Holographic light dilaton at the conformal edge

Deog Ki Hong (Pusan Nat'l Univ.)

Dilaton Dynamics - from Theory to Applications Higgs center, University of Edinburgh (June 26 -28, 2024)

Introduction

Near conformal dynamics conformal window

Light dilaton at conformal edge

Holographic light dilaton

Conclusion conclusion

1. Introduction

Near conformal dynamics conformal window

Near conformal dynamics

For certain sets of N_c and N_f, some gauge theories might flow into an IR-fixed point (Banks-Zaks theory, 1982):

▶ Near the IR fixed point ($E \approx \Lambda_*$), the theory is approximately conformal. If the scale symmetry is broken spontaneously at $\Lambda_{\rm SB}$ near IR fixed point, the theory will rest very close to the conformal edge, since $\beta(\alpha) \approx 0$, until fermions are decoupled.

Near conformal dynamics conformal window

Near conformal dynamics

Near conformal dynamics conformal window

Near conformal dynamics

The near conformal dynamics may be realized in a deformed BZ theory, having the dynamical generation of fermion mass.

The theory can be slightly deformed or $\alpha_c \approx \alpha_*$ in the large n_f limit or introducing additional interactions (DKH 2018).

Introduction

Light dilaton at conformal edge Holographic light dilaton Conclusion

Near conformal dynamics conformal window

Near Conformal Window

 Conformal windows from the beta-function of SU(N) (Rytov+Sannino 2007) or from the anomalous dimensions of ψψ (Kim+DKH+Lee, PRD '20)

Introduction

Light dilaton at conformal edge Holographic light dilaton Conclusion Near conformal dynamics conformal window

Spectrum Near Conformal Window

• SU(3) with $N_f = 4, 8$ (LSD collaboration 2019)

2. Light dilaton at conformal edge

Near conformal dynamics

- How the IR scale M is related to the intrinsic scale of the deformed BZ theory?
- We may deform it by breaking chiral symmetry spontaneously, having the critical coupling for the chiral symmetry breaking α_c ≈ α_{*}.

Near conformal dynamics

► Because $\beta(\alpha_c) \approx 0$, one expects the dynamical mass $M \ll \Lambda_{\rm SB}$, very different from QCD, where $M \sim \Lambda_{\rm SB}$.

Miransky-BKT scaling

The dynamical mass M of χSB is argued to be given by the Miransky-BKT Scaling (cf. complex CFT):

$$M(\alpha) = \Lambda_{\rm SB}(\alpha_c) \exp\left(-\frac{\pi}{\sqrt{\alpha - \alpha_c}}\right) \quad (\alpha > \alpha_c)$$

The theory is almost scale-invariant for M < E < Λ_{SB}, exhibiting walking dynamics, since β(α) ≈ 0.

Miransky-BKT scaling

In the walking region we have approximate scale invariance and ladder approximation is good. The BS equation for the scalar bound-state then becomes

$$\left[P^2 + \partial^2 + \frac{\alpha/\alpha_c}{r^2}\right]\chi_P(x) = 0.$$

Since the potential is singular, we need to regularize it:

$$V(r) = \begin{cases} -\frac{\alpha/\alpha_c}{r^2} & \text{if } r \ge a, \\ -\frac{\alpha/\alpha_c}{a^2} & \text{if } r \le a. \end{cases}$$

Very light dilaton

For bound states to be the cutoff-independent, we require the coupling to depend on the cutoff. (DKH+Rajeev '90)

$$\alpha(a) = \alpha_c + \frac{\pi^2}{\left[\ln\left(a\mu\right)\right]^2}.$$

The non-perturbative beta function is then

$$\beta^{\mathrm{np}}(\alpha) = a \frac{\partial}{\partial a} \alpha(a) = -\frac{2}{\pi} (\alpha - \alpha_c)^{3/2}$$

The gap equation has a nontrivial solution with this beta function for α ≥ α_c. (Bardeen et al '86):

$$M \simeq \Lambda(\alpha) \exp\left[\int_{\alpha_0}^{\alpha} \frac{d\alpha}{\beta^{\mathrm{np}}(\alpha)}\right] = \Lambda_{UV} e^{-\frac{\pi}{\sqrt{\alpha - \alpha_c}}}.$$

Very light dilaton

- Non-perturbative renormalization requires a new scale.
- In the walking region γ_{ψψ} ≃ 1 new marginal operator emerges and therefore generates the new scale, M ≪ Λ_{UV} (DKH+Rajeev '90):

$$rac{\lambda}{\Lambda_{UV}^2} \left(ar{\psi} \psi
ight)^2$$
 .

