#### Dilaton forbidden dark matter from the lattice

James Ingoldby (IPPP, Durham)

Dilaton Dynamics Workshop, Edinburgh

June 28, 2024





- 1 Introduction
- 2 Dilaton EFT
- **3** Lattice Data
- **4** Dark Matter
- **5** Summary and Outlook



Introduction •000 Dilaton EFT 000000 Lattice Dat

Dark Matter

Summary and Outlook

# The Space of Nonabelian Gauge Theories

Consider  $SU(N_c)$  gauge theories with  $N_f$  fermions:



Figure: Gauge theory phase diagram PoS Lattice 2018, 006 (2019).

- N<sub>f</sub> > <sup>11</sup>/<sub>2</sub>N<sub>c</sub>: Not asymptotically free.
- $\frac{11}{2}N_c > N_f > N_{fc}$ : Asymptotically free, but approaches conformality in IR.
- N<sub>fc</sub> > N<sub>f</sub>: Confinement. Low energy states are colorless composites.
- Can generalize to other gauge groups and scalar matter.

<<p>A 目 > A E > A E > E E

Introduction

0000

Dark Matter 00000000000 Summary and Outlook

# Near–Conformal Gauge Theories

- Near-conformal gauge theories confine.
- But only just. The field content is chosen to ensure that they lie just beneath the boundary of the conformal window.
- There is also evidence for a light scalar composite forming in these gauge theories, unlike in QCD.

Dark Matter 00000000000 Summary and Outlook

## Evidence for a Light Scalar I



Figure: Lattice data for the masses of composites SU(3) gauge theories with  $N_f = 2$  fermions in 2-index symmetric rep. From the LatHC collaboration: PoS LATTICE2015 (2016) 219.

Dilaton EFT

Lattice Dat

Dark Matter

Summary and Outlook

# Evidence for a Light Scalar II



Figure: Lattice data for the masses of composites in the SU(3) gauge theory with  $N_f = 8$  fundamental fermions from the LSD collaboration: 2306.06095

| Introduction<br>0000 | Dilaton EFT<br>●00000 | Lattice Data<br>0000 | Dark Matter<br>0000000000 |  |
|----------------------|-----------------------|----------------------|---------------------------|--|
|                      |                       |                      |                           |  |
|                      |                       |                      |                           |  |

Reviewed in Universe 9 (2023) 1, 10 with T. Appelquist, M. Piai and Phys.Rev.D **94** (2016), with M. Golterman, Y. Shamir

#### **Field Content**

#### **Symmetries**

**)** 
$$N_f^2 - 1$$
 NGB fields  $\pi^a$   
 $\Sigma = \exp\{2i\pi^a T^a/F_\pi\}$   
 $\langle \Sigma \rangle = \mathbb{1}$ 

(i) Dilaton field  $\chi$  $\langle \chi \rangle = F_d$ 

Dilaton EFT

#### Chiral Symmetry

$$\begin{array}{l} \mathrm{SU}(N_f)_L \times \mathrm{SU}(N_f)_R \to \mathrm{SU}(N_f)_V \\ \Sigma \to L \Sigma R^{\dagger} \end{array}$$

#### Scale Invariance

 $\mathsf{Scale} imes \mathsf{Poincare} o \mathsf{Poincare} \ \chi(x) o e^\lambda \chi(e^\lambda x)$ 

900 EIE 4E + 4E

Dilaton EFT

Lattice Dat

Dark Matter 0000000000 Summary and Outlook

# Leading Order Lagrangian $\mathcal{L}_{LO} = \mathcal{L}_{\pi} + \mathcal{L}_m + \mathcal{L}_d - V_{\Delta}$

#### Kinetic term for the NGBs

$$\mathcal{L}_{\pi} = \frac{f_{\pi}^2}{4} \left(\frac{\chi}{f_d}\right)^2 \operatorname{Tr}\left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right]$$
(1)

- Similar to NGB kinetic term in chiral Lagrangian.
- Dependence on compensator field  $\chi$  is determined by scale invariance.
- Expect  $f_{\pi} \sim f_d$  set by confinement scale.

