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Spacetime tells matter how to move; matter tells spacetime how to curve.

Elegant but computationally challenging: This drives nonlinearity.

However, some interactions/nonlinearities are not as strong as one
might expect. . .
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Strong gravity ∕=⇒ Strong nonlinearity

If ℓa is null and if V ℓaℓb solves the vacuum Einstein equation linearized
about a vacuum background ḡab,

gab = ḡab + V ℓaℓb

solves the exact vacuum Einstein equation. All nonlinearities vanish!
[Gürses and Gürsey (1975), Xanthopoulos (1978), . . . ]
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Strong gravity ∕=⇒ Strong nonlinearity

If ℓa is null and if V ℓaℓb solves the vacuum Einstein equation linearized
about a vacuum background ḡab,

gab = ḡab + V ℓaℓb

solves the exact vacuum Einstein equation. All nonlinearities vanish!
[Gürses and Gürsey (1975), Xanthopoulos (1978), . . . ]

Kerr, exact plane waves, de Sitter, and are all linear in this sense (on flat
backgrounds). There is no self-interaction.
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Kerr-Schild double copy

For some Maxwell potentials Aa = Uℓa in flat spacetime, with ℓa null,
gab = ηab + V ℓaℓb is an exact solution to Einstein’s equation.

[Monteiro, O’Connell, and White (2014), . . . ]
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Kerr-Schild double copy

For some Maxwell potentials Aa = Uℓa in flat spacetime, with ℓa null,
gab = ηab + V ℓaℓb is an exact solution to Einstein’s equation.

[Monteiro, O’Connell, and White (2014), . . . ]

Again, a relatively-simple linear equation can (sometimes) be used to solve
a nonlinear equation:

Coulomb field → Schwarzschild
EM plane waves → Gravitational plane waves
EM field with const charge density → de Sitter
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Lesson #1

Simplifications can arise not only when (dimensionless magnitudes) ≪ 1,
but also when perturbations have a special tensorial structure.
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Kerr-Schild transformations

Given some null ℓa, call

gab → gab + V ℓaℓb

a Kerr-Schild transformation of gab.

Some of the most important metrics are Kerr-Schild transformations of flat
spacetime: Schwarzschild, Kerr, plane waves, de Sitter, . . .

A. Harte Kerr-Schild geometry 6 / 27



Why is Kerr-Schild so simple?

Kerr-Schild perturbations hab = V ℓaℓb are nilpotent with degree 2, or
“square roots of zero”:

habh
b
c = 0.

Metric inverses are linear:

gab = ḡab − hab.

Volume elements are unperturbed:
√
−g =

√
−ḡ .
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Can Kerr-Schild be interesting generically?

Few metrics are KS transformations of, say, ηab.

However, those which are can act as “attractors”: Perturbed black
holes settle down to Kerr, ultrarelativistic (Penrose) limits result in
plane waves, etc. Spherically-symmetric metrics are also conformal KS.

Can the reduced nonlinearity inherent in Kerr-Schild structures be
exploited beyond these special cases? Look at perturbation theory.
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Making approximate solutions exact

Let h(1)ab be a solution to the vacuum linearized Einstein equation in any
convenient gauge. If there exists (V , ℓa, ξ

a) such that

h
(1)
ab + Lξḡab = V ℓaℓb

with ℓa null,
g exact
ab = ḡab + Lξḡab + h

(1)
ab

is exact.
[AH & Vines (2016)]

Linearized approximations can contain all information necessary to
construct exact solutions.
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A guaranteed “resummation”

If one can transform to a “KS gauge,” h
(1)
ab and errors in the 1st-order

gauge xform Lξḡab are guaranteed to cancel:

g exact
ab = ḡab + (h

(1)
ab +✟✟Eab) + (Lξḡab −✟✟Eab).
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A guaranteed “resummation”

If one can transform to a “KS gauge,” h
(1)
ab and errors in the 1st-order

gauge xform Lξḡab are guaranteed to cancel:

g exact
ab = ḡab + (h

(1)
ab +✟✟Eab) + (Lξḡab −✟✟Eab).

Example: Exact Kerr can be obtained in this way from a 1st-order metric
perturbation in Lorenz gauge (which is not exact).
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Introducing matter

If a Kerr-Schild gauge exists, the exact stress-energy is

T a
b = (linear operator)[hKS].

