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AdS/YM Programme
The D3/probe D7 system in holography is a remarkably simple 
calculator of quark physics in a strongly coupled gauge theory…

It is not tied to supersymmetry or conformality and ties chiral 
symmetry breaking to the running of the anomalous dimension 
of qq…

We’ve constructed simple toy models of ANY non-
supersymmetric gauge + fermion system…. 

What does it say about Nf dependence of QCD and dilatons (and 
caveats)?

Composite higgs models… multi-scale theories…



How Does AdS/CFT Work 1
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A weak strong duality that at least works for 
N=4 SYM and its deformations…



How Does AdS/CFT Work 2

Operators and sources appear 
as fields in the bulk

Eg 

m is the quark mass
c is the quark condensate



AdS/CFT Contains Non-SUSY Theories
Eg Witten   black holes = finite T theories
Top/down                                               hep-th/0306018

Probe limit DBI Action captures key elements

The running of anomalous dimensions 
underlies all these models…

hep-ph/9802150

Top down models that describe 
dynamical chiral symmetry 
breaking exist….

Magnetic catalysis is the most 
controlled case… (Johnson, Filev)

They all look a bit baroque…



Running Dimensions in Gauge Theory
2

FIG. 1: Diagrams at one loop order contributing to the

anomalous dimension of a gauge invariant scalar operator

with n quark legs.

II. ANOMALOUS DIMENSIONS AT ONE LOOP

The crucial new ingredient we wish to explore in
AdS/QCD models is the anomalous dimension of multi-
quark operators. Let us therefore review the theory of
anomalous dimensions in QCD at one loop level (covered
in more detail in [18]).

The dimension d for a generic operator O = Õµ
d, where

Õ is the dimensionless component of O at the scale µ, can
be expressed as

d =
1

O
µ
dO

dµ
(1)

Upon renormalisation by ZO, the anomalous dimension
� is then given by

�O = � 1

ZO

µ
dZO

dµ
(2)

where we have included a minus sign such that d = d0+�.
Computing ZO for a colour singlet gauge invariant oper-
ator comprised of n quark fields requires one to consider
two sets of Feynman diagrams (fig.1). Firstly, there is a
factor Z originating from the wave function renormali-
sation of the n external legs, which diverges in the ✏ ! 0
limit as per the dimensional regularization procedure

Z = 1� C2(R) ⇠
↵

4⇡

1

✏
(3)

where C2(R) is the quadratic Casimir element. We also
define the square of the gauge coupling ↵ = g

2
/4⇡ and

the gauge fixing parameter ⇠, which specifies the form of
the gluon propagator

D
0
µ⌫(p

2) =
�i

p2

✓
gµ⌫ � (1� ⇠)

p
µ
p
µ

p2

◆
(4)

Secondly, one must consider diagrams describing the ex-
change of gluons between any two external lines as per-

mitted by the colour symmetry of the scalar operator.
We have

ZV = 1 + (3 + ⇠)
↵

4⇡

1

✏
(5)

which, combined with (3), defines the renormalisation
factor for the n quark operator

ZOn =

✓
1 + Cn(3 + ⇠)

↵

4⇡

1

✏

◆
Z

n/2
 (6)

where Cn is a combinatoric colour factor discernible from
the permitted diagrams. To ensure that our operator re-
mains gauge invariant, we impose that ZOn is indepen-
dent of ⇠, thereby fixing Cn = nC2(R)/2. This gives

ZOn = 1 +
3n

2
C2(R)

↵

4⇡

1

✏
(7)

In the fundamental representation with Nc = 3 colours,
we find that C2(F ) = (N2

c � 1)/2Nc = 4/3. Combin-
ing this with the result of (2), we can derive a general
expression for the anomalous dimension of an n quark
vertex

�On(µ) = �n
↵(µ)

⇡
(8)

As (8) shows, the anomalous dimension is directly pro-
portional to the number of quark legs. Beyond one loop,
this factorization is expected to break down and opera-
tors will garner their own distinct running. In the follow-
ing sections, we will use this one loop result in AdS/QCD
models which we have extended into the non-perturbative
regime. Although results at two loop and beyond will
begin to distinguish operators with di↵erent colour wave
functions, one would need the full non-perturbative run-
ning to correctly understand the resultant splittings.

III. HARD WALL MODEL

The simplest AdS/QCD model [1, 2] involves the study
of bulk fields in AdS5 space with metric

ds
2 = r

2
dxµdx

µ +
dr

2

r2
(9)

where xµ 2 R1,3 and r is the radial ordinate of the curved
AdS space. In the dual field theory, this radial direction
corresponds to the renormalisation group (RG) scale, al-
lowing us to insert a mass gap into QCD by placing a
hard wall boundary at r = 1.

A simple example of extracting dynamics from the hard
wall model is to consider a SU(Nf ) vector field in AdS5

2
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this factorization is expected to break down and opera-
tors will garner their own distinct running. In the follow-
ing sections, we will use this one loop result in AdS/QCD
models which we have extended into the non-perturbative
regime. Although results at two loop and beyond will
begin to distinguish operators with di↵erent colour wave
functions, one would need the full non-perturbative run-
ning to correctly understand the resultant splittings.

III. HARD WALL MODEL

The simplest AdS/QCD model [1, 2] involves the study
of bulk fields in AdS5 space with metric

ds
2 = r

2
dxµdx

µ +
dr

2

r2
(9)

where xµ 2 R1,3 and r is the radial ordinate of the curved
AdS space. In the dual field theory, this radial direction
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lowing us to insert a mass gap into QCD by placing a
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A simple example of extracting dynamics from the hard
wall model is to consider a SU(Nf ) vector field in AdS5
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Holographically we can change the dimension of our operator by 
adding a mass term

Running Dimensions in Holography
Raul Alvares, NE, Keun-Young arXiv:1204.2474 [hep-ph]; Matti Jarvinen, Elias Kiritsis arXiv:1112.1261 [hep-ph]

Dm = -1    corresponds to   g = 1   and is special – the Breitenlohner Freedman 
bound instability…

So we can include  a running coupling by a r dependent mass squared for the 
scalar.

2

Top down derivation: many string constructions eg probe D7 branes in D3 
backgrounds are examples of this…  

Very complex geometries describe the gauge theory glue-dynamics… a single 
quark in that background is described by a DBI field such as this with the 
running of the mass determined by the glue-dynamics…



|X| = L   is now the  dynamical field whose solution will determine the 
condensate as a function of m  - the phase is the pion.

We use the top-down IR boundary condition on mass-shell:      X’(r=X) = 0

X enters into the AdS metric to cut off the radial scale at the value of m or the 
condensate – no hard wall

The gauge DYNAMICS is input through a guess for Dm

The only free parameters  are Nc, Nf, m, L

Dynamic AdS/YM Timo Alho, NE, KimmoTuominen    
1307.4896



Formation of the Chiral Condensate

We solve for the vacuum 
configuration of L

Shoot out with

L’(r =L) = 0

Read off m 
and  qq in 
the UV…

3 Two-flavour QCD

To demonstrate the Dynamic AdS/YM model and the role of HDOs, we begin with a study

of Nc = 3, Nf = 2 QCD. We first determine the vacuum of the theory for the massless theory

by finding the function L(⇢) using eq. (2.4). Then we compute the spectrum of the model by

looking at fluctuations, study the quark mass dependence and the n dependence of excited

states. Finally we consider introducing a cut o↵ where the theory runs to a perturbative

regime and include HDOs at that scale to improve the IR description.