# Leading Order Lagrangian

Chiral Symmetry Breaking Term

$$\mathcal{L}_m = \frac{mB_\pi f_\pi^2}{2} \left(\frac{\chi}{f_d}\right)^{y} \operatorname{Tr}\left[\Sigma + \Sigma^{\dagger}\right]$$
(2)

- Fermion mass breaks both scale and chiral symmetry.
- Parameter y has been identified with scaling dimension of  $\bar\psi\psi$  above the confinement scale.
- Theoretical arguments indicate y = 2 at conformal window edge: R. Zwicky: PRD **109** (2024) 3, 034009.

$$\mathcal{L}_m = N_f m B_\pi f_\pi^2 \left(\frac{\chi}{f_d}\right)^y - m B_\pi \left(\frac{\chi}{f_d}\right)^y \pi^a \pi^a + \cdots$$

1 - nan

Dilaton EFT

Lattice Data 0000 Dark Matter 00000000000 Summary and Outlook

# Leading Order Lagrangian

#### **Dilaton Kinetic Term**

$$\mathcal{L}_{d} = \frac{1}{2} \left( \partial_{\mu} \chi \right)^{2} \tag{3}$$

• Has engineering dimension of 4, consistent with scale invariance.

Summary and Outlook

# Leading Order Lagrangian

#### Dilaton Potential I

$$V_{\Delta} = \frac{m_d^2 \chi^4}{4(4-\Delta)f_d^2} \left[ 1 - \frac{4}{\Delta} \left( \frac{f_d}{\chi} \right)^{4-\Delta} \right].$$
(4)

• Potential contains a scale invariant term ( $\sim \chi^4$ ) and a deformation ( $\sim \chi^{\Delta}$ ), which explicitly violates scale invariance. We treat  $\Delta$  as a floating parameter that can take a range of values. For a different perspective, see R. Zwicky 2312.13761

512 9Q0

on Dilaton EFT Lattice Data Dark Matter

Summary and Outlook

# Leading Order Lagrangian

#### **Dilaton Potential I**

$$V_{\Delta} = \frac{m_d^2 \chi^4}{4(4-\Delta)f_d^2} \left[ 1 - \frac{4}{\Delta} \left( \frac{f_d}{\chi} \right)^{4-\Delta} \right].$$
(4)

- Potential contains a scale invariant term ( $\sim \chi^4$ ) and a deformation ( $\sim \chi^{\Delta}$ ), which explicitly violates scale invariance. We treat  $\Delta$  as a floating parameter that can take a range of values. For a different perspective, see R. Zwicky 2312.13761
- This potential has a minimum at  $\chi = f_d$ , and a weak curvature  $m_d^2 \ll (4\pi f_d)^2$ .

A ∃ ► ∃ ∃ < < < </p>

# Leading Order Lagrangian

#### **Dilaton Potential I**

$$V_{\Delta} = \frac{m_d^2 \chi^4}{4(4-\Delta)f_d^2} \left[ 1 - \frac{4}{\Delta} \left(\frac{f_d}{\chi}\right)^{4-\Delta} \right].$$
(4)

- Potential contains a scale invariant term (~  $\chi^4$ ) and a deformation (~  $\chi^{\Delta}$ ), which explicitly violates scale invariance. We treat  $\Delta$  as a floating parameter that can take a range of values. For a different perspective, see R. Zwicky 2312.13761
- This potential has a minimum at  $\chi = f_d$ , and a weak curvature  $m_d^2 \ll (4\pi f_d)^2$ .
- For  $\Delta < 4$ ,  $V_{\Delta}$  grows as  $\chi^4$  for large  $\chi$ .
- For  $\Delta > 4$ ,  $V_{\Delta}$  grows as  $\chi^{\Delta}$  for large  $\chi$ .

# Leading Order Lagrangian

#### **Dilaton Potential I**

$$V_{\Delta} = \frac{m_d^2 \chi^4}{4(4-\Delta)f_d^2} \left[ 1 - \frac{4}{\Delta} \left(\frac{f_d}{\chi}\right)^{4-\Delta} \right].$$
(4)

- Potential contains a scale invariant term (~  $\chi^4$ ) and a deformation (~  $\chi^{\Delta}$ ), which explicitly violates scale invariance. We treat  $\Delta$  as a floating parameter that can take a range of values. For a different perspective, see R. Zwicky 2312.13761
- This potential has a minimum at  $\chi = f_d$ , and a weak curvature  $m_d^2 \ll (4\pi f_d)^2$ .
- For  $\Delta <$  4,  $V_{\Delta}$  grows as  $\chi^4$  for large  $\chi$ .
- For  $\Delta > 4$ ,  $V_{\Delta}$  grows as  $\chi^{\Delta}$  for large  $\chi$ .
- Potentials of this form are discussed in e.g: Rattazzi & Zaffaroni JHEP 0104, 021 (2001), GGS PRL.100 111802, (2008), CCT PRD.100 095007 (2019).