Linearized stress-energy in original gauge becomes exact.
[AH & Vines (2016)]

Linearity =⇒ Distributional stress-energies make sense “nonlinearly.”

∇̄aT
a
b = 0, so “self-fields exert no force.”
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Lesson #2

Gauge choices in perturbation theory are not just a matter of computational
or interpretational convenience. Gauge can also alter accuracy.
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Lesson #2

Gauge choices in perturbation theory are not just a matter of computational
or interpretational convenience. Gauge can also alter accuracy.

It may be useful to use (or to transform to) something as close as
possible to a “Kerr-Schild gauge”

Some work on this already via the “highly-regular gauge” [Pound (2017)]
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These results are still not generic.

Instead of asking for how different parts of the geometry might
decouple from other parts of itself, ask for how parts of the geometry
might decouple from test fields in that geometry.

Kerr-Schild again plays a central role!
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How much does geometry affect a high-frequency test field?

At high frequencies, fields look like

Fab(x) = [Aab(x) +O(ω−1)]e iωϕ(x)

as ω → ∞, where ℓa = ∇aϕ is tangent to a
twist-free null geodesic congruence.

❏
❏

❏
❏

❏❏❪ℓa 

A. Harte Kerr-Schild geometry 14 / 27



How much does geometry affect a high-frequency test field?

At high frequencies, fields look like

Fab(x) = [Aab(x) +O(ω−1)]e iωϕ(x)

as ω → ∞, where ℓa = ∇aϕ is tangent to a
twist-free null geodesic congruence.

❏
❏

❏
❏

❏❏❪ℓa 

Focus first on these geodesics.
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Given an eikonal ϕ which is compatible with some metric gab, is there
another metric g ′

ab in which ϕ is also a valid eikonal?

Does some part of the metric decouple from ϕ?
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Given an eikonal ϕ which is compatible with some metric gab, is there
another metric g ′

ab in which ϕ is also a valid eikonal?

Does some part of the metric decouple from ϕ?

Conformal transformations gab → Ω2gab preserve eikonals. Is that all?
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Eikonals couple to very little of the metric

Metrics can be deformed using 7 free functions! Only 10 − 7 = 3 metric
components actually affect a given eikonal.

[AH (2019)]
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Eikonals couple to very little of the metric

Metrics can be deformed using 7 free functions! Only 10 − 7 = 3 metric
components actually affect a given eikonal.

[AH (2019)]

Irrelevant parts of the metric:
1 component from 1 conformal transformation,
3 components from 3 Kerr-Schild transformations,
3 components from 1 “generalized Kerr-Schild” transformation.
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Multiple Kerr-Schild transformations

One can preserve an eikonal ϕ with any Kerr-Schild transformation
gab → gab + Vkakb in which k · k = 0 and k ·∇ϕ = 0.

One option is ka = ∇aϕ. [1 free function]
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Multiple Kerr-Schild transformations

One can preserve an eikonal ϕ with any Kerr-Schild transformation
gab → gab + Vkakb in which k · k = 0 and k ·∇ϕ = 0.

One option is ka = ∇aϕ. [1 free function]

Another option is to choose ka to be complex and orthogonal to ∇aϕ.
But Vkakb is then complex.

Produce real metrics by performing two KS transformations, one with
ka and one with k̄a. [2 free functions]
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Composing Kerr-Schild transformations

Multiple KS transformations don’t just add ; they must be composed.

If ka and k ′a are both null wrt gab, it won’t necessarily be true that k ′a
is also null wrt gab + Vkakb: The “obvious” metric
gab + Vkakb + V ′k ′ak

′
b is not a KS transformation of gab + Vkakb.
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Composing Kerr-Schild transformations

Multiple KS transformations don’t just add ; they must be composed.

If ka and k ′a are both null wrt gab, it won’t necessarily be true that k ′a
is also null wrt gab + Vkakb: The “obvious” metric
gab + Vkakb + V ′k ′ak

′
b is not a KS transformation of gab + Vkakb.

Find a linear combination of k ′a and ka which is null wrt gab + Vkakb.
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Composing Kerr-Schild transformations

Multiple KS transformations don’t just add ; they must be composed.

If ka and k ′a are both null wrt gab, it won’t necessarily be true that k ′a
is also null wrt gab + Vkakb: The “obvious” metric
gab + Vkakb + V ′k ′ak

′
b is not a KS transformation of gab + Vkakb.

