaluated through direct integration.
- All regions added up leads to a finite result, in particular IR divergences cancel.

Zhengwen Liu (NBIA)

Inspiral dynamics at NNNLO

The full impulse at $\mathcal{O}(G^4)$: 2112.11296 2210.05541 2304.01275 2106.08276 $\Delta p_1^{\mu} \Big|_{\text{NNNLO}} = \frac{G^4}{|b|^4} \left(c_b \frac{b^{\mu}}{|b|} + c_1 \frac{\gamma u_2^{\mu} - u_1^{\mu}}{\gamma^2 - 1} + c_2 \frac{\gamma u_1^{\mu} - u_2^{\mu}}{\gamma^2 - 1} \right)$ $\frac{c_b}{\pi} = -\frac{3h_{34}m_2m_1(m_1^2 + m_2^3)}{64v_{\infty}^5} + \frac{m_1^2m_{12}m_2^2}{4} \left[\frac{3h_6\mathsf{K}^2(w_2)}{4v_{\infty}^3} - \frac{3h_8\mathsf{K}(w_2)\mathsf{E}(w_2)}{4v_{\infty}^3} + \frac{21h_5w_3\mathsf{E}^2(w_2)}{8v_{\infty}^3} - \frac{\pi^2h_{16}v_{\infty}}{4(\gamma+1)} + \frac{3\gamma h_{10}(\mathsf{Li}_2(w_2) - 4\mathsf{Li}_2(\sqrt{w_2}))}{w_3v_{\infty}^2} \right] + \frac{2h_5w_3}{4(\gamma+1)} \left[\frac{3h_6\mathsf{K}^2(w_2)}{4(\gamma+1)} - \frac{3h_8\mathsf{K}(w_2)\mathsf{E}(w_2)}{4(\gamma+1)} + \frac{3h_8\mathsf{K}(w_2)\mathsf{E}(w_2)}{4(\gamma+1)} \right] \right]$ $+\log(v_{\infty})\left(\frac{h_{32}}{2v_{\infty}^{3}}-\frac{3h_{14}\log(\frac{w_{3}}{2})}{v_{\infty}}-\frac{3\gamma h_{22}\log(w_{1})}{2v_{\infty}^{4}}\right)\right]+m_{2}^{2}m_{1}^{3}\left[\frac{h_{52}}{48v_{\infty}^{6}}-\frac{h_{63}}{768\gamma^{9}w_{3}v_{\infty}^{5}}-\frac{3v_{\infty}(h_{40}\text{Li}_{2}(w_{2})+2w_{3}h_{33}\text{Li}_{2}(-w_{2}))}{64w_{3}}\right]$ $+\frac{3h_{14}\log(\frac{w_3}{2})\log(w_3)}{4v_{\infty}}+\frac{\gamma h_{39}\log(w_1)}{8w_3^3v_{\infty}^2}+\frac{3\gamma h_{22}\log(w_3)\log(w_1)-h_{35}\log(\frac{w_3}{2})}{8v_{\infty}^4}+\frac{h_{56}\log(2)-h_{57}\log(w_3)+2\gamma h_{55}\log(\gamma)}{32v_{\infty}^5}-\frac{\gamma h_{51}\log(w_1)}{16v_{\infty}^7}\right]$ $+ m_1^2 m_2^3 \left[\frac{h_{58}}{192 \gamma^7 v_5^5} + \frac{h_{53}}{48 v_5^6} + \frac{\gamma h_{49} \log(w_1)}{16 v_5^6} - \frac{2\gamma h_{50} \log(w_1) + 3\gamma^2 h_{13} \log^2(w_1)}{32 v_5^7} - \frac{h_{41} \log(\frac{w_3}{2})}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} \right] + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(2) + 8h_{12} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_3))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_{26} \log(w_1))}{8 v_5^4} + \frac{3\gamma \log(w_1) (5h_{26} \log(w_1) + 8h_$ $-\frac{h_{36}\log(w_3)}{4w_3^3}+\frac{\gamma