The phase structure and infrared properties of SU(3) gauge with 8 fundamental fermions

Anna Hasenfratz University of Colorado Boulder

Higgs Centre Workshop June 28 2024

- Dilaton Dynamics from Theory to Applications

Preview: SU(3) gauge + 8 fundamental flavors

- 8 Dirac flavors are special: anomaly free \rightarrow could support Symmetric Mass Generation
 - confining but chirally symmetric
 - ▶ bound states are gapped, *I* Goldstones

Numerical simulations of SU(3) gauge + $N_f = 8$ show (represented with staggered fermions)

- weak coupling phase appears conformal
- strong coupling phase (\mathcal{S}^{4}) with SMG properties
- continuous phase transition $\rightarrow \exists$ continuum limit
- could be 'walking': opening of the conformal window

Details later

Preview: SU(3) gauge + 8 fundamental flavors

- 8 Dirac flavors are special: anomaly free \rightarrow could support Symmetric Mass Generation
 - confining but chirally symmetric
 - bound states are gapped, *A* Goldstones

Numerical simulations of SU(3) gauge + $N_f = 8$ show (represented with staggered fermions)

- weak coupling phase appears conformal
- strong coupling phase (\mathcal{S}^{4}) with SMG properties
- continuous phase transition $\rightarrow \exists$ continuum limit
- could be 'walking': opening of the conformal window

Why would the conformal sill be at integer N_f ? Systems with 8 flavors/2 sets of staggered fields are special Is SMG useful for model building/dilaton dynamics? Let's discuss

Nonperturbatively: the IR fixed point could emerge at finite g_*^2 if $\beta(g) \sim (\alpha - \alpha_*) - (g - g_*)^2$ Conformality lost at IR-UV fixed point merger

Perturbatively: the IR fixed point emerges at $g_0^2 = \infty$ at $N_f = N^*$, moves to $g_0^2 = 0$ as $N_f \to N^{IF}$

Kaplan et al PRD80,125005 (2009) L. Vecchi PRD82, 045013 (2010) Gorbenko et al JHEP10, 108 (2018)

Nonperturbatively: the IR fixed point could emerge at finite g_*^2 if $\beta(g) \sim (\alpha - \alpha_*) - (g - g_*)^2$ Conformality lost at IR-UV fixed point merger

Perturbatively: the IR fixed point emerges at $g_0^2 = \infty$ at $N_f = N^*$, moves to $g_0^2 = 0$ as $N_f \to N^{IF}$

Kaplan et al PRD80,125005 (2009) L. Vecchi PRD82, 045013 (2010) Gorbenko et al JHEP10, 108 (2018)

Perturbatively: the IR fixed point emerges at $g_0^2 = \infty$ at $N_f = N^*$, moves to $g_0^2 = 0$ as $N_f \to N^{IF}$ Nonperturbatively: the IR fixed point could emerge at finite g_*^2 if $\beta(g) \sim (\alpha - \alpha_*) - (g - g_*)^2$ Conformality lost at IR-UV fixed point merger

Kaplan et al PRD80,125005 (2009) L. Vecchi PRD82, 045013 (2010) Gorbenko et al JHEP10, 108 (2018)

Conformal: distinct IRFP / UVFP:

- Universality on the lattice extends from GFP to IRFP only
- The strongly coupled phase not universal
- Depends on the lattice details

The FPs merge at the conformal sill: "walking scaling" (BKT) phase transition • Universal up to the UV-IRFP (most likely) • We can study the new phase within the

gauge-fermion system

Conformal: distinct IRFP / UVFP:

- Universality on the lattice extends from GFP to IRFP only
- The strongly coupled phase not universal
- Depends on the lattice details

The FPs merge at the conformal sill: "walking scaling" (BKT) phase transition

- Universal up to the UV-IRFP (most likely)
- We can study the new phase within the gauge-fermion system

Conformal: distinct IRFP / UVFP:

- Universality on the lattice extends from GFP to IRFP only
- The strongly coupled phase not universal
- Depends on the lattice details

The FPs merge at the conformal sill: "walking scaling" (BKT) phase transition

- Universal up to the UV-IRFP (most likely)
- We can study the new phase within the gauge-fermion system