Find a linear combination of k ′a and ka which is null wrt gab + Vkakb.

gab → gab +
Vkakb + (k · k ′)VV ′k(ak

′
b) + V ′k ′ak

′
b

1 − 1
4(k · k ′)2VV ′
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Preserving high-frequency fields

If m ·∇ϕ = 0 and m · m̄ = 1, the transformations

gab → Ω2

gab + w(a∇b)ϕ+

Vmamb + V̄ m̄am̄b + |V |2m(am̄b)

1 − 1
4 |V |2



preserve the eikonal ϕ, where Ω, V , and wa are arbitrary.
[AH (2019)]
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Preserving high-frequency fields

If m ·∇ϕ = 0 and m · m̄ = 1, the transformations

gab → Ω2

gab + w(a∇b)ϕ+

Vmamb + V̄ m̄am̄b + |V |2m(am̄b)

1 − 1
4 |V |2



preserve the eikonal ϕ, where Ω, V , and wa are arbitrary.
[AH (2019)]

These transformations also preserve all scalar amplitudes at
high-frequencies

At least the V = 0 transformations also preserve EM and gravitational
amplitudes (but not in Lorenz gauge!)
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Generating new solutions from old I

Given a known high-frequency field in one spacetime, generate another field
in the same spacetime.

Example: Plane waves to spherical and cylindrical waves.
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Generating new solutions from old II

Given a known high-frequency field in one spacetime, generate a field in a
different spacetime.

Example: Plane wave in flat spacetime to
initially-planar wave in Schwarzschild.
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Generating new solutions from old II

Given a known high-frequency field in one spacetime, generate a field in a
different spacetime.

Example: Plane wave in flat spacetime to
initially-planar wave in Schwarzschild.
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(7 free metric functions) + (4 gauge functions) > 10: A field in one
spacetime can be turned into a field in any other spacetime!
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Beyond geometric optics

Given an electromagnetic field Fab which is known to be compatible with a
metric gab, are there other metrics g ′

ab with which it is also compatible?
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Beyond geometric optics

Given an electromagnetic field Fab which is known to be compatible with a
metric gab, are there other metrics g ′

ab with which it is also compatible?

The metric can be deformed with five free functions [AH (2017)]

Yet again, Kerr-Schild transformations play a central role!
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Null electromagnetic fields (F abFab = F abF 
ab = 0)

If Fab is a null Maxwell field with metric gab and null eigenvector ℓa, it
remains a solution under all transformations

gab → Ω2(gab + ℓ(awb)),

where Ω and wa are arbitrary.
[AH (2017)]

These are the V = 0 transformations from geometric optics without any
complex Kerr-Schild transformations.

A. Harte Kerr-Schild geometry 23 / 27



Non-null electromagnetic fields

General metric transformations for a non-null (generic) Fab with null
eigenvectors ℓa, ka, ma and m̄a are

gab → Ω2(KS[ℓ] ◦ KS[k] ◦ KS[m] ◦ KS[m̄])gab.

Except for the conformal factor, everything is a composition of Kerr-Schild
transformations.
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Example: Interaction between gravitational and EM waves

Plane-fronted electromagnetic wave

Fab = ℓ[a∇b]αEM

is a solution in flat spacetime. It is also a solution in the plane-fronted
gravitational-wave spacetimes

gab = ηab + αgravℓaℓb.

EM waves are not affected by gravitational waves which propagate in the
same direction.
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This is hidden in the more usual TT gauge, where Fab does appear to
depend on the metric perturbation. . . Gauge matters!
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This is hidden in the more usual TT gauge, where Fab does appear to
depend on the metric perturbation. . . Gauge matters!

Physically, this is because TT-gauge coordinates are tied to timelike
geodesics, and those aren’t preserved in the same ways as EM fields,
null geodesics, etc.
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Conclusions

Lots of things in physics transform nicely, or decouple, with respect to
Kerr-Schild transformations gab → gab + V ℓaℓb.

EM fields, null geodesics, high-frequency gravitational waves, etc.
decouple from KS geometry.

In full GR, nonlinearity in GR can be much weaker when perturbations
have a KS (or related) form.

These results and others form a growing toolbox. Expand and apply!
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