Lattice Dat

Dark Matter 00000000000 Summary and Outlook

# Leading Order Lagrangian

#### **Dilaton Potential II**

Special case: The SM Higgs potential  $\Delta=2.$ 

$$V(\chi) = \frac{m_d^2}{8f_d^2} \left(\chi^2 - f_d^2\right)^2$$
(5)

Special case: Near marginal deformation  $\Delta \rightarrow 4.$ 

$$V(\chi) = \frac{m_d^2}{16f_d^2} \chi^4 \left( 4 \ln \frac{\chi}{f_d} - 1 \right)$$
 (6)

Dilaton EFT

Lattice Data ●000 Dark Matter 00000000000 Summary and Outlook

#### Fit to Lattice Data

for SU(3) gauge theory with  $N_f = 8$  Dirac fermions



Figure: Lattice data for  $M_{\pi}^2$ ,  $M_d^2$ ,  $F_{\pi}^2$  and  $F_S^2$  from LSD 2306.06095. The lattice spacing is denoted by *a*.

We also include data for the  $\pi$ - $\pi$  scattering length in the I=2,  $\ell$  = 0 channel from LSD PRD **105** (2022) 034505

James Ingoldby (IPPP)

Dilaton Forbidden Dark Matter

June 28, 2024

13/29

Dark Matter 00000000000

Summary and Outlook

# Result Of Global Fit to dEFT

Presented in LSD Collab: Phys.Rev.D 108 (2023) 9, 9



Lattice Data

Dark Matter 0000000000 Summary and Outlook

# Result Of Global Fit to dEFT

Presented in LSD Collab: Phys.Rev.D 108 (2023) 9, 9

| Parameter         | Value and Uncertainty    |
|-------------------|--------------------------|
| у                 | 2.091(32)                |
| $aB_{\pi}$        | 2.45(13)                 |
| Δ                 | 3.06(41)                 |
| $a^2 f_\pi^2$     | $6.1(3.2) 	imes 10^{-5}$ |
| $f_{\pi}^2/f_d^2$ | 0.1023(35)               |
| $m_d^2/f_d^2$     | 1.94(65)                 |
| $\chi^2/{ m dof}$ | 21.3/19=1.12             |

Table: Central values of fit parameters obtained in a six parameter global fit to LSD data for  $M_{\pi,d'}^2$ ,  $F_{\pi,S}^2$  and scattering length.

ヨトィヨト

<br/>

三日 のへの

| Introduction | Dilaton EFT | Lattice Data | Dark Matter | Summary and Outlook |
|--------------|-------------|--------------|-------------|---------------------|
| 0000         | 000000      | 000●         | 0000000000  |                     |
|              |             |              |             |                     |

## Interpretation of $\Delta$



**1** Strongly coupled over large interval of scales  $\implies$  possibility of large anomalous dimensions. Note our lattice fits showed  $y \approx 2$ .

| Introduction | Dilaton EFT | Lattice Data | Dark Matter | Summary and Outlook |
|--------------|-------------|--------------|-------------|---------------------|
| 0000         | 000000      | 000●         | 0000000000  |                     |
|              |             |              |             |                     |

## Interpretation of $\Delta$



- **1** Strongly coupled over large interval of scales  $\implies$  possibility of large anomalous dimensions. Note our lattice fits showed  $y \approx 2$ .
- 2 Allows for new relevant interactions besides (near marginal) gauge interaction.

| Introduction | Dilaton EFT | Lattice Data | Dark Matter | Summary and Outlook |
|--------------|-------------|--------------|-------------|---------------------|
| 0000         | 000000      | 000●         | 0000000000  |                     |
|              |             |              |             |                     |

## Interpretation of $\Delta$



- **1** Strongly coupled over large interval of scales  $\implies$  possibility of large anomalous dimensions. Note our lattice fits showed  $y \approx 2$ .
- 2 Allows for new relevant interactions besides (near marginal) gauge interaction.
- 3 Δ should be identified with the engineering plus anomalous dimension of this new relevant operator.

