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Near conformal dynamics

» For certain sets of N and Ny, some gauge theories might flow
into an IR-fixed point (Banks-Zaks theory, 1982):

i( «)

» Near the IR fixed point (E ~ A.), the theory is approximately
conformal. If the scale symmetry is broken spontaneously at
Agp near IR fixed point, the theory will rest very close to the
conformal edge, since $(a) ~ 0, until fermions are decoupled.
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Near conformal dynamics

» Walking behavior of gauge coupling:
a(E)
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Near conformal dynamics

» The near conformal dynamics may be realized in a deformed
BZ theory, having the dynamical generation of fermion mass.

(Near Conformal)
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] for Qe = Ouy
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» The theory can be slightly deformed or a. = a in the large
n¢ limit or introducing additional interactions (DKH 2018).
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Near Conformal Window

» Conformal windows from the beta-function of SU(N)
(Rytov-+Sannino 2007) or from the anomalous dimensions of
Y1) (Kim+DKH+Lee, PRD '20)
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Spectrum Near Conformal Window

» SU(3) with N¢f = 4,8 (LSD collaboration 2019)
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Light dilaton at conformal edge

Near conformal dynamics

» How the IR scale M is related to the intrinsic scale of the
deformed BZ theory?

> We may deform it by breaking chiral symmetry spontaneously,
having the critical coupling for the chiral symmetry breaking
Qe &2 Q..
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Near conformal dynamics

» Because f(ac) =~ 0, one expects the dynamical mass
M < Agp, very different from QCD, where M ~ Agp .
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Miransky-BKT scaling

» The dynamical mass M of xSB is argued to be given by the
Miransky-BKT Scaling (cf. complex CFT):

M(@) = Asn(ad) e (L) (a > ad

» The theory is almost scale-invariant for M < E < Agp,
exhibiting walking dynamics, since 5(a) ~ 0.
a(p)

)7
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Miransky-BKT scaling

» In the walking region we have approximate scale invariance
and ladder approximation is good. The BS equation for the
scalar bound-state then becomes

afac

[P2 + 0%+ r2] xp(x) =0.

> Since the potential is singular, we need to regularize it:
—“{% if r > a,
_aloe f < g
a
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Very light dilaton

» For bound states to be the cutoff-independent, we require the
coupling to depend on the cutoff. (DKH+Rajeev '90)

71-2

T (@

» The non-perturbative beta function is then

B (o) = a%a(a) = 7% (o — ac)3/2

aa) =

» The gap equation has a nontrivial solution with this beta
function for & > a.. (Bardeen et al '86):
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M =~ A(a) exp {

14/29



Light dilaton at conformal edge

Very light dilaton

» Non-perturbative renormalization requires a new scale.

» In the walking region Vg = 1 new marginal operator emerges
and therefore generates the new scale, M < Ayy
(DKH+Rajeev '90):

uv
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Complex CFT

» Suppose the beta-function of the coupling of the marginal
four-Fermi operator is given as (work under progress,
DKH+Im+-Lee)

Bg, @)

g 2 2
7 8 N B =—(A—A)?—a+ 2
/\q:a Marginal deformation of CFT by four-Fermi operator
a<a 2
(/\ =9, &c = )‘*70‘ = C!*)

» Conformality is lost when the UV fixed point collides with the
IR fixed point. (Kaplan-Lee-Son-Stephanov, '09)
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Complex CFT

» The walking dynamics is complex CFT. (V. Gorbenko, S.
Rychkov, B. Zan 2018)

CodA N
M = Aexp {f % (7} = Aexp Voo
Jo B(A)

Near conformal window a new marginal operator rises

whose coupling )\

Im A
@\Re)\
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Very light dilaton

» When xSB occurs at a = a, or at Agp, generating massless
pions, the scale symmetry is also spontaneously broken.

0 # 3 () = ([D,¥y])

» In the chirally broken phase therefore we should also have light
dilaton, associated the spontaneously broken scale symmetry,

(01 Du(x) |D(p)) = —ifpue™™

where the dilatation current D, = x”6,,,, if the scale anomaly
is small [(6;)] ~ M* < Ad5, which is the salient feature of
near conformal window, unlike QCD.