Conformal: distinct IRFP / UVFP:

- Universality on the lattice extends from GFP to IRFP only
- The strongly coupled phase not universal
- Depends on the lattice details

The FPs merge at the conformal sill: "walking scaling" (BKT) phase transition

- Universal up to the UV-IRFP (most likely)
- We can study the new phase within the gauge-fermion system

Brief and (slightly) biased review

 $eta_{
m GF}(g_{
m GF}^2)$

After~15 years of lattice studies: • $N_f = 12$ looks conformal

- $N_f = 10$ looks conformal
- $N_f = 8$ could go either way

- RG β function in the gradient flow scheme
 - SU(3) gauge
 - staggered fermions

After~15 years of lattice studies: • $N_f = 12$ looks conformal

- $N_f = 10$ looks conformal
- $N_f = 8$ could go either way

2.5 2.0 1.5 Sym-flow _____ Wil-flow _____ 1.0 β(g²) C23-flow _____ C13-flow 1-loop PT 0.0 2-loop PT -0.5 3-loop GF DWF Wil -1.0 LatHC -1.5 5 10 20 25 15 30 g^2

Hasenfratz., Neil, Shamir, Svetitsky, Witzel, *Phys.Rev.D* 108 (2023) 7

- RG β function in the gradient flow scheme
 - SU(3) gauge
 - Wilson fermions

After~15 years of lattice studies: • $N_f = 12$ looks conformal

- $N_f = 10$ looks conformal
- $N_f = 8$ could go either way

Phys.Rev.D 108 (2023) 7 2.5 2.0 1.5 Sym-flow ____ Wil-flow _____ 1.0 β(g²) C23-flow _____ C13-flow 1-loop PT 0.0 2-loop PT Prior works: -0.5 3-loop GF DWF Wil -1.0 Staggered f. LatHC -1.5 25 5 10 20 30 15 g^2

Hasenfratz., Neil, Shamir, Svetitsky, Witzel,

- RG β function in the gradient flow scheme
 - SU(3) gauge
 - Wilson fermions

After~15 years of lattice studies:

- $N_f = 12$ looks conformal
- $N_f = 10$ looks conformal
- $N_f = 8$ could go either way

Hasenfratz, Peterson, in prep.

- RG β function in the gradient flow scheme
 - SU(3) gauge
 - staggered fermions

After~15 years of lattice studies:

- $N_f = 12$ looks conformal
- $N_f = 10$ looks conformal
- $N_f = 8$ could go either way

Nonperturbative cutoff effects due to instantons make the predicted $|\beta(g^2)|$ too large

Hasenfratz, Peterson, in prep.

- RG β function in the gradient flow scheme
 - SU(3) gauge
 - staggered fermions

"But Wikipedia says $N_f = 8$ is chirally broken!"

SU(3) $N_f = 8$ has been long favored as composite Higgs model:

- thought to be chirally broken
- expected (hoped) to be slowly walking with light scalar (Higgs)

This might not be the case:

"But Wikipedia says $N_f = 8$ is chirally broken!"

SU(3) $N_f = 8$ has been long favored as composite Higgs model:

- thought to be chirally broken
- expected (hoped) to be slowly walking with

This might not be the case:

LSD Collaboration 2306.06095, Phys.Rev.D 108 (2023) 9

Scaling of the meson spectrum:

- both hyper-scaling and dilaton EFT fits are consistent
- staggered fermions but different lattice action

"But Wikipedia says $N_f = 8$ is chirally broken!"

SU(3) $N_f = 8$ has been long favored as composite Higgs model:

- thought to be chirally broken
- expected (hoped) to be slowly walking with

This might not be the case:

These simulations were done at relatively weak coupling

LSD Collaboration 2306.06095, *Phys.Rev.D* 108 (2023) 9

Scaling of the meson spectrum:

- both hyper-scaling and dilaton EFT fits are consistent
- staggered fermions but different lattice action

SU(3) gauge + 8 fundamental flavors

- 8 Dirac flavors are special:
 - anomaly free
 - could support Symmetric Mass Generation:
 - confining but chirally symmetric
 - Fermions are gapped, ∄ Goldstones

