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Conformal windows

QCD4, SU(3) gauge group, Nf massless fundamental quarks.
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Conformal window: N∗
f < Nf < 33/2, Banks-Zaks fixed point. N∗

f ∼ 8− 10.
Similar behavior in adjoint QCD4, QED3, . . .

How do fixed points disappear?
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The easy end
Upper end of conformal window: Nf = 33/2

β(g) ≡ dg
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BZ merges with the free theory at Nf = 33/2.
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Lower end: the minimal scenario
Most generic is saddle node bifurcation. [Kaplan, Lee, Son, Stephanov ’09]

β(g) ≡ dg

d log E
= x − (g − g0)

2 + . . . x ∼ Nf − N∗
f
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At x = 0, have (classically) marginal operator.
[Assumptions: β function is analytic.]
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The minimal scenario
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Walking behavior

βg = x − (g − g0)
2 + . . .

Just outside the conformal window x ≲ 0, large separation of scales
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Complex CFTs

β(g) = x − (g − g0)
2 + . . .
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• x > 0, real zeros → CFTs.

• x < 0, complex zeros g∗ = g0 ± i
√

|x | → complex CFTs [Gorbenko, Rychkov, BZ ’18].
Non-unitary but well defined.

7



Walking from complex CFTs

Walking = passing through two complex CFTs!
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Conformal perturbation theory to
describe the walking region as a
perturbation of the complex CFT.
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Particle physics from boiling water
The same phenomena happen in some statistical models.
[Gorbenko, Rychkov, BZ ’18] [Gorbenko, BZ ’20]

E.g. Q states Potts model in 2d: SQ symmetry.

• Q > 4: 1st order phase transition

• 0 < Q ≤ 4: 2nd order phase transition
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Q ∈ R+ is well defined here.

Phase transition is weakly first order for Q ≳ 4

Q 5 6 7 8 9 10
ξ/a 2512.2 158.9 48.1 23.9 14.9 10.6
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Potts model and complex CFTs
Conformal window as in QCD4!

Two fixed points (critical and tricritical) become complex for Q > 4
↳ S ! ·

A.

Exact results in 2d → we can predict e.g. [Gorbenko, Rychkov, BZ ’18]:

ξ/a ∼ exp

(
π2

√
Q − 4

)
Agrees with exact lattice results!
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Should we expect a light dilaton?

Light dilaton expected by some in walking theories e.g. [Appelquist, Bai ’10]. Let us revisit
this question

Walking behavior: explicit breaking of
conformal symmetry!
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Conformal symmetry broken weakly → particle masses are small. But their ratio will
generically be ∼ O(1)!

Thanks to integrability, can explicitly check there is no light dilaton in Q = 4+ ϵ 2d Potts
model [Delfino, Cardy ’00].
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Walking vs moduli space
Light dilaton requires moduli space, to allow spontaneous symmetry breaking. This
question is independent of walking!

2d Potts model does not have one. I do not know of any interacting, finite # d.o.f.,
non-SUSY theory that has one.

Does QCD at N∗
f

have a moduli space?
To my knowledge, no
evidence of this.
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Further developments

• Same phenomenon in the 2d O(n) model
[Gorbenko, BZ ’20]

• Can be found at weak coupling
[Benini, Iossa, Serone ’19] [Azatov, Vanvlasselaer ’20], [Jepsen, Klebanov, Popov ’20], [Antipin,
Bersini, Sannino, Wang, Zhang ’20] [Jepsen, Popov ’21]2, . . .

• Holography
[Faedo, Hoyos, Mateos, Subils ’19, ’21]

• Numerical lattice results in 2d
[Ma, He ’18] [Haldar, Tavakol, Ma, Scaffidi ’23] [Jacobsen, Weise ’24]

• Suspected of playing a role in the deconfined quantum critical point in 2 + 1 d
[Song et al. ’23], . . .
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Conclusions

• Minimal scenario of QCD conformal window is through saddle node bifurcation

• Saddle node bifurcation implies existence of complex CFTs

• Complex CFTs control the regime of walking theories

• Walking theory: explicitly broken conformal symmetry

• Walking by itself does not give a light dilaton

• Light dilaton requires a moduli space, no evidence of that in QCD
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