James Ingoldby (IPPP)

Dilaton Forbidden Dark Matter

June 28, 2024

#### Composite Dark Matter arXiv:2404.07601 with T. Appelquist and M. Piai.

I want to talk about a description of DM, in which the DM is a composite particle that forms in a new dark sector gauge theory.



Figure: Dark pion (image: Kavli IPMU).

The dark sector gauge theory interacts feebly with the standard model. Dark matter is a composite state, analogous to the pion of QCD.



# Why Compositeness?

The standard model has three gauge interactions. A fourth may be out there as a hidden sector.



Figure: Simulated dark matter halo.



Figure: Bubble collisions (image: David Weir).

#### Features

- Sizable self interactions can affect small scale structure anomalies.
- Confining phase transition may generate observable grav waves.

#### Our dark matter will be a thermal relic.

James Ingoldby (IPPP)

Dilaton Forbidden Dark Matter

June 28, 2024

# Our Composite Dark Matter Framework

- Suppose the dark sector is a near-conformal gauge theory, and dark matter is the pNGB.
- The low energy spectrum of these gauge theories have a light scalar. Unlike the pNGB, the light scalar carries no conserved charges and so can decay (slowly) to standard model.
- Nevertheless, the pNGBs can annihilate readily into the scalars, so the freezeout of this process can set the relic density of pNGBs.
- We describe these low energy states using dilaton EFT.

# Our Composite Dark Matter Framework

- Suppose the dark sector is a near-conformal gauge theory, and dark matter is the pNGB.
- The low energy spectrum of these gauge theories have a light scalar. Unlike the pNGB, the light scalar carries no conserved charges and so can decay (slowly) to standard model.
- Nevertheless, the pNGBs can annihilate readily into the scalars, so the freezeout of this process can set the relic density of pNGBs.
- We describe these low energy states using dilaton EFT.
- In the following, specialise to SU(3) gauge theory with  $N_f = 8$  fermions for concreteness.

000 E E 4 E + 4 E

| Introduction | Dilaton EFT | Lattice Data | Dark Matter | Summary and Outlook |
|--------------|-------------|--------------|-------------|---------------------|
| 0000         | 000000      | 0000         | 000●0000000 |                     |
|              |             |              |             |                     |

## Dilaton Self-Interactions

The dilaton field  $\chi$  experiences a net potential of

$$W(\chi) \equiv V(\chi) - \frac{M_{\pi}^2 F_{\pi}^2 N_f}{2} \left(\frac{\chi}{F_d}\right)^{y}.$$
 (7)

Expand potential around its minimum  $\chi = F_d + \bar{\chi}$ :

$$W(\bar{\chi}) = \text{constant} + \frac{M_d^2}{2}\bar{\chi}^2 + \frac{\gamma}{3!}\frac{M_d^2}{F_d}\bar{\chi}^3 + \dots, \qquad (8)$$

where  $\gamma \ge 2$  (from unitarity bound) GGS PRL.100 111802, (2008) and  $\gamma$  cannot be too large for EFT to remain weakly coupled.

The functional form of the dilaton potential will not matter in the following. Only  $M_d$ ,  $F_d$  and  $\gamma$  impact on our study.

James Ingoldby (IPPP)

| Introduction<br>0000 | Dilaton EFT<br>000000 | Lattice Data<br>0000 | Dark Matter<br>0000●000000 | Summary and Outlook |
|----------------------|-----------------------|----------------------|----------------------------|---------------------|
|                      |                       |                      |                            |                     |
| Freezeout            |                       |                      |                            |                     |
|                      |                       |                      |                            |                     |

The relic density is set by  $\pi\pi\to\chi\chi$  annihilations freezing out.

Boltzmann Equation

$$\frac{\partial n_{\pi}}{\partial t} + 3Hn_{\pi} = -\left\langle \sigma_{2\pi \to 2\chi} v \right\rangle n_{\pi}^{2} + \left\langle \sigma_{2\chi \to 2\pi} v \right\rangle \left( n_{\chi}^{\text{eq}} \right)^{2} \,. \tag{9}$$

We solve numerically to get the relic density of pNGBs today.