Numerical simulations of $SU(3) + N_f = 8$ show (represented with staggered fermions)

- weak coupling phase appears conformal
- strong coupling phase (8^4) with SMG properties
- continuous phase transition \rightarrow 3 continuum limit
- could be BKT: opening of the conformal window

Cheng et al, *Phys.Rev.D* 85 (2012) 094509 LSD Coll. arXiv: 1506.08791

A.H. *Phys.Rev.D* 106 (2022) 1, 014513 A.H., Peterson, in prep LSD, in progress

Mass generation

 $SU(N_c)$ gauge + N_f massless fermions:

- $N_f < N^*$: confinement and spontaneous chiral symmetry breaking - massless Goldstones + massive composite states
- $N_f > N^*, N_f < N_{IR}$: conformal - massless states with hyperscaling

Could there be a mechanism that leads to confinement and gapped spectrum but preserves chiral symmetry? (Symmetric mass generation)

- all hadronic states are massive
- Only if the system is free of all 't Hooft anomalies

such phase could show up in the strong coupling of conformal systems

Symmetric mass generation (SMG)

Recent developments in CM show SMG phases:

- Even in vector-like systems there are discrete (e.g. time reversal) symmetries that can be anomalous.
- Only systems with multiples of 8 Dirac or 16 Majorana fermions are anomaly free (D=3, 4)
- When these anomalies cancel there can be symmetric mass generation
- but 4-fermion interactions is needed to trigger it

Fidowski, Kitaev (2010) d=1+1Y-Z You, C. XU (2015), Razamat, Tong (2020)

Symmetric mass generation (SMG)

On the lattice:

- Staggered fermions are Kaehler-Dirac fermions distributed in a 2⁴ hypercube
- massless fermions have exact U(1) symmetry

 - on spherical lattice they exhibit Z_4 mixed anomaly, cancelled with 2 sets of fields • (on a torus U(1) symmetry remains)
- 2 sets of staggered fermions are anomaly free ➡ 4-fermion interaction is needed to trigger SMG: can come from gauge interaction or Yukawa

A.H., Neuhaus, 1986 Chandrasekharan (2012)... Catterall (2020), (2023),...

13

SU(3) gauge + 8 fundamental flavors

- 8 Dirac flavors are special:
 - anomaly free
 - could support Symmetric Mass Generation:
 - confining but chirally symmetric
 - Fermions are gapped, ∄ Goldstones

Numerical simulations of SU(3) + $N_f = 8$ show

(represented with staggered fermions)

- weak coupling phase appears conformal
- strong coupling phase (\mathcal{S}^{4}) with SMG properties
- continuous phase transition $\rightarrow \exists$ continuum limit
- could be BKT: opening of the conformal window

Cheng et al, *Phys.Rev.D* 85 (2012) 094509 LSD Coll. arXiv: 1506.08791

A.H. Phys.Rev.D 106 (2022) 1, 014513 A.H., Peterson, in prep LSD, in progress

SU(3) gauge + 8 fundamental flavors

- 8 Dirac flavors are special:
 - anomaly free
 - could support Symmetric Mass Generation:
 - confining but chirally symmetric
 - ▶ fermions are gapped, Goldstones

Numerical simulations of SU(3) + $N_f = 8$ show

(represented with staggered fermions)

- weak coupling phase appears conformal
- strong coupling phase ($\mathcal{S}^{\mathcal{A}}$) with SMG properties
- continuous phase transition $\rightarrow \exists$ continuum limit
- could be BKT: opening of the conformal window

Cheng et al, *Phys.Rev.D* 85 (2012) 094509 LSD Coll. arXiv: 1506.08791

A.H. *Phys.Rev.D* 106 (2022) 1, 014513 A.H., Peterson, in prep LSD, in progress

Some numerical details

Digress: Not all lattice actions are equal...

