Lessons about walking theories from complex CFTs

Bernardo Zan

Based on [1807.11512] and [1808.04380] with V. Gorbenko and S. Rychkov and [2005.07708] with V. Gorbenko

June 27, 2024

1

Conformal windows

QCD₄, SU(3) gauge group, N_f massless fundamental quarks.

Conformal window: $N_f^* < N_f < 33/2$, **Banks-Zaks** fixed point. $N_f^* \sim 8 - 10$. Similar behavior in adjoint QCD₄, QED₃, ...

How do fixed points disappear?

The easy end

Upper end of conformal window: $N_f = 33/2$

$$eta(g) \equiv rac{dg}{d\log E} = -Ag^3 + Bg^5 + \dots$$

 $A = c\left(rac{33}{2} - N_f
ight) ext{ with } c > 0 \,, \qquad B > 0$

BZ merges with the free theory at $N_f = 33/2$.

Lower end: the minimal scenario

Most generic is saddle node bifurcation. [Kaplan, Lee, Son, Stephanov '09]

$$\beta(g) \equiv \frac{dg}{d\log E} = x - (g - g_0)^2 + \dots \qquad x \sim N_f - N_f^*$$

At x = 0, have (classically) marginal operator. [Assumptions: β function is analytic.]

The minimal scenario

Walking behavior

$$\beta_g = x - (g - g_0)^2 + \dots$$

Just outside the conformal window $x \leq 0$, large separation of scales

Complex CFTs

$$\beta(g) = x - (g - g_0)^2 + \dots$$

- x > 0, real zeros \rightarrow CFTs.
- x < 0, complex zeros $g_* = g_0 \pm i \sqrt{|x|} \rightarrow \text{complex CFTs}$ [Gorbenko, Rychkov, BZ '18]. Non-unitary but well defined.

Walking from complex CFTs

Walking = passing through two complex CFTs!

Conformal perturbation theory to

describe the walking region as a perturbation of the complex CFT.

Particle physics from boiling water

The same phenomena happen in some statistical models. [Gorbenko, Rychkov, BZ '18] [Gorbenko, BZ '20]

- E.g. Q states **Potts model** in 2d: S_Q symmetry.
 - Q > 4: 1st order phase transition
 - $0 < Q \leq 4$: 2nd order phase transition

 $Q\in\mathbb{R}_+$ is well defined here.

Phase transition is weakly first order for $Q\gtrsim4$

Q	5	6	7	8	9	10
ξ/a	2512.2	158.9	48.1	23.9	14.9	10.6

Potts model and complex CFTs

Conformal window as in QCD₄!

Two fixed points (critical and tricritical) become complex for Q > 4

Exact results in $2d \rightarrow$ we can predict e.g. [Gorbenko, Rychkov, BZ '18]:

$$\xi/a\sim \exp\left(rac{\pi^2}{\sqrt{Q-4}}
ight)$$

Agrees with exact lattice results!

Should we expect a light dilaton?

Light dilaton expected by some in walking theories e.g. [Appelquist, Bai '10]. Let us revisit this question

Walking behavior: **explicit** breaking of conformal symmetry!

Conformal symmetry broken weakly \rightarrow particle masses are small. But their ratio will generically be $\sim O(1)!$

Thanks to integrability, can explicitly check there is no light dilaton in $Q = 4 + \epsilon$ 2d Potts model [Delfino, Cardy '00].

Walking vs moduli space

Light dilaton requires **moduli space**, to allow *spontaneous* symmetry breaking. This question is independent of walking!

2d Potts model does not have one. I do not know of any interacting, finite # d.o.f., non-SUSY theory that has one.

Does QCD at N_f^* have a moduli space? To my knowledge, no evidence of this.

Further developments

- Same phenomenon in the 2d *O*(*n*) model [Gorbenko, BZ '20]
- Can be found at weak coupling
 [Benini, Iossa, Serone '19] [Azatov, Vanvlasselaer '20], [Jepsen, Klebanov, Popov '20], [Antipin, Bersini, Sannino, Wang, Zhang '20] [Jepsen, Popov '21]², ...
- Holography

[Faedo, Hoyos, Mateos, Subils '19, '21]

- Numerical lattice results in 2d [Ma, He '18] [Haldar, Tavakol, Ma, Scaffidi '23] [Jacobsen, Weise '24]
- Suspected of playing a role in the deconfined quantum critical point in 2 + 1 d [Song et al. '23], ...

Conclusions

- Minimal scenario of QCD conformal window is through saddle node bifurcation
- Saddle node bifurcation implies existence of complex CFTs
- Complex CFTs control the regime of walking theories
- Walking theory: explicitly broken conformal symmetry
- Walking by itself does not give a light dilaton
- Light dilaton requires a moduli space, no evidence of that in QCD