We have taken  $\Gamma_{\chi \to SM}$  large enough to maintain dilatons in thermal equilibrium with SM so that  $n_{\chi} = n_{\chi}^{eq}(T_{SM})$ . More details on SM couplings to follow.

ntroduction

Dilaton EFT 000000 Lattice Dat

Dark Matter

Summary and Outlook

## Thermally Averaged Cross Sections

The inverse annihilation process  $\chi\chi \rightarrow \pi\pi$  can happen for zero kinetic energy in the initial state, because  $\Delta > 0$ . We compute its cross section using dilaton EFT:



For  $T \ll M_{\pi}$ , the thermal averaged x-section  $\approx$  x-section at  $\vec{p} = 0$ :

$$\langle \sigma_{2\chi \to 2\pi} v \rangle = \frac{M_{\pi}^2 N_{\pi}}{36\pi F_d^4} \sqrt{\Delta (2+\Delta)} (1+\Delta) (5+\gamma)^2 , \qquad (10)$$

where the mass splitting is  $\Delta \equiv (M_d - M_\pi)/M_\pi$ . We take  $0 < \Delta < 1/2$ , as seen in lattice data.

James Ingoldby (IPPP)

| Introduction | Dilaton EFT | Lattice Data | Dark Matter | Summary and Outlook |
|--------------|-------------|--------------|-------------|---------------------|
| 0000         | 000000      | 0000         | 000000●0000 |                     |
|              |             |              |             |                     |

## Forbidden Dark Matter

However, the calculation of the thermal average  $\langle \sigma_{2\pi \to 2\chi} v \rangle$  is less straightforward, as this reaction is kinematically forbidden when pions have zero momentum (or at T = 0).

In this case, taking the thermal average leads to an exponential suppression of the cross section. For  $x = M_{\pi}/T$ , we have

$$\langle \sigma_{2\pi \to 2\chi} v \rangle = \frac{(1+\Delta)^3}{N_{\pi}^2} e^{-2\Delta x} \langle \sigma_{2\chi \to 2\pi} v \rangle .$$
 (11)

The dark matter relic abundance is set through annihilations to heavier states that are kinematically forbidden at T = 0. This framework is an example of forbidden DM Griest & Seckel: PRD 43, 3191 (1991), D'Agnolo & Ruderman: PRL 115, 061301 (2015)

Introduction 0000 Dilaton EFT

Lattice Dat

Dark Matter

Summary and Outlook

# Solving the Boltzmann Equation



We plot solution taking the scale as  $M_{\pi} = 1$  GeV, with parameters  $M_{\pi}/F_{\pi} = 4$ ,  $F_{\pi}^2/F_d^2 = 0.1$ ,  $\Delta = 0.3$ ,  $\gamma = 3$  and y = 2.

Plot using convenient variables:

$$Y_{\pi} = n_{\pi}/s$$
  
 $x = M_{\pi}/T$ 

High temp boundary condition  $Y_{\pi}(T_i) = n_{\pi}^{eq}(T_i)/s(T_i).$ 

Before freezeout,  $Y_{\pi} \approx n_{\pi}^{eq}(T)/s(T)$ .

After freezeout  $Y_{\pi}$  roughly constant.

$$\Omega_{
m CDM} h^2 = rac{M_\pi s_0 Y_\pi(\infty)}{
ho_c/h^2} \, ,$$

Dilaton EFT

Lattice Data

Dark Matter 000000000000 Summary and Outlook

## Parameter Space



- Bands indicate parameter space for which  $\Omega_{CDM}h^2$  is within 10% of its observed value.
- Range of DM masses allowed. Lighter than typical WIMPs, due to forbidden mechanism.
- Pale shaded regions excluded due to upper bounds on  $\frac{\sigma}{M_{\pi}}(\pi\pi \to \pi\pi)$  e.g. from bullet cluster...

# Introduction Dilaton EFT Lattice Data Dark Matter Summary and Outlook

## Coupling to Visible Sector

At the level of dilaton EFT, the necessary couplings take the form

$$\mathcal{L}_{\text{int}} = \epsilon F_d^{4-d_{\text{SM}}} \left(\frac{\bar{\chi}}{F_d}\right) \mathcal{O}_{\text{SM}} \,, \tag{12}$$

where  $\epsilon$  are weak, dimensionless constants, and  $\mathcal{O}_{SM}$  are singlet, scalar operators involving light SM fields (e.g  $\mathcal{O} = F_{\mu\nu}F^{\mu\nu}$ ).