Large cutoff effects can trigger unphysical bulk phase transitions : need improved action

Pauli-Villars improvement:

Add heavy PV bosons

- -same interaction as fermions but with bosonic statistics
- $S_{eff} < 0$, β increases
- in the IR the heavy flavors decouple, do not change physics -equivalently: range of effective gauge action is $\sim exp(-2am_{PV})$ - Add many PV bosons reduce the lattice fluctuations

PV improvement was essential in the β function results with $N_f = 12, 10, 8$

AH, Shamir, Svetitsky, PRD104, 074509 (2021)

Meson spectrum

Zero momentum correlators $C(t) = \sum_{k=1}^{\infty} C(t)$

"PS/S states" : pseudoscalar : $P1 = \gamma_5 \otimes \gamma_5$: scalar :

spin \otimes taste $S1 = \gamma_0 \gamma_5 \otimes \gamma_0 \gamma_5$:

- P1 is the lightest state
- Simulations done at $am_f = 0.0 0.10$ on $16^3 \times 32$ and $24^3 \times 64$ volumes

$$\langle O_S(\bar{x}, t=0)O_S(\bar{y}, t)\rangle$$

in terms of 1-component fields $\mathcal{O}_S = \bar{q}(\bar{x}) q(\bar{x}) (-1)^{x_1 + x_2 + x_3}$ parity partners $\mathcal{O}_S = \bar{q}(\bar{x}) q(\bar{x})$ pseudoscalar : $P2 = \gamma_5 \otimes \gamma_i \gamma_5$: $\mathcal{O}_S = \bar{q}(\bar{x})U_i(\bar{x})q(\bar{x}+i)(-1)^{x_1+x_2+x_3}$ parity partners scalar : $S2 = \gamma_0 \gamma_5 \otimes \gamma_0 \gamma_i \gamma_5$: $\mathcal{O}_S = \bar{q}(\bar{x})U_i(\bar{x})q(\bar{x}+i)$

- all four operators couple to scalar and pseudoscalar, but mostly to one only

Correlators are parity doubled:

pseudo scalar and scalar correlators

Weak coupling phase - chirally symmetric (P = S)- P1,P2, S1,S2 are nearly degenerate

(taste symmetry / breaking)

LSD Collaboration

*§*⁴ phase

- chirally symmetric (P = S)
- true for all other parity pairs
- P1-P2, S1-S2 are broken

Spectrum is gapped in *§*⁴:

P1 meson mass vs β

S4 phase :

- M_P independent of the volume
- mesons and baryons are massive in the infinite volume chiral limit

Weak coupling phase : - $M_H \propto 1/L$ (conformal) - volume-squeezed 19

Spectrum is gapped in *§*⁴:

P1 meson mass vs β

S4 phase :

- M_P independent of the volume
- mesons and baryons are massive in the infinite volume chiral limit

Weak coupling phase : - $M_H \propto 1/L$ (conformal) - volume-squeezed 19

Spectrum is conformal in the weak coupling:

P1 meson mass vs β

Weak coupling phase : - $M_H \propto 1/L$ (volume squeezed conformal) - $M_H L$ could serve as a running coupling $\rightarrow \beta$ function

Order of the phase transition / FSS :

A.H. *Phys.Rev.D* 106 (2022) 1, 014513 Finite size scaling/curve collapse analysis:

At the critical point $\beta \to \beta_*$ RG scaling predicts $g_{GF}^2(\beta, L) = f(L/\xi)$ - ξ : correlation length

- $f(x = L/\xi)$ unique curve, independent of L

- 2nd order scaling: $\xi \propto |\beta|\beta_* 1$
- 1st order scaling: like 2nd order but $\nu = 1/d = 0.25$

Find the exponents by standard curve-collapse analysis ;

$$|^{-\nu}$$
, $x = L |\beta/\beta_* - 1|^{\nu}$

- BKT or walking scaling: if $\beta(g^2) \sim (g^2 - g_*^2)^2 \rightarrow \xi \propto e^{\zeta/|\beta/\beta_*-1|}$, $x = L e^{-\zeta|\beta/\beta_*-1|^{-1}}$

Phase transition with GF coupling g_{GF}^2

Observable:

Finite volume gradient flow (GF) coupling:

- $g_{GF}^2(\beta,L;t) = \mathcal{N}t^2 \langle E(t) \rangle_{\beta,L}$, $t/L^2 = c/8$, fixed
- mimics RG blocked observables
- good signal for the phase transition
- good observable for finite size scaling