The key input for any theory we study is the form of � we input in eq. (2.6). The formulae

for the one and two-loop coe�cients of the �-function and the one-loop anomalous dimension

for QCD are, with Nf the number of Weyl flavours in the fundamental and N̄f the number

in the anti-fundamental representations

b0 =
1

6⇡

�
11Nc � (Nf + N̄f )

�
,

b1 =
1

24⇡2

✓
34Nc

2
� 5Nc(Nf + N̄f )�

3
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Nc
2
� 1

Nc
(Nf + N̄f )

◆
,

� =
3(Nc

2
� 1)

4Nc⇡
↵ .

(3.1)

We choose an initial value for ↵(µ = 1) = 0.65 for the numerical analysis but will set the

scale with the ⇢-meson mass below. The resulting running of �m2 in the Dynamic AdS/QCD

model is shown in fig. 1 on the left - the BF bound is violated close to the scale r = µ = 1.

We can now compute the vacuum for the theory by solving eq. (2.4) subject to the

boundary conditions in eq. (2.10). We solve the equation numerically and show the results

on the right in fig. 1 for di↵erent asymptotics of L(⇢) corresponding to di↵erent UV masses.
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Figure 1: The Nc = 3, Nf = 2 QCD model: on the left we display the running of the AdS

scalar mass �m2 against log RG scale (we use µ =
p
⇢2 + L2 in the holographic model). On

the right we show the the vacuum solution for |X| = L(⇢) against ⇢. The 45� line is where

we apply the on mass shell IR boundary condition in eq. (2.10). The L(⇢) with a massless

UV quark has LIR = 0.43. The quark masses from top to bottom are 1, 0.75, 0.5, 0.25, 0.05,

0. Here units are set by ↵(⇢ = 1) = 0.65.
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Meson Fluctuations

The source free solutions pick out 
particular mass states… the s and its 
radial excited states…

The gauge fields let us also study  the operators and states 



Decay Constants (a la. AdS/QCD - hep-ph/0501128 [hep-ph])

Decay constants are determined by allowing a source to couple 
to a physical state

Vector meson
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FV2 Note not FV mV

Now we need to fix the normalizations of the holographic linear 
perturbations…

For the physical states we canonically normalize the kinetic terms…

For the source solutions we fix   k  and the norms so that we match 
perturbative results for eg PVV in the UV…

The di↵erence between the V and A equations reflect that L carries axial charge so couples

to A.

To compute decay constants, we must couple the meson to an external source. Those

sources are described as fluctuations with a non-normalizable UV asymptotic form. Again

we need to fix the coe�cient of these solutions by matching to the gauge theory in the

UV. External currents are associated with the non-normalizable modes of the fields in AdS.

In the UV we expect L0(⇢) ⇠ 0 and we can solve the equations of motion for the scalar,

L = KS(⇢)e�iq.x, vector V µ = ✏µKV (⇢)e�iq.x, and axial Aµ = ✏µKA(⇢)e�iq.x fields. Each

satisfies the same UV asymptotic equation

@⇢[⇢
3@⇢K]�

q2

⇢
K = 0 . (2.15)

The solution is

Ki = Ni

✓
1 +

q2

4⇢2
ln(q2/⇢2)

◆
, (i = S, V,A), (2.16)

where Ni are normalization constants that are not fixed by the linearized equation of motion.

Substituting these solutions back into the action gives the scalar correlator ⇧SS , the vector

correlator ⇧V V and axial vector correlator ⇧AA. Performing the usual matching to the UV

gauge theory requires us to set [6, 15]

N2
S =

d(R) Nf (R)

48⇡2
, N2

V = N2
A =

g25 d(R) Nf (R)

48⇡2
. (2.17)

where d(R) is the dimension of the representation (note here again we write for Weyl fermions

so for 2 Dirac flavours Nf = 4) .

The vector meson decay constant is then given by the overlap term between the meson

and the external source

F 2
V =

Z
d⇢

1

g25
@⇢

⇥
�⇢3@⇢V

⇤
KV (q

2 = 0) . (2.18)

Note here that we are using the notation common in the AdS/QCD literature that the

dimension two coupling between the meson and its source is called F 2
V . It is common in the

phenomenology and lattice literature to call this quantity F̃V MV (see for example [61]). Below

where we compare to lattice results we must fix this choice. We have converted the lattice

results to our definition of FV in eq. (2.18) which seems a purer statement of the strength of

that coupling independent of the prediction of the mass. The axial meson normalization and

decay constant are given by eq. (2.13) and eq. (2.18) with replacement V ! A.

The pion decay constant can be extracted from the expectation that ⇧AA = f2
⇡ , with

f2
⇡ =

Z
d⇢

1

g25
@⇢

⇥
⇢3@⇢KA(q

2 = 0)
⇤
KA(q

2 = 0) . (2.19)

To compute the pion mass in the presence of a quark mass we should formally work in

the A⇢ = 0 gauge and write Aµ = Aµ? + @µ�. The � and ⇡ fields (the phase of X) mix to
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Baryons
will discuss below could reasonable be modelled by simply placing a fermion in the bulk. The

work of [10] has already trialled this in AdS/QCD with some phenomenological success.

In appendix A we provide a full derivation for placing a fermion in first AdS and then

the Dynamic AdS/YM background. Here we simply summarize the results. We add to the

action

S = Sboson + S1/2 , with S1/2 =

Z
d5x ⇢3  ̄

�
/DAAdS �m

�
 . (2.24)

The four component fermion satisfies the second order equation

✓
@2⇢ + P1@⇢ +

M2
B

r4
+ P2

1

r4
�

m2

r2
� P3

m

r3
�⇢

◆
 = 0 , (2.25)

where MB is the baryon mass and the pre-factors are given by

P1 =
6

r2
(⇢+ L0 @⇢L0) ,

P2 = 2
�
(⇢2 + L2

0)L@
2
⇢L0 + (⇢2 + 3L2

0)(@⇢L0)
2 + 4⇢L0@⇢L0 + 3⇢2 + L2

0

�
,

P3 = (⇢+ L0 @⇢L0) .

(2.26)

In five dimensions for the states of UV dimension 9/2, as appropriate for a three quark state,

the bulk fermion mass is m = 5/2.

The four component spinor can then be written in terms of eigenstates of �⇢ such that

 =  +↵++ �↵� where �⇢↵± = ±↵±. The equation then becomes two equations, one for  +

and one for  �, obtained by replacing �⇢ in eq. (2.25) by ±1 respectively. The two equations

are though copies of the same dynamics with explicit relations between the solutions as we

describe in Appendix A. Thus one need solve one only and from the UV boundary behaviour

extract the source J and operator O values. The UV asymptotic form of the solutions are

given by

 + ⇠ J
p
⇢+O

MB

6
⇢�11/2 ,

 � ⇠ J
MB

4

1
p
⇢
+O⇢�9/2 .