- The dilaton couplings are not constrained by the form of the SM energy momentum tensor (as dilaton is a composite of dark sector, and not SM dofs).
- 2 Bounds exist for specific subsets of these couplings from astrophysics, CMB, collider experiments. We leave this for future work.
- **3** We can however derive a more model independent constraint...

900 EIE 4E + 4E



## **Consistency Condition**

- **1** The inclusive decay rate  $\Gamma_{\chi \to SM}$  must be large enough to bring the dark sector and SM into thermal equilibrium long before freezeout.
- 2 The decay rate must also be small enough so that direct annihilations  $\pi\pi \rightarrow SM$  do not overwhelm forbidden annihilations to dilatons.



Two-Sided Bound on the Inclusive Decay Rate

$$H_{T=M_{\pi}} \lesssim \Gamma_{\chi \to \text{SM}} \lesssim H_{T=T_f} \frac{M_{\pi} N_{\pi} F_d^2}{n_{\pi}^{\text{eq}}(T_f)}, \qquad (13)$$

ELE SQA



We have fitted dilaton EFT to lattice data for a particular near-conformal gauge theory, finding a good fit.



- We have fitted dilaton EFT to lattice data for a particular near-conformal gauge theory, finding a good fit.
- B We proposed a description of composite DM based on dilaton EFT.

- We have fitted dilaton EFT to lattice data for a particular near-conformal gauge theory, finding a good fit.
- We proposed a description of composite DM based on dilaton EFT.
- The DM is the pNGB of a nearly conformal gauge theory, and the dilaton plays the role of a mediator with the standard model.

- We have fitted dilaton EFT to lattice data for a particular near-conformal gauge theory, finding a good fit.
- We proposed a description of composite DM based on dilaton EFT.
- The DM is the pNGB of a nearly conformal gauge theory, and the dilaton plays the role of a mediator with the standard model.
- <sup>IIII</sup> Our framework naturally implements the forbidden dark matter mechanism. The DM is a thermal relic with abundance set by forbidden  $\pi\pi \to \chi\chi$  annihilations. The framework accommodates a wide range of DM masses:  $M_{\pi} \sim 10$  MeV – 100 GeV.

SIN NOR

Thank you!

![](_page_37_Picture_1.jpeg)

## Lattice Action

- Our numerical calculations use improved nHYP smeared staggered fermions with smearing parameters  $\alpha = (0.5, 0.5, 0.4)$ . [LSD PRD 99(2019)014509]
- $\beta_A/\beta_F = -0.25$  where  $\beta_F = 4.8$ .
- After taste splitting, only  $SU(2)_L \times SU(2)_R$  flavor symmetry preserved in massless theory (3 exact NGBs).
- Spectral study has revealed that the taste splitting of the 63-plet masses are on the order of 20–30%. [LSD PRD 99(2019)014509]

## Summary of Improvements to Lattice Dataset Presented in 2306.06095

Since the previous LSD study of the  $N_f = 8$  theory PRD 99 (2019) 014509, we have made some changes.

- **1** We have data for a new observable: The scalar decay constant  $F_S$ .
- 2 We have extrapolated the quantities  $M_{\pi}$ ,  $F_{\pi}$ ,  $M_{\sigma}$  (and also  $F_{S}$ ) to the infinite volume limit.
- 3 We have improved our estimates of systematic uncertainties using Bayesian Model Averaging Jay, Neil PRD 103 (2021) 114502
- The  $N_f = 8$  spectrum has also been calculated before in LatKMI PRD 96 (2017) 014508

#### Scalar Decay Constant Measured by LatKMI in PRD 96 (2017) 014508

Define scalar decay constant using the matrix element

$$\langle 0| J_{\mathcal{S}}(x) | \chi(p) \rangle \equiv F_{\mathcal{S}} M_d^2 e^{-p \cdot x} , \qquad (14)$$

where

$$J_{\mathcal{S}}(x) \equiv m \sum_{i=1}^{N_f} \bar{\psi}_i \psi_i \,. \tag{15}$$

- **1**  $F_S$  can be extracted from lattice measurement of correlator  $\langle J_S(x)J_S(0)\rangle$ , which is used already to measure  $M_d$ .
- 2 It is a true decay constant: It would control the decay rate of the dilaton if there was a heavy scalar mediator coupled to  $\bar{\psi}\psi$  along with light states. Analogous to  $f_{\pi}$  for the QCD pion decaying to leptons via  $W^{\pm}$ .