h_{30}\log(\gamma)}{2v_3^3}+\frac{h_{37}\log(2)}{8v_3^3}+\frac{3(h_{17}w_3\text{Li}_2(w_2)-2h_{23}\text{Li}_2(-w_2)+h_{15}\log^2(w_3)-h_9\log^2(2))}{8v_{\infty}}-\frac{3h_7\log(2)\log(w_3)}{v_{\infty}}\Big]$ $c_{1} = m_{1}m_{2}^{2} \left(\frac{2h_{46}m_{12s}}{v^{6}} + \frac{9\pi^{2}h_{1}m_{12}^{2}}{32v^{2}}\right) + m_{1}^{2}m_{2}^{3} \left(\frac{4\gamma h_{47}}{3v_{\infty}^{6}} - \frac{8\gamma h_{2}\log(w_{1})}{v_{\infty}^{6}} + \frac{16h_{25}\log(w_{1})}{v_{\infty}^{3}} - \frac{8h_{3}}{3v_{\infty}^{5}}\right)$ $c_{2} = -m_{1}^{4}m_{2}\left(\frac{9\pi^{2}h_{1}}{32v_{-}^{2}} + \frac{2h_{46}}{v_{-}^{6}}\right) + m_{2}^{2}m_{1}^{3}\left[+\frac{h_{60}}{705600\gamma^{8}v_{-}^{5}} - \frac{4\gamma h_{48}}{3v_{-}^{6}} + \frac{3h_{38}(\text{Li}_{2}(w_{2}) - 4\text{Li}_{2}(\sqrt{w_{2}})) - \gamma h_{21}(\text{Li}_{2}(-w_{1}^{2}) + 2\log(\gamma)\log(w_{1}))}{16v_{-}^{4}}\right]$ $+\frac{3\gamma h_{31}(2\text{Li}_{2}(-w_{1})+\log(w_{1})\log(w_{3}))}{8v^{4}}+\frac{h_{62}\log(w_{1})}{6720v^{9}v^{6}}+\frac{32\gamma^{2}h_{44}\log^{2}(w_{1})}{v^{7}}+\frac{8\gamma(2h_{4}\log(2)-h_{27}\log(w_{1}))\log(w_{1})}{v^{4}}-\frac{32h_{29}\log(w_{1})}{3v^{3}}+\frac{\pi^{2}h_{42}}{192v^{4}}\right]$ E(A) 0 04 VI $+ m_2^3 m_1^2 \left[\frac{h_{59}}{1440 \gamma^7 v_5^5} - \frac{h_{19}(\text{Li}_2(-w_1^2) + 2\log(\gamma)\log(w_1))}{8v_4^4} + \frac{h_{43}(\text{Li}_2(w_2) - 4\text{Li}_2(\sqrt{w_2}))}{32v_4^4} - \frac{h_{20}(2\text{Li}_2(-w_1) + \log(w_1)\log(w_3))}{4v_4^4} + \frac{h_{43}(\text{Li}_2(w_2) - 4\text{Li}_2(\sqrt{w_2}))}{4v_4^4} - \frac{h_{20}(2\text{Li}_2(-w_1) + \log(w_1)\log(w_3))}{4v_4^4} + \frac{h_{20}(1+w_1^2) + 2\log(w_1)\log(w_1)}{4v_4^4} + \frac{h_{20}(1+w_1^2) + 2\log(w_1)\log(w_1)}{4v_4} + \frac{h_{20}(1+w_1^2) + 2\log(w_1)\log(w_1)}{4v_4} + \frac{h_{20}(1+w_1^2) + 2\log(w_1)\log(w_1)}{4v_4} + \frac{h_{20}(1+w_1^2) + 2\log(w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1^2) + 2\log(w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1)\log(w_1)}{4w_1^2} + \frac{h_{20}(1+w_1)\log($ $-\frac{h_{61}\log(w_1)}{480\gamma^8v^6} - \frac{16\gamma^2h_{11}\log^2(w_1)}{v^4} - \frac{32\gamma h_{45}\log^2(w_1)}{v^7} + \frac{16\gamma h_{28}\log(w_1)}{5v^2} - \frac{32h_{24}\log(2)\log(w_1)}{v^4} - \frac{\pi^2h_{18}}{48v^4} - \frac{2h_{54}}{45v^6}$ with $\gamma \equiv u_1 \cdot u_2$, $v_{\infty} = \sqrt{\gamma^2 - 1}$, $w_1 = \gamma - v_{\infty}$, $w_2 = \frac{\gamma - 1}{\gamma + 1}$, $w_3 = \gamma + 1$, h_i = polynomial in γ .