(2.27)

The full solution must be found numerically - here we use the D3/probe D7 system as a

guide to impose the IR boundary conditions

 +(⇢ = LIR) = 1, @⇢ +(⇢ = LIR) = 0 ,

 �(⇢ = LIR) = 0, @⇢ �(⇢ = LIR) =
1

LIR
.

(2.28)

Note that we impose these boundary conditions at ⇢ = LIR rather than at ⇢ = 0 as in the

supersymmetric case in [54, 55].
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In appendix A we provide a full derivation for placing a fermion in first AdS and then

the Dynamic AdS/YM background. Here we simply summarize the results. We add to the

action

S = Sboson + S1/2 , with S1/2 =

Z
d5x ⇢3  ̄

�
/DAAdS �m

�
 . (2.24)

The four component fermion satisfies the second order equation

✓
@2⇢ + P1@⇢ +

M2
B

r4
+ P2

1

r4
�

m2

r2
� P3

m

r3
�⇢

◆
 = 0 , (2.25)

where MB is the baryon mass and the pre-factors are given by

P1 =
6

r2
(⇢+ L0 @⇢L0) ,

P2 = 2
�
(⇢2 + L2

0)L@
2
⇢L0 + (⇢2 + 3L2

0)(@⇢L0)
2 + 4⇢L0@⇢L0 + 3⇢2 + L2

0

�
,

P3 = (⇢+ L0 @⇢L0) .

(2.26)

In five dimensions for the states of UV dimension 9/2, as appropriate for a three quark state,

the bulk fermion mass is m = 5/2.

The four component spinor can then be written in terms of eigenstates of �⇢ such that

 =  +↵++ �↵� where �⇢↵± = ±↵±. The equation then becomes two equations, one for  +

and one for  �, obtained by replacing �⇢ in eq. (2.25) by ±1 respectively. The two equations

are though copies of the same dynamics with explicit relations between the solutions as we

describe in Appendix A. Thus one need solve one only and from the UV boundary behaviour

extract the source J and operator O values. The UV asymptotic form of the solutions are

given by

 + ⇠ J
p
⇢+O

MB

6
⇢�11/2 ,

 � ⇠ J
MB

4

1
p
⇢
+O⇢�9/2 .

(2.27)

The full solution must be found numerically - here we use the D3/probe D7 system as a

guide to impose the IR boundary conditions

 +(⇢ = LIR) = 1, @⇢ +(⇢ = LIR) = 0 ,

 �(⇢ = LIR) = 0, @⇢ �(⇢ = LIR) =
1

LIR
.

(2.28)

Note that we impose these boundary conditions at ⇢ = LIR rather than at ⇢ = 0 as in the

supersymmetric case in [54, 55].
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In D3/D7 system some quark-gaugino-quark tri-fermion 
states are described by world volume fermions on the D7 – 
it does not seem unreasonable to include three quark 
states in this way therefore.

cf Brodsky, de Teramond
hep-th/0501022 [hep-th]

Plus our
1907.09489 [hep-th]



3 Two-flavour QCD

To demonstrate the Dynamic AdS/YM model and the role of HDOs, we begin with a study

of Nc = 3, Nf = 2 QCD. We first determine the vacuum of the theory for the massless theory

by finding the function L(⇢) using eq. (2.4). Then we compute the spectrum of the model by

looking at fluctuations, study the quark mass dependence and the n dependence of excited

states. Finally we consider introducing a cut o↵ where the theory runs to a perturbative

regime and include HDOs at that scale to improve the IR description.

The key input for any theory we study is the form of � we input in eq. (2.6). The formulae

for the one and two-loop coe�cients of the �-function and the one-loop anomalous dimension

for QCD are, with Nf the number of Weyl flavours in the fundamental and N̄f the number

in the anti-fundamental representations

b0 =
1

6⇡

�
11Nc � (Nf + N̄f )

�
,

b1 =
1

24⇡2

✓
34Nc

2
� 5Nc(Nf + N̄f )�

3

2

Nc
2
� 1

Nc
(Nf + N̄f )

◆
,

� =
3(Nc

2
� 1)

4Nc⇡
↵ .

(3.1)

We choose an initial value for ↵(µ = 1) = 0.65 for the numerical analysis but will set the

scale with the ⇢-meson mass below. The resulting running of �m2 in the Dynamic AdS/QCD

model is shown in fig. 1 on the left - the BF bound is violated close to the scale r = µ = 1.

We can now compute the vacuum for the theory by solving eq. (2.4) subject to the

boundary conditions in eq. (2.10). We solve the equation numerically and show the results

on the right in fig. 1 for di↵erent asymptotics of L(⇢) corresponding to di↵erent UV masses.

2 4 6 8 10
ρ0.0

0.5

1.0

1.5
L(ρ)

Figure 1: The Nc = 3, Nf = 2 QCD model: on the left we display the running of the AdS

scalar mass �m2 against log RG scale (we use µ =
p
⇢2 + L2 in the holographic model). On

the right we show the the vacuum solution for |X| = L(⇢) against ⇢. The 45� line is where

we apply the on mass shell IR boundary condition in eq. (2.10). The L(⇢) with a massless

UV quark has LIR = 0.43. The quark masses from top to bottom are 1, 0.75, 0.5, 0.25, 0.05,

0. Here units are set by ↵(⇢ = 1) = 0.65.
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QCD Dynamics – Nc=3, Nf=2, mq=0

3.1 The meson and baryon spectrum of QCD

To compute the meson masses, we must set g5 in eq. (2.1) by matching to the UV vector-vector

correlator in perturbative QCD

g25 =
48⇡2

Nc(Nf + N̄f )
. (3.2)

Having found the massless vacuum, we can now study the spectrum as described in

Section 2. We set all sources to zero in the UV. The results for the ground states in each

channel are shown at the top of Table 1 using the ⇢-meson mass to set the scale. Note we

begin to use notation we will use later - labelling the holographic model as AdS/SU(3) to

indicate the gauge group and 2F 2 F̄ to show there are 2 Weyl fermions in the fundamental

and two in the anti-fundamental representation (ie 2 Dirac fermions in the fundamental).

Comparing to the physically measured QCD values for the ground states, we see the ⇢- and

A-meson sectors are reasonably described but the pion decay constant is low (although we

have not yet included a UV quark mass). The � (S) mass is high, but possibly should be

compared to the f0(980) if the f0(500) is a pion bound state [63] (in which case it fits well).

The proton mass is clearly too high though.

We can compute the quark mass dependence of the meson masses also. We display the

results in fig. 2 including fits and comparisons to lattice data. The top two plots show that at

low quark mass the pion mass squared is linear in mq as required by the Gell-Mann-Oakes-

Renner relation whilst at larger mq the behaviour reverts to depending on m2
q as for the other

mesons. In the lower plot we show the other meson masses as a function of M2
⇡ . The lattice

Observables QCD AdS/SU(3) Deviation

(MeV) here’s the hidden text 2 F 2 F̄

M⇢ 775 775⇤ fitted

MA 1230 1183 - 4%

MS 500/990 973 +64%/-2%

MB 938 1451 +43%

f⇡ 93 55.6 -50%

f⇢ 345 321 - 7%

fA 433 368 -16%

M⇢,n=1 1465 1678 +14%

MA,n=1 1655 1922 +19%

MS,n=1 990 /1200-1500 2009 +64%/+35%

MB,n=1 1440 2406 +50%

Table 1: The predictions for masses and decay constants (in MeV) for Nf = 2 massless

QCD. The ⇢-meson mass has been used to set the scale (indicated by the *).