James Ingoldby (IPPP)

# Scalar Decay Constant

This quantity can also be calculated in dilaton EFT:

$$|F_{S}| = \frac{y N_{f} M_{\pi}^{2} F_{\pi}}{2 M_{d}^{2}} \frac{f_{\pi}}{f_{d}}.$$
 (16)

• Incorporating Eq. (16) into our EFT fit provides a direct test of the coupling between the light scalar and the fermion mass, treated as an external source.

# Lattice Calculation of Scattering Phase Shift

Phys.Rev.D 105 (2022) with LSD Collaboration

M. Lüscher NPB 354 (1991)

$$k^{2} = \frac{1}{4}E_{\pi\pi}^{2} - M_{\pi}^{2}$$
(17)  
$$k \cot \delta(k) = \frac{2\pi}{L}\pi^{-3/2}Z_{00}\left(1, \frac{k^{2}L^{2}}{4\pi^{2}}\right)$$
(18)

- Restrict ourselves to I = 2 channel.
- $E_{\pi\pi}$  is the two–PNGB ground state energy.
- Measured at finite volume (L) on the lattice from a fit to a two point correlation function of two PNGB operators. Schematically: C(t) ~ ⟨O<sup>I=2</sup>(t)O<sup>† I=2</sup>(0)⟩ where O<sup>I=2</sup> ~ ππ.

# *I* = 2 Scattering Length

![](_page_43_Figure_2.jpeg)

- Scattering amplitude at threshold =  $M_{\pi}a^{I=2}$
- First diagram, same as χPT. The others only arise for light scalar (dilaton).

$$M_{\pi}a^{I=2} = -\frac{M_{\pi}^2}{16\pi F_{\pi}^2} \left(1 - (y-2)^2 \frac{f_{\pi}^2}{f_d^2} \frac{M_{\pi}^2}{M_d^2}\right).$$
 (19)

Simplifies to  $\chi$ PT result when  $y \rightarrow 2$  or  $f_{\pi}^2/f_d^2 \rightarrow 0$ .

# Scaling Relations at Leading Order

We also want to test the alternate possibility - that the  $N_f = 8$  theory is *inside* the conformal window.

Assuming the gauge coupling g has reached its fixed point value  $g^*$ , physical quantities may be fitted to scaling relations Zwicky, del Debbio PLB **700** (2011)

$$M_X = C_X m^{[1/(1+\gamma^*)]}, \qquad (20)$$

$$F_Y = C_Y m^{[1/(1+\gamma^*)]},$$
 (21)

$$1/a_0^{(2)} = C_a m^{[1/(1+\gamma^*)]}.$$
 (22)

# Result of Global Fit to Mass-Deformed CFT

Fitting to the same set of lattice data as in the dilaton case, we find:

| Parameter                   | Value and Uncertainty |
|-----------------------------|-----------------------|
| C <sub>M</sub> <sub>π</sub> | 2.121(78)             |
| $C_{F_{\pi}}$               | 0.522(19)             |
| C <sub>Md</sub>             | 2.97(12)              |
| $C_{F_S}$                   | 0.706(33)             |
| Ca                          | -5.88(22)             |
| $\gamma^*$                  | 1.073(28)             |
| $\chi^2/{ m dof}$           | 48.1/19 = 2.53        |

The  $\chi^2$ /dof is larger than for the dEFT fit, while the number of fit parameters is the same. This indicates a lower quality fit.

James Ingoldby (IPPP)

# Marginality Crossing

Gies and Jaeckel: Eur.Phys.J.C46 (2006) Kaplan, Lee, Son and Stephanov: Phys.Rev.D80 (2009) Gukov: Nucl.Phys.B.919 (2017)

![](_page_46_Figure_3.jpeg)

$$\mathcal{L} = \frac{1}{4} \operatorname{Tr} \left[ G_{\mu\nu} G^{\mu\nu} \right] + \sum_{i} \bar{\psi}_{i} \not{\!\!\!D} \psi_{i} + \mathcal{L}_{4 \text{ fermi}}$$
(23)

The conformal window is exited when a 4 fermi operator becomes relevant.

James Ingoldby (IPPP)

#### Freezeout Temperature

![](_page_47_Figure_2.jpeg)

Freezeout Temperature