Zhengwen Liu (NBIA)

Inspiral dynamics at NNNLO

The full impulse at $\mathcal{O}(G^4)$: 2106.08276 2112.11296 2210.05541

$$\Delta p_1^{\mu}\big|_{\mathsf{NNNLO}} = \frac{G^4}{|b|^4} \left(c_b \frac{b^{\mu}}{|b|} + c_1 \frac{\gamma u_2^{\mu} - u_1^{\mu}}{\gamma^2 - 1} + c_2 \frac{\gamma u_1^{\mu} - u_2^{\mu}}{\gamma^2 - 1} \right)$$

- We obtained the full dynamics of binary inspirals at $\mathcal{O}(G^4)$ for the first time.
- Conservative part agrees perfectly with Amplitudes' derivations.

 $Bern-Parra-Martinez-Roiban-Ruf-Shen-Solon-Zeng\ 2021$

• Perfect agreement with the state-of-the-art PN computations

Cho-Dandapat-Gopakumar 2021 Cho 2022 Bini-Geralico 2021 2022 Bini-Damour 2022

• Very recently two new calculations confirmed our results.

Damgaard-Hansen-Planté-Vanhove 2023 (exponentiation of amplitudes) Jakobsen-Mogull-Plefka-Sauer-Xu 2023 (worldline QFT)

Zhengwen Liu (NBIA)

Local-in-time part

• The full result cannot be used to describe generic elliptic-like motion due to nonlocal-in-time effects. Damour-Jaranowski-Schäfer 2014 Galley-Leibovich-Porto-Ross 2015 Cho-Kälin-Porto 2021

• The nonlocal-in-time radial action takes the form

$$\mathcal{S}_{r}^{(\text{nloc})} = -\frac{GE}{2\pi} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{dE}{d\omega} \log\left(\frac{4\omega^{2}}{\mu^{2}} e^{2\gamma_{E}}\right)$$

E and $\frac{dE}{d\omega}$ are the total energy and emitted GW flux in the center-of-mass frame. Renormalization scale μ can be arbitrarily chosen, $4e^{2\gamma_E}$ follows the PN conventions.

• For scattering, the deflection angle is given by

$$rac{\chi}{2\pi} = -\partial_j \mathcal{I}_r, \qquad \mathcal{I}_r \equiv rac{\mathcal{S}_r}{GM^2
u}, \quad j \equiv rac{J}{GM^2
u}$$

PM expansion

$$\frac{\chi}{2} = \sum_{n=1}^{\infty} \left(\chi_b^{(n)} + \chi_b^{(n)\log\log\frac{\mu b}{\Gamma}} \right) \left(\frac{GM}{b} \right)^n \qquad \Gamma \equiv \frac{E}{M} = \sqrt{1 + 2\nu(\gamma - 1)}$$

Zhengwen Liu (NBIA)

Local-in-time dynamics

• The integrand can be built from 3PM diagrams.

$$\int d^{D} \ell_{1} d^{D} \ell_{2} \frac{\delta(\ell_{1} \cdot u_{1})\delta(\ell_{2} \cdot u_{2})}{[\ell_{1} \cdot u_{2}][\ell_{2} \cdot u_{1}]} \frac{\log(\omega^{2})}{[\ell_{1}^{2}][\ell_{2}^{2}][(\ell_{1} + \ell_{2} - q)^{2}][(\ell_{1} - q)^{2}][(\ell_{2} - q)^{2}]}$$

with

$$\omega \equiv k \cdot u_{\text{com}}, \quad k = \ell_1 + \ell_2 - q, \quad u_{\text{com}} = \frac{m_1 u_1 + m_2 u_2}{M\Gamma}$$

• Integral family:

$$\int d^{D} \ell_{1} d^{D} \ell_{2} \frac{\delta(\ell_{1} \cdot u_{1})\delta(\ell_{2} \cdot u_{2})}{[\ell_{1} \cdot u_{2}][\ell_{2} \cdot u_{1}]} \frac{1}{\omega^{-2\tilde{\epsilon}}} \frac{1}{[\ell_{1}^{2}][\ell_{2}^{2}][(\ell_{1}+\ell_{2}-q)^{2}][(\ell_{1}-q)^{2}][(\ell_{2}-q)^{2}]}$$

- \blacktriangleright IBP can be done using LiteRed and FiniteFlow: 17 MIs $Q\equiv m_2/m_1$
- ► MPLs: {x, 1±x}∪{y, 1±y, $y \frac{1+x}{1-x}$, $y \frac{1-x}{1+x}$, $1 + 2\frac{1-x}{1+x}y + y^2$ } $Q^{-1} = -\gamma \frac{\sqrt{\gamma^2 1}}{2}(y + y^{-1})$
- Complete elliptic integrals and iterated integrals of the elliptic integrals.

Zhengwen Liu (NBIA)

Gravitational two-body dynamics at NNNLO

$f_2(q) \equiv \frac{f_1(q)}{q}$, $f_3(q) \equiv \partial_{\chi} f_1(q)$, $f_4(q) \equiv \frac{\partial_{\chi} f_1(q)}{q}$ $f_5(q) \equiv \left[\frac{1-x^2}{x}(1+q\,\partial_q) - \frac{1-q^2}{q}x\,\partial_x\right] \frac{f_1(q)}{\sqrt{(q+x)(q+1/x)}}$

• The combination of complete elliptic integrals in f_1 has a simple PN expansion $(x \rightarrow 1)$.