– 15 –

Scale fixed by V-
meson

Pattern sensible

Pion decay 
constant needs a 
mass term

Baryon mass 
high

Radial excitations 
scale wrongly – 
no string physics 
included2010.10279 [hep-ph]



Perfecting with HDOs

The weakly coupled gravity dual should only live 
between the red lines… probably we need HDOs 
at the UV scale to include matching effects…
and stringy effects in the gravity model….

2.4 Higher dimensional operators

Another key ingredient we wish to explore here is the inclusion of higher dimension quark

operators using Witten’s double trace prescription [40, 42]. This prescription amounts to

introducing a cut-o↵ at some scale ⇤UV in the gauge theory or an upper boundary in AdS

at ⇢ = ⇤UV . In the field theory for some operator O we include a “double trace” higher

dimensional operator (HDO) by

LUV = GO
†
O, , (2.29)

where G is a dimensionful coupling. Now were O to acquire a vacuum expectation value then

via eq. (2.29) there would be an e↵ective source at the boundary

J = GhO
†
i . (2.30)

Note that the analysis of [40, 42] shows that adding the HDO as a boundary term in AdS

and then minimizing the bulk and boundary action naturally reproduces eq. (2.30).

Until now we have considered a sourceless theory and in any computation of the back-

ground (L0(⇢)) or any fluctuation we have only allowed solutions where the appropriate source

vanish. For example, it is precisely this prescription that picks out discrete values of the bound

state masses. Now though we will allow all of the solutions with non-zero J and re-interpret

them as part of the source free theory but with the HDO present: asymptotically we read o↵

J ,O and then use eq. (2.30) to compute G. Now we can sort through these solutions and

find the masses of bound states which match the boundary condition for a particular G.

The operators we will consider in Dynamic AdS/YM, which we will explore below, are

g2S
⇤2
UV

|q̄q|2 ,
g2V
⇤2
UV

|q̄�µq|2 ,
g2A
⇤2
UV

|q̄�µ�5q|
2 ,

g2B
⇤5
UV

|qqq|2 , (2.31)

where the gi are dimensionless couplings.
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Observables QCD Dynamic AdS/QCD HDO coupling

(MeV) here’s the hidden text here’s the hidden text

MV 775 775 sets scale

MA 1230 1230 fitted by g2A = 5.76149

MS 500/990 597 prediction +20%/� 40%

MB 938 938 fitted by g2B = 25.1558

f⇡ 93 93 fitted by g2S = 4.58981

fV 345 345 fitted by g2V = 4.64807

fA 433 444 prediction +2.5%

MV,n=1 1465 1532 prediction +4.5%

MA,n=1 1655 1789 prediction +8%

MS,n=1 990/1200-1500 1449 prediction +46%/0%

MB,n=1 1440 1529 prediction +6%

Table 2: The spectum and the decay constants for two-flavour QCD with HDOs from fig. 7

used to improve the spectrum.

Clearly this is a much better description of the ground state QCD spectrum than in

Table 1 if only because we have tuned most of the parameters! fA is a prediction and lies

closer to the data than before. The scalar mass is also a prediction and here, where we

have interpreted the UV quark mass as the presence of g2S , the result has dropped closer

to the mass of the f0(500) resonance. The predictions for the first excited states’ masses,

the final four entries in the table, have all moved closer to the experimental values too -

possibly this means that the HDOs are including some of the stringy e↵ects the supergravity

approximation excludes. The mass of the first excited state of the scalar is quite far o↵ again,

as in section 3.1, suggesting that interpreting these states is di�cult. Overall though we

conclude that the improvement method used is sensible. In principle one could go further

and allow corrections to the UV matchings of the coupling g25 and the normalization of the

correlators in eq. (2.17) but then we would lose essentially all predictivity.

– 22 –

Pretty good… but 
we’ve lost some 
predictivity….



Proton/neutron mass still unconvincing

5

dimension of the three quark operator by allowing the
fermion mass to be r dependent. Using the relation be-
tween m and the dimension of the operator �, as well
as the one loop running result for a three quark operator,
we find that

�m = � = � 3

⇡
↵ (21)

The normalisation of the nucleon wave function is
Z

dr
r
3

(r2 + L2)1/2
 (r)2 =

1

2
(22)

Amending m with the running anomalous dimension
(21), we can solve (20) subject to the usual IR boundary
conditions. Then, tuning MB such that  vanishes in the
UV (the normalised wave function is plotted in fig.3), we
find that MB = 1.40M⇢ = 1.08 GeV, which is within
15% of the measured proton mass (938 MeV).

This result is smaller than we achieved in the hard wall
model in which the dimension of the three quark opera-
tor was fixed at � = 3. This is because the value of the
anomalous dimension � is greater in this model to the
extent that it violates the BF bound very close to the
chiral symmetry breaking scale. Such a violation within
a short region of r need not be su�cient to trigger an
instability. Instead, the contribution provided by the ‘ki-
netic’ derivative terms in the r direction may counter
mass terms in the field potential, leading to an overall
solution that remains stable.

With the stability of the solution assumed, the phe-
nomenological e↵ect of the running dimension is to drive
the mass of the bound state down. The fact that the one
loop result for � reproduces a nucleon mass that is closer
to the physical value suggests that a large running of the
anomalous dimension may indeed be present. Of course,
one could tune � in the non-perturbative regime in a
way that reproduces the observed mass exactly, though
without an analytical understanding of this phenomena it
would be di�cult to motivate any kind of precise ansatz.

C. Strange Baryon Masses

We next turn our attention to QCD bound states con-
taining strange quarks, such as the ⇤ baryon. For states
containing yet heavier quarks, we expect that the run-
ning anomalous dimension has a negligible impact on the
bound state masses. This is because the dimension of
the quark operator will only run as far as its mass scale
which, for those heavier than the strange quark, is large
enough to suppress the e↵ects the light quarks see from
the sudden pole in the QCD coupling.

In top-down models with flavour branes, the strange and
light quark branes will separate in the bulk space and
mixed heavy-light states would appear as complicated
stringy states tied between them [20]. We do not try to
reproduce this structure here. The key point is that the
bound state operators see the L(r) functions associated
with the quarks they contain, thus making them aware
of the constituent’s masses. A simple phenomenological
approach is to write

L
2 ! fudL

2
ud + fsL

2
s (23)

where fi is the fraction of the quarks of the type i in the
hadron.