Curve collapse -original action, no PV

A.H. Phys.Rev.D 106 (2022) 1, 014513

- consistent with first order transition
- Robust fit:
 - adding/removing volumes does not change the results

Curve collapse - action with PV

Second order curve collapse fit:

- Acceptable χ^2/dof $\nu \approx 0.58 \rightarrow 0.63$

Phase transition is

- NOT consistent with first order transition
- Could be 2nd order transition

Curve collapse - action with PV

Walking scaling curve collapse fit: – Good χ^2/dof ,

Summary: $N_f = 8$ ($N_s = 2$ staggered) is special

- The strong coupling phase $(\$^4)$:
 - Shows symmetric mass generation:
 - Chirally symmetric and confining
 - gapped
- Lattice simulations with PV improved actions show a smooth phase transition
- Finite size scaling
 - is not consistent with 1st order transition
 - could be 2nd order
 - consistent with "walking scaling" transition
- Why would $N_f = 8$ be the conformal sill?

Because it is special: anomaly free, supports SMG BUT : this picture needs further verification!

 $\beta(g^2)$ g^2

EXTRA SLIDES

Staggered fermions

are Kaehler-Dirac fermions distributed in a 2⁴ hypercube

$$S_{f} = \frac{1}{2} \sum_{n,\mu} (\bar{\chi}_{n} \alpha_{\mu}(n) U_{\mu}(n) \chi_{n+\mu} + cc) + m_{f} \sum_{n} \bar{\chi}_{n} \chi_{n} ,$$

 χ : 1-component fermion

U(1) chiral symmetry: $\chi(x) \rightarrow e^{i\alpha \epsilon(x)} \chi(x)$, ϵ shift symmetry: $\chi(x) \rightarrow \xi(x)\chi(x+\mu)$,

1 set of staggered fermions \equiv 4 Dirac flavors in flat space, $g_0^2 = 0$ 2 sets of massless staggered fermions \equiv 4 sets of reduced staggered

Massless staggered fermions suffer from Z_4 mixed anomaly - cancelled when 2 staggered species are present Catterall et al -> 2 staggered species could exhibit symmetric mass generation PRD104,014503 (2021) PRD107,014501 (2022)

Becher, Joos 1982

$$\alpha_{\mu}(n) = (-1)^{n_0 + \dots + n_{\mu-1}}$$

$$\epsilon(x) = (-1)^{x_0 + \dots + x_{D-1}}$$

$$\xi(x) = (-1)^{x_{\mu+1} + \dots + x_{D-1}}$$

 \equiv 16 Weyl fermions

S4 phase

Cheng et al, PRD85, 094509

- Breaks single site translational symmetry
- Confining, all hadrons are heavy in the chiral limit
- Chirally symmetric
- Has a local order parameter that measures staggered symmetry breaking

Properties of the *S*⁴ (SMG) phase

Confining: Polyakov loop drops to zero

S4 phase - topological susceptibility

8PV-m0.75

calculated with GF at large flow time

 Both in conformal and chirally broken systems topology is suppressed in the chiral limit

$$\chi_Q = \langle Q^2 \rangle / V = 0$$

- •The new strongly coupled phase is full with unpaired instantons
 - how do they avoid the index theorem? (possibly surface modes (?))

Fermion mass dependence :

Meson masses, volume dependence

S4 phase :

- independent of the fermion mass and volume

- mesons are **massive in the** infinite volume chiral limit

Weak coupling phase : - $M_H \propto 1/L$ (conformal) - volume-squeezed for $am_f \lesssim 0.01$

Numerical details

- Simulations with 2 staggered fermions :

- no PV improvement
- 16 PV bosons, $am_{PV} = 0.75$ (heavy PV bosons)
- Volumes up to 40^4
- Finite volume gradient flow (GF) coupling: $g_{GF}^2(\beta, L; t) = \mathcal{N}t^2 \langle E(t) \rangle_{\beta,L}$ $t/L^2 = c/8$, fixed
 - mimics RG blocked observables
 - good signal for the phase transition
 - good observable for finite size scaling

A.H. *Phys.Rev.D* 106 (2022) 1, 014513 A.H., C. Peterson, in prep