• All f_i 's have (at most) simple poles \implies easy to evaluate in SF expansion $(Q \rightarrow 0)$.

 $f_1(q) \equiv \frac{\mathsf{K}(-qx)\mathsf{K}(1+q/x) - \mathsf{K}(-q/x)\mathsf{K}(1+qx)}{\pi}$

$$\left\{ \Pi(f_i; Q), \ \Pi(q^{-1}, f_i; Q), \ \Pi\left(\frac{2}{\sqrt{(Q+x)(Q+1/x)}}, f_5; Q\right), \ \Pi\left(\frac{2}{q\sqrt{(Q+x)(Q+1/x)}}, f_5; Q\right) \right\}$$

 $II(h_1, h_2, ..., h_n; z) := \int_{2}^{2} dt II(h_2, ..., h_n; t)$

The following set appears in the result

Iterated integrals of elliptic kernels

Zhengwen Liu (NBIA)

with

Iterated integrals of elliptic kernels

In[4]:= Integrate[%, Q] // Collect[#, {Q, Log}, Simplify] &

$$Dut[4] = \frac{1}{2} Q \log[x] + Q^{2} \left(-\frac{-1+x^{2}}{16x} - \frac{(1+x^{2}) \log[x]}{16x} \right) + Q^{3} \left(\frac{7(-1+x^{4})}{256x^{2}} + \frac{(9+4x^{2}+9x^{4}) \log[x]}{384x^{2}} \right) + Q^{4} \left(\frac{185+9x^{2}-9x^{4}-185x^{6}}{12288x^{3}} - \frac{(25+9x^{2}+9x^{4}+25x^{6}) \log[x]}{2048x^{3}} \right) + Q^{5} \left(\frac{7(-533-32x^{2}+32x^{6}+533x^{8})}{393216x^{4}} + \frac{(1225+400x^{2}+324x^{4}+400x^{6}+1225x^{8}) \log[x]}{163840x^{4}} \right) + Q^{6} \left(\frac{307503+19775x^{2}+3600x^{4}-3600x^{6}-19775x^{8}-307503x^{10}}{47185920x^{5}} - \frac{(3969+1225x^{2}+900x^{4}+900x^{6}+1225x^{8}+3969x^{10}) \log[x]}{786432x^{5}} \right) \right)$$

Zhengwen Liu (NBIA)

Strategy II: SF expansion

• Integral family:

$$\int d^{D} \ell_{1} d^{D} \ell_{2} \frac{\delta(\ell_{1} \cdot u_{1})\delta(\ell_{2} \cdot u_{2})}{[\ell_{1} \cdot u_{2}][\ell_{2} \cdot u_{1}]} \frac{\log(\omega^{2})}{[\ell_{1}^{2}][\ell_{2}^{2}][(\ell_{1} + \ell_{2} - q)^{2}][(\ell_{1} - q)^{2}][(\ell_{2} - q)^{2}]}$$

We first rewrite it as

$$\log \omega^2 = \log \left(\left(\frac{k \cdot u_1 + Qk \cdot u_2}{1 + Q} \right)^2 \right) = \log \left(\left(\ell_2 \cdot u_1 + Q\ell_1 \cdot u_2 \right)^2 \right) - 2\log(1 + Q).$$

We can expand in $Q = m_2/m_1$

$$\log ((\ell_2 \cdot u_1 + Q\ell_1 \cdot u_2)^2) = \log ((\ell_2 \cdot u_1)^2) - 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{\ell_1 \cdot u_2}{\ell_2 \cdot u_1}Q\right)^n$$

• We factorised out the mass dependency Q (or ν)

- Ordinary 2-loop PM integrals, but with high powers for linear propagators
- ▶ FIRE6.5 (\oplus FLINT \oplus LiteRed) works weel to $\mathcal{O}(Q^{30})$ Smirnov-Zeng 2311.02370

Zhengwen Liu (NBIA)