For example, we consider a uds ⇤ bound state whose
equation of motion follows the same general form as that
of the nucleon (20) but with an amended field structure
L
2 ! 2

3L
2
ud + 1

3L
2
s reflecting the composition of the ⇤

baryon in terms of first and second generational quarks.
The distinction made is that, for the scalar dual to the
strange quark Ls, the solution asymptotes to a non-zero
bulk mass in the UV limit (fig.2). This field redefinition
changes both the pre-factors of the equations of motion
and the deformed AdS radius, which is now given by
(r2 + 2

3L
2
ud +

1
3L

2
s)

1/2.

Solving the equation of motion for the ⇤ returns a wave
function solution  ⇤ which vanishes in the UV limit for a
tuned baryon mass of M⇤ = 1.49M⇢ = 1.15 GeV (fig.3).
This prediction is within 3% of the measured ⇤ mass
(1115 MeV).

Moving to heavier bound states, we can once again
amend the field structure and deformed AdS radius to
describe particles comprised of two strange quarks, such
as uss. In this case, we take (23) with fud = 1/3 and
fs = 2/3. Solving a similar equation of motion as with
the ⇤, we find a ⌅ mass of 1.22 GeV, which is within
8% of its measured value (1315 MeV). Again, the run-
ning anomalous dimension of the quark fields is key to
producing these closer fits with experimental data.

V. SEXAQUARKS IN ADS/QCD

Given the apparent importance of running anomalous
dimensions in the baryonic sector, it is interesting to
look for other light quark states in which the same
mechanism might be present. Looking towards novel
forms of matter, it has been suggested that the spectrum
of QCD may include a deeply bound six-quark state
(see for example [16, 17, 21] to motivate this and review
the phenomenology). The uuddss state forms a colour
singlet that is antisymmetric in colour, flavour and spin,
endowing it with a spatially symmetric wave function.
Where the state is considered as a loosely bound state

Add in the anomalous dimension for 
the qqq operator…

5

dimension of the three quark operator by allowing the
fermion mass to be r dependent. Using the relation be-
tween m and the dimension of the operator �, as well
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one could tune � in the non-perturbative regime in a
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without an analytical understanding of this phenomena it
would be di�cult to motivate any kind of precise ansatz.

C. Strange Baryon Masses

We next turn our attention to QCD bound states con-
taining strange quarks, such as the ⇤ baryon. For states
containing yet heavier quarks, we expect that the run-
ning anomalous dimension has a negligible impact on the
bound state masses. This is because the dimension of
the quark operator will only run as far as its mass scale
which, for those heavier than the strange quark, is large
enough to suppress the e↵ects the light quarks see from
the sudden pole in the QCD coupling.

In top-down models with flavour branes, the strange and
light quark branes will separate in the bulk space and
mixed heavy-light states would appear as complicated
stringy states tied between them [20]. We do not try to
reproduce this structure here. The key point is that the
bound state operators see the L(r) functions associated
with the quarks they contain, thus making them aware
of the constituent’s masses. A simple phenomenological
approach is to write
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where fi is the fraction of the quarks of the type i in the
hadron.

For example, we consider a uds ⇤ bound state whose
equation of motion follows the same general form as that
of the nucleon (20) but with an amended field structure
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Solving the equation of motion for the ⇤ returns a wave
function solution  ⇤ which vanishes in the UV limit for a
tuned baryon mass of M⇤ = 1.49M⇢ = 1.15 GeV (fig.3).
This prediction is within 3% of the measured ⇤ mass
(1115 MeV).

Moving to heavier bound states, we can once again
amend the field structure and deformed AdS radius to
describe particles comprised of two strange quarks, such
as uss. In this case, we take (23) with fud = 1/3 and
fs = 2/3. Solving a similar equation of motion as with
the ⇤, we find a ⌅ mass of 1.22 GeV, which is within
8% of its measured value (1315 MeV). Again, the run-
ning anomalous dimension of the quark fields is key to
producing these closer fits with experimental data.

V. SEXAQUARKS IN ADS/QCD

Given the apparent importance of running anomalous
dimensions in the baryonic sector, it is interesting to
look for other light quark states in which the same
mechanism might be present. Looking towards novel
forms of matter, it has been suggested that the spectrum
of QCD may include a deeply bound six-quark state
(see for example [16, 17, 21] to motivate this and review
the phenomenology). The uuddss state forms a colour
singlet that is antisymmetric in colour, flavour and spin,
endowing it with a spatially symmetric wave function.
Where the state is considered as a loosely bound state
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4 Mass spectrum

This has been a worth while exercise on its own. I had understood before that in the limit where �′
(the rate of change of the anomalous dimension) vanishes that the sigma meson becomes massless
- a Goldstone boson of spontaneously broken scale invariance (a dilaton). The way that happens is
that in that limit the equation of motion becomes degenerate with that for the pion. Here I’ve learnt
that is true in the presence of a mass also. So the ultimate walking limit is that the � is precisely
degenerate with the pions. I show this below by computing the � spectrum for Nf = 3,7,11 and
seeing the linearity with M2

⇡ give way to Goldstone like behaviour.
For Nf = 3 the s� mass is linear with M2

⇡ :

Figure 1. M⇢ (blue - fit line is M⇢ = 0.99 + 0.374M2
⇡), M⇡ (red) and M� (purple - fit line is M� =

0.947 + 0.271M2
⇡) against M2

⇡ for Nc = 3,Nf = 3 theory.

Figure 2. F⇢ (blue - fit line is F⇢ = 0.453+ 0.155M2
⇡), f⇡ (red - fit line is 0.0924+ 0.15M2

⇡) and F� (purple

- fit line is F� = 0.72 + 0.138M2
⇡) against M2

⇡ for Nc = 3,Nf = 3 theory.
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For Nf = 7 the linear fit for both the � mass and decay constant are imperfect.

Figure 3. M⇢ (blue - fit line is M⇢ = 1.03 + 0.518M2
⇡), M⇡ (red) and M� (purple - fit line is M� =

0.588 + 0.562M2
⇡) against M2

⇡ for Nc = 3,Nf = 7 theory.

Figure 4. F⇢ (blue - fit line is F⇢ = 0.582 + 0.278M2
⇡), f⇡ (red - fit line is 0.13 + 0.16M2

⇡) and F� (purple -

fit line is F� = 1.45 + 0.109M2
⇡) against M2

⇡ for Nc = 3,Nf = 7 theory.
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At Nf = 11 the linear fit is clearly inappropriate and the � is almost degenerate with the pion (the
points are slightly above the line). I don’t have a clear understanding of why F� grows so much
(although we’ve observed it before so it’s not a coding issue).
The ⇢ meson mass is not really linear in this case either.

Figure 5. M⇢ (blue - fit line is M⇢ = 1.17 + 1.18M2
⇡), M⇡ (red) and M� (purple) against M2

⇡ for Nc =
3,Nf = 11 theory.

Figure 6. F⇢ (blue - fit line is F⇢ = 0.735+0.736M2
⇡), f⇡ (red - fit line is 0.208+0.224M2

⇡) and F� (purple)

against M2
⇡ for Nc = 3,Nf = 11 theory.
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SU(3) with Nf=3,7,11 using two loop beta function 
– mp, mr, ms vs mp

Rho mass 
at zero 
quark mass  
used to set 
scale

Plots by Anja Alfano



In the limit where the gradient of the 
running vanishes the pion and sigma 
equations are analytically identical

In the probe models the quark 
physics knows nothing of the 
geometry at smaller r… where the 
quarks are decoupled and running is 
that of pure YMs…

If I fluctuate the brane I just move 
the YMs running region to lower r 
though still invisible to the 
fluctuation.