18/29



Light dilaton at conformal edge

Very light dilaton

» Consider WT identity:

0= [ 0 (01 TD(x)6()10) = (0I[D. 621 10) + [ (0T2"D,(x)6 o)

X

> @@

» The scale anomaly is given by the dynamical mass at IR, mgyn
(Gusynin+Miransky '89; 2302.08112 and to appear)
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Very light dilaton

» Consider WT identity:

0= [ 0 (01 TD(x)6()10) = (0I[D. 621 10) + [ (0T2"D,(x)6 o)

X

» Partially conserved dilatation current (PCDC) hypothesis:

GZ(UZ@/)% 02 (2) @@ 0 ()

FPmp = —4(0h) ~ —16 Eac ~ M* ~ mi .

» The scale anomaly is given by the dynamical mass at IR, mgyn
(Gusynin+Miransky '89; 2302.08112 and to appear)

19/29



Light dilaton at conformal edge

PCDC and Very light dilaton

» Very light dilaton from quasi-conformal UV sector (f ~ Agg):

40" Mm*
i;) N?<<M2

2
mD = —
» By Miransky scaling, the dynamical mass or the IR scale is

M = Asp(ac)exp (—\/047:705) -

» The dilaton mass mp ~ MT2 <K Miff>M.

» By the holography we find (Cruz Hojas+DKH-+Im+Jarvinen,

JHEP '23)

M
mp=cM-\v or f~—

Vv
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3. Holographic light dilaton

2302.08112
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Holographic dilaton

» Consider a holographic dual of near conformal gauge theory:

S= Sg[g,w,gb] + Snl[guV7¢aX] )

where ¢ and X are dual to Tr (Gﬁl,) and qq, respectively.

1

S =5

d*xv/=g [R — g Omoins + V(9)] + San
ds® = e2A(r) (dr2 — dt? + dX2) , (rUV <r< "IH)-,

5. — /d%ﬁ Tr [ o X ouX — mx(r?XTX]

22N
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Holographic dilaton

» Near the conformal edge, the scaling dimension of g is
AR =2+ iv (v < 0). The 5d mass then violates the BF
bound,

mi = 417 < 4.

» The background solution is then

X(r) = mgr+or*, (r < ruy)
2
X(r) =Xo (:) sin <V |0grL +a> ;o (v <r<np)
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Holographic dilaton

» For the UV boundary conditions, we match two solutions
smoothly to get

3
oryy + Mghruy

tana = 3 ,
orgy — Mghuwy

3
ory, + Mghu

Xo = -
sin

where we see that the phase a ~ O(v) for mg =~ 0..

» For the IR boundary conditions, we impose

AX(ry) + BryoX'(ry) =0,
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Holographic dilaton

» We now consider small fluctuations. Among them relevant

ones are 1 aﬂav
=% (”’if - ah)

and for the scalars

$z,x) = d(2)+p(z.x) . Xj(z,x) = 6;X(2) +5x(2, %) -
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Holographic dilaton

» The relevant gauge invariant combination is

AI
fziﬂ—?X

» Solving the equations of motion, we get in the probe

approximation

&(r) = GR[Ji(wr)] + GR[Yiu(wr)]

N 2sin(vin ;= +a) tveos(vin ;= +a)
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Holographic dilaton

» From the UV and IR boundary conditions that parametrize
the theory near the conformal edge one finds

A ]_+Zt a
Btg+v (tfa‘fg‘g;i:?;* —-:1)

2tg + v + (tﬁ + V) (i% + V!éggggjfi)

w2r§ =4

where 3 is defined as

ﬁ = e(ﬂ-_IB)/V .

rIlV
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Holographic spectrum

» We find that a light dilaton exists if A = 0, namely for
Neunmann IR boundary condition:

w=r V.

» The dilaton can be parametrically lighter than all other
hadrons which are O (z,'). (2302.08112 and to appear)
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Conclusion

Conclusion

» Near conformal dynamics shows the Miransky-BKT scaling

> (> ac)

s
Vo — ae

» The marginal four-Fermi interaction derives the BZ theory
into a complex CFT (DKH+Im+-Lee to appear).

S (30 B =~ -\ —a-a.
SB

M(a) = Agp(ac) exp <

» The holographic analysis shows (2302.08112 and to appear),
since (0,) ~ M* (Gusynin+Miransky '89)

mp=caM-\v or f~M- v /2
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