Scattering angle

Nonlocalin-time contribution to the scattering angle:

$$\begin{aligned} \frac{1}{\pi\Gamma}\chi_{b(\text{nloc})}^{(4)\log} &= -2\nu\chi_{2\epsilon}(\gamma) = \frac{-2\nu}{(\gamma^2 - 1)^2} \left[h_5 + h_9\log\frac{\gamma + 1}{2} + h_{10}\frac{\operatorname{arccosh}(\gamma)}{\sqrt{\gamma^2 - 1}} \right] \\ \frac{1}{\pi\Gamma}\chi_{b(\text{nloc})}^{(4)(n\text{SF})} &= \frac{\nu}{(\gamma^2 - 1)^2} \left[h_1 + \frac{\pi^2 h_2}{\sqrt{\gamma^2 - 1}} + h_3\log\frac{\gamma + 1}{2} + \frac{h_4\operatorname{arccosh}(\gamma)}{\sqrt{\gamma^2 - 1}} + h_5\log\frac{\gamma - 1}{8} + h_6\log^2\frac{\gamma + 1}{2} + h_7\operatorname{arccosh}(\gamma)^2 + \frac{h_8\log(2)\operatorname{arccosh}(\gamma)}{\sqrt{\gamma^2 - 1}} + h_9\log\frac{\gamma - 1}{8}\log\frac{\gamma + 1}{2} + \frac{h_{10}\log\frac{\gamma^2 - 1}{16}\operatorname{arccosh}(\gamma)}{\sqrt{\gamma^2 - 1}} + h_{11}\operatorname{Li}_2\frac{\gamma - 1}{\gamma + 1} + h_{12}\frac{\operatorname{arccosh}^2(\gamma) + 4\operatorname{Li}_2(\sqrt{\gamma^2 - 1} - \gamma)}{\sqrt{\gamma^2 - 1}} \right] \end{aligned}$$

• We obtained exact- ν (iterated elliptic integrals) and SF-expanded (30SF) versions. h_i coefficients can found from the ancillary files in 2403.04853

• The result is in perfect agreement with the 6PN result in Bini-Damour-Geralico 2007.11239

Zhengwen Liu (NBIA)

Bound dynamics

• The total bound Hamiltonian up to 4PM:

$$\hat{H}_{4\text{PM}}^{\text{ell}} = \sum_{i=1}^{i=4} \frac{\hat{c}_{i(\text{loc})}}{\hat{r}^{i}} + \sum_{i=1}^{i=4} \frac{\hat{c}_{i(\text{nloc})}}{\hat{r}^{i}} + \frac{4\nu^{2}}{3\hat{r}^{4}} \frac{(\gamma^{2}-1)}{\Gamma^{2}\xi} \chi_{2\epsilon} \log\left(\frac{\hat{r}}{e^{2\gamma_{E}}}\right)$$

 $\hat{\textit{C}}_{4(\text{loc})}$ is reported here for the first time.

• Using the 6PN results (W_1 -only) in [2007.11239], we obtained an improved bound Hamiltonian

$$\begin{aligned} \hat{H}^{\text{ell}}(\hat{r}, \boldsymbol{p}^{2}, \nu) &= \hat{E} + \sum_{i=1}^{i=4} \frac{\hat{c}_{i(\text{loc})}}{\hat{r}^{i}} + \frac{4\nu^{2}}{3\hat{r}^{4}} \frac{(\gamma^{2} - 1)}{\Gamma^{2}\xi} \chi_{2\epsilon}(\gamma) \log\left(\frac{\hat{r}}{e^{2\gamma_{E}}}\right) \\ &+ \sum_{i=1}^{i=4} \frac{1}{\hat{r}^{i}} \left\{ \hat{c}_{i(\text{nloc})}^{6\text{PN}(e^{8})} + \mathcal{O}\left(\hat{\boldsymbol{p}}^{2(8-i)}\right) \right\} + \frac{1}{\hat{r}^{5}} \left(\hat{c}_{5(\text{loc+nloc})}^{4\text{PN}(e^{8})} - \frac{22\nu}{15} \log\left(\frac{\hat{r}}{e^{2\gamma_{E}}}\right) \right) + \mathcal{O}\left(\frac{\hat{\boldsymbol{p}}^{2}}{\hat{r}^{5}}\right) \end{aligned}$$

• We find agreement with the $\hat{H}_{6PN(4PM)}^{ell}$ in Khalil-Buonanno-Steinhoff 2204.05047

Zhengwen Liu (NBIA)

Conclusion & Outlook

Modern techniques from collider physics have already proven useful to solve the gravitational two-body problem.

We have developed an efficient framework and obtained the full results at NNNLO, including conservative and dissipative parts, local/nonlocal separations.

Conclusion & Outlook

Modern techniques from collider physics have already proven useful to solve the gravitational two-body problem.

We have developed an efficient framework and obtained the full results at NNNLO, including conservative and dissipative parts, local/nonlocal separations.

Going to NNNNLO (5PM)

- Nonlocal conservative dynamics
 3-loop integrals (SF expand) FIRE6.5
- 2SF (1SF, Mogull's talk)

Thanks for your attention!

HORIZON 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 847523.