… where the pure glue running is 
very non-conformal…

In Kiritsis & Jarvinen model their fields all extend to r=0 and so they don’t see a 
dilaton in the same limit…. who is decoupling correctly?

Mixing with glueballs?



4.3 � Plots for all Nc = 3
The � masses behave nicely as we increase Nf - they pull down becoming degenerate with the pions
in the limit, note that the only lines that don’t seem to asymptote to the same value at high MUV

are those with a fixed infra-red point, i.e. Nf = 9,10,11.

Figure 19. M� plots for Nf = 3, ...,11, M⇡ in red against M2
⇡ for Nc = 3 theories.

For the decay constants, there is a gradual lift, more pronounced at low MUV , until the Nf = 11
case where the shape flips (the behaviour of the decay constant is however, susceptible to changes
in the value of ↵ in the code, increasing the value of ↵ will flip the Nf = 11 F� curve back to a
negative gradient, this has been seen with a value of ↵ = 0.95 as opposed to our default value of
0.65).

Figure 20. F� plots against M2
⇡ for Nc = 3 theories.
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SU(3) with Nf=3…11 - ms vs mp





(including the case of split masses for the left and right handed fields) compatible with

leaving a light composite Higgs four-plet. We will include NJL interactions competing with

the mass term to favour an alternative vacuum. We see a rotation from the composite Higgs

vacuum to technicolour-like vacuum as observed field theoretically in [37, 38]. Here one can

see that the intermediate regime between the composite Higgs and technicolour theories is

very fine tuned in the coupling strength of the NJL interaction. The holographic model

originates from large Nc and does not naively include the U(1)A anomaly as we mentioned

above. The anomaly has been included holographically in [57] and could be included in

future work. In practice this simply means our model will have one extra pseudo-Goldstone

boson that in the true model will be more massive — we will note this with our results

below.

At each stage we predict the bound state meson spectrum and decay constants. These

computations show the power of the holographic model to include both the base chiral

symmetry breaking gauge dynamics and that from NJL operators, but we also hope the

spectrum predictions will help phenomenological searches for composite Higgs models. To

date there has been some lattice work on these models [43, 58–62] although the lattice

errors remain sizable. At this point the lattice results and our holographic predictions

both share the same basic pattern of masses and couplings — we hope that further more

precise interplay between the lattice and holographic predictions will result in the future.

2 The gauge theory

We will consider the dynamics of an Sp(2Nc) gauge theory with 2 Dirac fundamentals with

the Lagrangian [36–38]

L = �
1

4
G

µ⌫
Gµ⌫ + i ̄iD/ i �  ̄iMij j . (2.1)
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2.1 U(4) global symmetry

Given the pseudo-real nature of the gauge theory we can write the fermion fields in terms

of four two-component spinors and it is helpful to pick the naming convention

 i =

0

BBBBBB@

U
C

L

D
C

L

DR

UR

1

CCCCCCA
, (2.2)

where we have written everything as right handed spinors by conjugating the left handed

spinors.

The theory has a U(4) global symmetry with generators

T
1�3 =

1

2
p
2

0

@⌧i 0

0 ⌧i

1

A , T
4�6 =

1

2
p
2

0

@⌧i 0

0 �⌧i

1

A , (2.3)

for i = 1, 2, 3, ⌧i are the Pauli matrices and

T
7/8 =

1

2
p
2

0

BBBBBB@

0 0 0 �i

0 0 ±i 0

0 ⌥i 0 0

i 0 0 0

1

CCCCCCA
, T

9/10 =
1

2
p
2

0

BBBBBB@

0 0 �i 0

0 0 0 ⌥i

i 0 0 0

0 ±i 0 0

1

CCCCCCA
, (2.4)

T
11/12 =

1

2
p
2

0

BBBBBB@

0 0 1 0

0 0 0 ±1

1 0 0 0

0 ±1 0 0

1

CCCCCCA
, T

13/14 =
1

2
p
2

0

BBBBBB@

0 0 0 1

0 0 ±1 0

0 ±1 0 0

1 0 0 0

1

CCCCCCA
, (2.5)

T
15 =

1

2
p
2

0

@ 2 0

0 � 2

1

A , T
16 =

�1

2
p
2

0

@ 2 0

0 2

1

A . (2.6)

Here if we were to consider embedding the theory in the standard model we might promote

the left handed U,D doublet to be in the fundamental representation of the gauged SU(2)L

of the weak force. The corresponding generators are then (T 1+T
4)/

p
2, (T 2+T

5)/
p
2 and

(T 3 + T
6)/

p
2. We will always consider this gauging as a neglectably weak perturbation

on the strong gauge dynamics.
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2.3 Parametrizing fermion bilinear operators

We will be interested in bound states of two fermions in the theory and also condensation

of bilinear operators. It is helpful to parametrize the anti-symmetric bi-fermion operators

as

Xf =

0

BBBBBB@

0 � �Q5 + iS � i⇡5 Q2 � ⇡2 + i⇡1 � iQ1 �Q4 + ⇡4 + iQ3 � i⇡3

�� +Q5 + i⇡5 � iS 0 Q4 + ⇡4 + iQ3 + i⇡3 Q2 + ⇡2 + iQ1 + i⇡1

⇡2 �Q2 + iQ1 � i⇡1 �Q4 � ⇡4 � iQ3 � i⇡3 0 � +Q5 + iS + i⇡5

Q4 � ⇡4 + i⇡3 � iQ3 �Q2 � ⇡2 � iQ1 � i⇡1 �� �Q5 � iS � i⇡5 0

1

CCCCCCA
.

(2.9)

X transforms under the U(4) flavour symmetry ⌦ as

Xab ! X
0
cd

= ⌦ca⌦dbXab , X ! X
0 = ⌦X⌦T

. (2.10)

2.4 Fermion condensation

The expectation is that when these gauge theories reach strong coupling, as in QCD, bi-

fermion operator condensation will occur. We assume the theories do not break their own

colour groups so the bilinear must be a colour singlet which is always anti-symmetric in

colour indices for these theories. We likewise assume the theory does not break Lorentz

invariance and so the angular momentum wave function must be antisymmetric. The

conclusion then is that by Fermi-Dirac statistics the condensate that forms must be anti-

symmetric in flavour space also. For example the 4⇥4 matrix X might take the form (here

the field � has acquired a vacuum expectation value (vev))

X =

0

BBBBBB@

0 L0 0 0

�L0 0 0 0

0 0 0 L0

0 0 �L0 0

1

CCCCCCA
. (2.11)

This vev is invariant under an Sp(4) sub-group of U(4). This can be seen explicitly by look-

ing for invariance under eq. (2.10). The broken generators are T i for i = 8, 10, 11, 14, 15, 16.

U(4) has 16 generators whilst Sp(4) has 10. There are 6 broken generators and there will

be 6 Goldstone bosons — the scalars ⇡i for i = 1, ..., 5 and S. The S state would be made

massive by the anomaly were it included.