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

15/29

Complex CFT

 Suppose the beta-function of the coupling of the marginal four-Fermi operator is given as (work under progress, DKH+Im+Lee)

$$\beta(\lambda) = -(\lambda - \lambda_*)^2 - \alpha + \lambda_*^2$$

Marginal deformation of CFT by four-Fermi operator

$$(\lambda = g, \, \alpha_c = \lambda_*^2, \, \alpha = \alpha_*)$$

 Conformality is lost when the UV fixed point collides with the IR fixed point. (Kaplan-Lee-Son-Stephanov, '09)

Complex CFT

 The walking dynamics is complex CFT. (V. Gorbenko, S. Rychkov, B. Zan 2018)

$$M = \Lambda \exp\left[-\oint_C \frac{d\lambda}{\beta(\lambda)}\right] = \Lambda \exp^{-\frac{\pi}{\sqrt{\alpha - \alpha_c}}}$$

Near conformal window a new marginal operator rises

Very light dilaton

▶ When χSB occurs at $\alpha = \alpha_c$ or at Λ_{SB} , generating massless pions, the scale symmetry is also spontaneously broken.

 $\mathbf{0}\neq\mathbf{3}\left\langle \bar{\psi}\psi\right\rangle =\left\langle \left[D,\bar{\psi}\psi\right]\right\rangle$

In the chirally broken phase therefore we should also have light dilaton, associated the spontaneously broken scale symmetry,

$$egin{array}{l} \left< 0
ight| D_{\mu}(x) \left| D(p)
ight> = -i f p_{\mu} e^{-i p \cdot x} \, ,$$

where the dilatation current $D_{\mu} = x^{\nu} \theta_{\mu\nu}$, if the scale anomaly is small $|\langle \theta^{\mu}_{\mu} \rangle| \sim M^4 \ll \Lambda^4_{\rm SB}$, which is the salient feature of near conformal window, unlike QCD.

Very light dilaton

Consider WT identity:

$$0 = \int_{x} \partial^{\mu} \left\langle 0 \right| \mathrm{T} D_{\mu}(x) \theta^{\nu}_{\nu}(y) \left| 0 \right\rangle = \left\langle 0 | [D, \theta^{\nu}_{\nu}] \left| 0 \right\rangle + \int_{x} \left\langle 0 | \mathrm{T} \partial^{\mu} D_{\mu}(x) \theta^{\nu}_{\nu} \left| 0 \right\rangle \right.$$

Partially conserved dilatation current (PCDC) hypothesis:

$f^2 m_D^2 = -4 \left\langle \theta^{\mu}_{\mu} \right\rangle \approx -16 \, \mathcal{E}_{\mathrm{vac}} \sim M^4 \sim m_{\mathrm{dyn}}^4 \, .$

 The scale anomaly is given by the dynamical mass at IR, m⁴_{dyn} (Gusynin+Miransky '89; 2302.08112 and to appear)

Very light dilaton

Consider WT identity:

$$0=\int_{x}\partial^{\mu}ra{0} \mathrm{T} D_{\mu}(x) heta_{
u}^{
u}(y) \ket{0}=ra{0} \ket{[D, heta_{
u}^{
u}]} \ket{0}+\int_{x}ra{0} \mathrm{T} \partial^{\mu}D_{\mu}(x) heta_{
u}^{
u}\ket{0}$$

Partially conserved dilatation current (PCDC) hypothesis:

$$\theta_{\nu}^{\nu}(x) \longrightarrow \theta_{\nu}^{\nu}(y) \approx \theta_{\nu}^{\nu}(x) \longrightarrow \sigma \longrightarrow \theta_{\nu}^{\nu}(y)$$

$$f^{2}m_{D}^{2} = -4 \langle \theta_{\mu}^{\mu} \rangle \approx -16 \mathcal{E}_{\text{vac}} \sim M^{4} \sim m_{\text{dyn}}^{4}.$$

 The scale anomaly is given by the dynamical mass at IR, m⁴_{dyn} (Gusynin+Miransky '89; 2302.08112 and to appear)

PCDC and Very light dilaton

► Very light dilaton from quasi-conformal UV sector ($f \sim \Lambda_{SB}$):

$$m_D^2 = -rac{4\left< heta_
u^
u
ight>}{f^2} \sim rac{M^4}{f^2} \ll M^2 \, .$$

By Miransky scaling, the dynamical mass or the IR scale is

$$M = \Lambda_{\rm SB}(\alpha_c) \exp\left(-\frac{\pi}{\sqrt{\alpha - \alpha_c}}\right)$$

• The dilaton mass $m_D \sim \frac{M^2}{f} \ll M$ if $f \gg M$.

 By the holography we find (Cruz Hojas+DKH+Im+Jarvinen, JHEP '23)

$$m_D = c_1 M \cdot \sqrt{\nu}$$
 or $f \sim \frac{M}{\sqrt{\nu}}$

3. Holographic light dilaton

2302.08112

<□ト < □ト < □ト < ■ト < ■ト < ■ト = のQで 21/29

Holographic dilaton

Consider a holographic dual of near conformal gauge theory:

 $S = S_{g}[g_{\mu\nu},\phi] + S_{m}[g_{\mu\nu},\phi,X] ,$

where ϕ and X are dual to $\mathrm{Tr}\left(G_{\mu\nu}^{2}\right)$ and $q\bar{q}$, respectively.

$$S_{\rm g} = rac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left[R - g^{MN} \partial_M \phi \partial_N \phi + V(\phi)
ight] + S_{
m GH}$$

 $ds^{2} = e^{2A(r)} \left(dr^{2} - dt^{2} + d\mathbf{x}^{2} \right), \quad (r_{\rm UV} < r < r_{\rm IR}),$ $S_{\rm m} = -\frac{1}{2\kappa^{2}N_{c}} \int d^{5}x \sqrt{-g} \operatorname{Tr} \left[g^{MN} \partial_{M} X^{\dagger} \partial_{N} X - m_{X}(r)^{2} X^{\dagger} X \right]$

Holographic dilaton

▶ Near the conformal edge, the scaling dimension of $q\bar{q}$ is $\Delta_{\rm IR} = 2 \pm i\nu$ ($\nu \ll 0$). The 5d mass then violates the BF bound,

$$m_X^2 = -4 - \nu^2 < -4$$
.