Equally one can consider an equivalent vacuum where Q4 acquires a vev

XQ0 =

0

BBBBBB@

0 0 0 �Q0

0 0 Q0 0

0 �Q0 0 0

Q0 0 0 0

1

CCCCCCA
. (2.12)
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X transforms under the U(4) flavour symmetry ⌦ as

Xab ! X
0
cd

= ⌦ca⌦dbXab , X ! X
0 = ⌦X⌦T

. (2.10)

2.4 Fermion condensation

The expectation is that when these gauge theories reach strong coupling, as in QCD, bi-

fermion operator condensation will occur. We assume the theories do not break their own

colour groups so the bilinear must be a colour singlet which is always anti-symmetric in

colour indices for these theories. We likewise assume the theory does not break Lorentz

invariance and so the angular momentum wave function must be antisymmetric. The

conclusion then is that by Fermi-Dirac statistics the condensate that forms must be anti-

symmetric in flavour space also. For example the 4⇥4 matrix X might take the form (here

the field � has acquired a vacuum expectation value (vev))

X =

0

BBBBBB@

0 L0 0 0

�L0 0 0 0

0 0 0 L0

0 0 �L0 0

1

CCCCCCA
. (2.11)

This vev is invariant under an Sp(4) sub-group of U(4). This can be seen explicitly by look-

ing for invariance under eq. (2.10). The broken generators are T i for i = 8, 10, 11, 14, 15, 16.

U(4) has 16 generators whilst Sp(4) has 10. There are 6 broken generators and there will

be 6 Goldstone bosons — the scalars ⇡i for i = 1, ..., 5 and S. The S state would be made

massive by the anomaly were it included.

Equally one can consider an equivalent vacuum where Q4 acquires a vev

XQ0 =

0

BBBBBB@

0 0 0 �Q0

0 0 Q0 0

0 �Q0 0 0

Q0 0 0 0

1

CCCCCCA
. (2.12)
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U(4) -> Sp(4). With  5 (6 - anomaly) (pseudo-)Goldstones of which pi (2,2) is ready 
to be made into a composite higgs

XQ0 can be transformed to the form in eq. (2.11) by X = UXQ0U
T with

U =
1
p
2

0

BBBBBB@

0 �1 0 1

1 0 �1 0

0 1 0 1

1 0 1 0

1

CCCCCCA
. (2.13)

Again U(4) flavour is broken to Sp(4) and there are 6 Goldstone bosons (now Q1–Q5 and

S).

2.5 Mass terms

Fermion mass terms can be introduced in the same patterns as the vevs discussed already

and they will tend to align the vacuum to the mass pattern. Thus for example the two

condensate patterns above would be favoured respectively by the mass matrices

M =

0

BBBBBB@

0 m1 0 0

�m1 0 0 0

0 0 0 m2

0 0 �m2 0

1

CCCCCCA
, M =

0

BBBBBB@

0 0 0 �m1

0 0 m2 0

0 �m2 0 0

m1 0 0 0

1

CCCCCCA
. (2.14)

In each case with m1 = m2 the flavour symmetry breaking pattern U(4)!Sp(4) is explicit

and the Goldstone modes will become pseudo-Goldstones with small mass squared pro-

portional to the fermion mass. In the mass split case m1 6= m2 the global symmetry is

explicitly broken to SU(2)L⇥ SU(2)R.

Below we will find it useful that the mass or vev matrix

X =

0

BBBBBB@

0 L0 0 �Q0

�L0 0 Q0 0

0 �Q0 0 L0

Q0 0 �L0 0

1

CCCCCCA
, (2.15)

can be placed, by a transformation X ! UXU
T , to the forms

X !

0

BBBBBB@

0 L0 +Q0 0 0

�L0 �Q0 0 0 0

0 0 0 L0 �Q0

0 0 �L0 +Q0 0

1

CCCCCCA
, using U =

1
p
2

0

BBBBBB@

0 �1 0 1

1 0 �1 0

0 1 0 1

�1 0 �1 0

1

CCCCCCA
, (2.16)
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X !

0

BBBBBB@

0 L0 +Q0 0 0

�L0 �Q0 0 0 0

0 0 0 �L0 +Q0

0 0 L0 �Q0 0

1

CCCCCCA
, using U =

1
p
2

0

BBBBBB@

0 �1 0 1

1 0 �1 0

0 1 0 1

1 0 1 0

1

CCCCCCA
. (2.17)

2.6 Composite Higgs to Technicolour

The vacua discussed in eq. (2.11) and eq. (2.12) are formally equivalent in the pure strongly

coupled massless system. If though we were to gauge SU(2)L in the basis eq. (2.2) then

the first case eq. (2.11) leaves the weak force unbroken whilst the second eq. (2.12) breaks

it (in a QCD-like or technicolour-like pattern). The e↵ective potential of the theory would

prefer not to break gauge fields and the first vev would be preferred [63].

This case, which can also be favoured by the electroweak preserving masses shown on

the left in eq. (2.14), serves as the basis of some composite Higgs models. The Goldstone

⇡1�⇡4 fields are doublets of SU(2)L and SU(2)R and in these models are interpreted as the

Higgs (with top loops generating an e↵ective potential that breaks electroweak symmetry

[39, 40]).

Alternatively it is possible to favour the technicolour like vev of eq. (2.12) by including

NJL four-fermion interactions. The Lagrangian terms

L =
g
2
s

⇤2
UV

( ̄LURŪR L +  ̄LDRD̄R L), (2.18)

where ⇤ is the UV cut-o↵ and gs the dimensionless NJL coupling for this scalar operator

squared, preserve electroweak symmetry but support the condensates in eq. (2.12). These

operators would naturally be present for example if the gauge group were SU(2)=Sp(2)

and embedded at higher scales into an SU(N) theory where the pseudo-reality condition is

not present.

In [36–38] the transition between these limits was explored field theoretically. In this

paper we will study the strong dynamics using holography including the NJL terms and

masses. We will be able to make predictions for the masses of mesonic bound states of the

theory as a function of the fermion masses and NJL coupling.
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2.3 Parametrizing fermion bilinear operators

We will be interested in bound states of two fermions in the theory and also condensation

of bilinear operators. It is helpful to parametrize the anti-symmetric bi-fermion operators

as

Xf =

0

BBBBBB@

0 � �Q5 + iS � i⇡5 Q2 � ⇡2 + i⇡1 � iQ1 �Q4 + ⇡4 + iQ3 � i⇡3

�� +Q5 + i⇡5 � iS 0 Q4 + ⇡4 + iQ3 + i⇡3 Q2 + ⇡2 + iQ1 + i⇡1

⇡2 �Q2 + iQ1 � i⇡1 �Q4 � ⇡4 � iQ3 � i⇡3 0 � +Q5 + iS + i⇡5

Q4 � ⇡4 + i⇡3 � iQ3 �Q2 � ⇡2 � iQ1 � i⇡1 �� �Q5 � iS � i⇡5 0

1

CCCCCCA
.

(2.9)

X transforms under the U(4) flavour symmetry ⌦ as

Xab ! X
0
cd

= ⌦ca⌦dbXab , X ! X
0 = ⌦X⌦T

. (2.10)

2.4 Fermion condensation

The expectation is that when these gauge theories reach strong coupling, as in QCD, bi-

fermion operator condensation will occur. We assume the theories do not break their own

colour groups so the bilinear must be a colour singlet which is always anti-symmetric in

colour indices for these theories. We likewise assume the theory does not break Lorentz

invariance and so the angular momentum wave function must be antisymmetric. The

conclusion then is that by Fermi-Dirac statistics the condensate that forms must be anti-

symmetric in flavour space also. For example the 4⇥4 matrix X might take the form (here

the field � has acquired a vacuum expectation value (vev))

X =

0

BBBBBB@

0 L0 0 0

�L0 0 0 0

0 0 0 L0

0 0 �L0 0

1

CCCCCCA
. (2.11)

This vev is invariant under an Sp(4) sub-group of U(4). This can be seen explicitly by look-

ing for invariance under eq. (2.10). The broken generators are T i for i = 8, 10, 11, 14, 15, 16.

U(4) has 16 generators whilst Sp(4) has 10. There are 6 broken generators and there will

be 6 Goldstone bosons — the scalars ⇡i for i = 1, ..., 5 and S. The S state would be made

massive by the anomaly were it included.

Equally one can consider an equivalent vacuum where Q4 acquires a vev

XQ0 =

0

BBBBBB@

0 0 0 �Q0

0 0 Q0 0

0 �Q0 0 0

Q0 0 0 0

1

CCCCCCA
. (2.12)
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NJL operators 
favour 
technicolour 
breaking…



A holographic model has 12 real scalars (X) and 16 U(4) gauge fields in the bulk…

You need a non-abelian DBI – X is a flavour matrix with all terms having a flavour 
trace in the action…

We can see the “rotation” from composite higgs to technicolour as the NJL operators 
go through their critical value
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(b) M2
f , f = ⇡1245, S+, S�

Figure 9: Scalar bound states’ masses vary with increasing scalar NJL coupling g
2
s , with

gauge group SU(2), B = 0.1, mL = 0.12MV0 , ⇤UV = 12.1MV0 .

eq. (6.1). Crucially Q5 does not see the NJL interaction in its UV boundary conditions

whilst Q1,2,3 do. This will split the degeneracy of these four states, even though they

share the same equation of motion, into a triplet and a singlet reflecting that the NJL

term explicitly violates the SU(2) group with generators T
7,12,13. The triplet and singlet

are characterised by their SU(2)V representations only. Note that for all the other scalar

states and all the vector states we still require that they vanish in the UV of the bulk.

Being careful to take into account the above issues, we can now compute the bound

state spectrum as a function of g2s using our solutions for L0(⇢) and Q(⇢). We will name

the states according to the basis eq. (6.1) and the fluctuations written in that basis as

eq. (2.9). We display the results for the scalar masses in figure 9 for a particular set of

parameters listed in the caption.

The main features of the results for the scalar sector are as follows. For g
2
s below

the critical value only the Q1,2,3,4 fields see the NJL interaction (through the boundary

conditions on their masses in the bulk). These fields’ masses fall to zero at the critical

coupling as their e↵ective potential readies to become unstable to a Q vev above the

critical coupling.

Above the critical coupling Q1,2,3 are true Goldstone bosons of the breaking of the

axial SU(2) symmetry group. This can be seen directly since they obey eq. (5.5) with

L1 = Lp and L6 = Lm and the Q1,2,3 fields have Goldstone solutions take the form of the

background Q vev which correctly reproduces the UV value of g2s of the background. Q4,

which is the sigma like field for the technicolor breaking pattern, grows sharply in mass

– 34 –

The rotation is of course very sharp (here a 10 TeV cut off for the NJL)
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Multiple Mass Scales
In theories with two different representations of fermions the BF bound 
violation point (g=1) can be very separated

Eg SU(5) with one two-index symmetric rep (15) + Nf=15 fundamentals

4

�0(LIR) = 0, and then vary ⇡(LIR) and q2 = �M2
⇡ to

find solutions where both �,⇡ vanish in the UV. This is
numerically very intensive. Below for the non-zero quark
mass cases, we will neglect the axial meson field to sim-
plify the analysis. When substituting the lower equation
of (19) into the upper one, we find

@⇢
�
⇢3 L2

0 @⇢⇡
�
+M2

⇡
⇢3 L2

0

r4
(⇡ � �) = 0 . (20)

We then assume � ⌧ ⇡ and neglect the mixing, such that
there is only the single equation for ⇡ to solve as for the
other fluctuations. This is the natural description of the
pion mass in the D3/probe D7 system before we added
the axial field by hand. As we will see, the results below
suggest that this is a sensible approximation.

III. Nc AND Nf
f DEPENDENCE IN THE

MASSLESS THEORY
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15 condenses first… then we 
decouple them from the running…

There’s a factor of 15 between the 
scales…

But in the holographic model the 
walking at the high scale reduces the 
15s IR mass and the gap is only 3ish… 

(It lives with light BF bound violation)
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�0(LIR) = 0, and then vary ⇡(LIR) and q2 = �M2
⇡ to

find solutions where both �,⇡ vanish in the UV. This is
numerically very intensive. Below for the non-zero quark
mass cases, we will neglect the axial meson field to sim-
plify the analysis. When substituting the lower equation
of (19) into the upper one, we find

@⇢
�
⇢3 L2

0 @⇢⇡
�
+M2

⇡
⇢3 L2

0

r4
(⇡ � �) = 0 . (20)

We then assume � ⌧ ⇡ and neglect the mixing, such that
there is only the single equation for ⇡ to solve as for the
other fluctuations. This is the natural description of the
pion mass in the D3/probe D7 system before we added
the axial field by hand. As we will see, the results below
suggest that this is a sensible approximation.
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Fig 16: Mass spectra for the SU(5) theory, ⇢ mesons in
blue (symmetric) and yellow (fundamental), � mesons

in green (symmetric) and orange (fundamental).

Fig 16: Decay constants for the SU(5) theory, ⇢ mesons
in blue (symmetric) and yellow (fundamental), �

mesons in green (symmetric) and orange
(fundamental), axials in purple (symmetric) and brown

(fundamental) and pions in cyan (symmetric) and
yellow (fundamental).
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Thermal theory should 
have chiral symmetry 
breaking in only one 
sector…

Are these theories too 
walking to study on the 
lattice?

The spectrum against Nf of the 5

Confinement is below the 5 scale?





Summary
The D3/probe D7 system in holography is a remarkably simple 
calculator of quark physics in a strongly coupled gauge theory 
and ties chiral symmetry breaking to the running of the 
anomalous dimension of qq…

We’ve constructed simple toy models of ANY non-
supersymmetric gauge + fermion system…. 

Model contains a dilaton that becomes degenerate with the pion 
in the walking limit… mass halves at Nf=8

Sp(2Nc) composite higgs models… spectrum computations as 
rotate CH to TC…

Multi-scale theories… two reps can have ~3 difference in chiral 
symmetry breaking scale – splits from confinement…