The background solution is then

$$\begin{split} X(r) &= m_q r + \sigma r^3 , \qquad (r < r_{\rm uv}) \\ X(r) &= X_0 \left(\frac{r}{r_{\rm uv}}\right)^2 \sin\left(\nu \log \frac{r}{r_{\rm uv}} + \alpha\right) , \quad (r_{\rm uv} < r < r_{\rm ir}) \end{split}$$

<ロト<部ト<差ト<差ト 差 のQで 23/29

Holographic dilaton

 For the UV boundary conditions, we match two solutions smoothly to get

$$\tan \alpha = \nu \frac{\sigma r_{uv}^3 + m_q r_{uv}}{\sigma r_{uv}^3 - m_q r_{uv}},$$
$$X_0 = \frac{\sigma r_{uv}^3 + m_q r_{uv}}{\sin \alpha},$$

where we see that the phase $\alpha \sim \mathcal{O}(\nu)$ for $m_q \approx 0$.

For the IR boundary conditions, we impose

$$\mathcal{A}X(r_{\mathrm{ir}}) + \mathcal{B}r_{\mathrm{ir}}X'(r_{\mathrm{ir}}) = 0$$
,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

Holographic dilaton

We now consider small fluctuations. Among them relevant ones are

$$\psi = rac{1}{6} \left(h^{\mu}_{\mu} - rac{\partial^{\mu}\partial^{
u}}{\partial^2} h_{\mu
u}
ight)$$

and for the scalars

$$\phi(z,x) = \overline{\phi}(z) + \varphi(z,x) , \qquad X_{ij}(z,x) = \delta_{ij}\overline{X}(z) + \delta_{ij}\chi(z,x) .$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 二臣…

25/29

Holographic dilaton

The relevant gauge invariant combination is

$$\xi = \psi - \frac{A'}{\bar{X}'}\chi$$

 Solving the equations of motion, we get in the probe approximation

$$\xi(r) = \frac{C_1 \Re[J_{i\nu}(\omega r)] + C_2 \Re[Y_{i\nu}(\omega r)]}{2\sin(\nu \ln \frac{r}{r_{uv}} + \alpha) + \nu \cos(\nu \ln \frac{r}{r_{uv}} + \alpha)}$$

.

Holographic dilaton

From the UV and IR boundary conditions that parametrize the theory near the conformal edge one finds

$$\omega^{2} r_{\rm ir}^{2} = 4 \frac{\frac{\mathcal{A}}{\mathcal{B}} t_{\beta} + \nu \left(t_{\beta} \frac{1 + \frac{\nu}{2} t_{\beta-\alpha}}{t_{\beta-\alpha} - \frac{\nu}{2}} - 1 \right)}{2 t_{\beta} + \nu + \left(t_{\beta} + \nu \right) \left(\frac{\mathcal{A}}{\mathcal{B}} + \nu \frac{1 + \frac{\nu}{2} t_{\beta-\alpha}}{t_{\beta-\alpha} - \frac{\nu}{2}} \right)}$$

where β is defined as

$$rac{r_{
m ir}}{r_{
m uv}} \equiv e^{(\pi-eta)/
u} \, .$$

27/29

Holographic spectrum

We find that a light dilaton exists if A = 0, namely for Neunmann IR boundary condition:

$$\omega = r_{\rm ir}^{-1} \sqrt{\nu} \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

28/29

► The dilaton can be parametrically lighter than all other hadrons which are O (z_{ir}⁻¹). (2302.08112 and to appear)

conclusion

Conclusion

Near conformal dynamics shows the Miransky-BKT scaling

$$M(\alpha) = \Lambda_{\rm SB}(\alpha_c) \exp\left(-\frac{\pi}{\sqrt{lpha - lpha_c}}\right) \quad (\alpha > lpha_c)$$

The marginal four-Fermi interaction derives the BZ theory into a complex CFT (DKH+Im+Lee to appear).

$$rac{\lambda}{\Lambda_{
m SB}^2} \left(ar{\psi} \psi
ight)^2; \quad eta(\lambda) = -(\lambda - \lambda_*)^2 - lpha - lpha_c$$

• The holographic analysis shows (2302.08112 and to appear), since $\langle \theta^{\mu}_{\mu} \rangle \sim M^4$ (Gusynin+Miransky '89)

$$m_D = c_1 M \cdot \sqrt{\nu}$$
 or $f \sim M \cdot \nu^{-1/2}$