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IN cosmology

Tensor fields

(LSS), weak lensing

scale structure
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3D rank-0 scalar field

ield:

3D rank-1 vector field
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3D rank-2 (or higher) tensor fi
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galaxy density f

galaxy angular momentum

galaxy shape f
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Example: galaxy shape alignment

- The spatial patterns of galaxy shapes:

- The alignments are statistically correlated to
the initial condition of the Universe, and thus
to the large-scale structure of the universe

“Shape—position” alignment “Shape—shape” alignment

Neighbor can be Both galaxies must be
of any mass/shape prolate candidates

le 5

SP

Pandya+ 2019






Moments of galaxy shapes

- One can define higher-order shape fields from higher-
order moments (c.f. Kogai+ 2021)
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- The higher-order shape field
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- (Normalization is arbitrary)



Spherical basis

- Spherical basis in Cartesian coordinates
e3
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- Traceless spherical tensor basis
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Decomposition of tensor into spherical basis

- Any symmetric tensor can be decomposed
into traceless tensors
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- Decomposition of traceless tensor field into
spherical basis:

FQ (@) = Fxim(z)Y,™),



Power spectrum of tensor field

- Definition of the power spectrum in Fourier space

(Fxytymy (B) Fxyiym, (K')) = (2m)388 (k + K PYE (k)
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- Statistical isotropy

- When the Universe is statistically isotropic, the power spectrum
should be invariant under the coordinate rotation

- In this case, the power spectrum should take the following form,

~ o
Spherical harmonics

3j-symbol L
J=SyHbo (Racah’s normalization)




Symmetries of invariant spectrum
- Complex conjugate
Pégll?xi*(k) = Pégll?xlz (k) i.e., real function

- Parity

PY1%, (k) = (—1)pxatpxs thileti pulsd (1)

- Interchange

lgll;l 1 2 lllg;l
ngxl(k) — (—1)l - lexz(k)



Projection effects

Line of sight | B
‘*I >
. 3D shape tensor
Projected 2D tensor

- Measurable tensors in realistic observations
- 2D projected tensor on the sky

fxiyeis(®) = Pirjy - Pij. Fxjyoj. ()

Pi; = 0;; — 2;2; (projection tensor)

(distant-observer approximation applied)



2D irreducible decomposition

- 2D spherical basis
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- Decomposition of 2D traceless tensor into 2D spherical basis
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- Relation between 3D & 2D irreducible tensors
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- (The last eq. shows that the projected tensor from a 3D traceless
tensor remains traceless also in the projected 2D space)



Flip symmetry of projected field

- Flip symmetry: invariance under z =l L
+s + s 18 S
@) 5 15 (@) = 20 fT (), [ (2,0,0)

- Parity+flip

@) = T (@) = ()petetee 1) (@)

- Parity+flip in distant-observer limit is more similar to the “parity” in
full-sky spherical coordinates



E/B decomposition of projected field

- In Fourier space,
TS __\S —T1S8 E(s B(s
(k) = (iyet™ | 1500 (k) i3 (k)|

- PF symmetry is simply given in the E/B modes

YO (k) S (1)t ) (k)

S PIF S S
X7 (k) = ()P (k)

- When px+s=even, E mode is parity even, B mode is parity odd

- When px+s=0dd, E mode is parity odd, B mode is parity even



F/B decomposition

- E mode B mode




Relations to the invariant spectrum

- Useful combinations:
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Q- = —’i(PEB T PBE)
- We derive
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Application of the perturbation theory

- Theoretical predictions from perturbation theory

- In Paper |, systematic methods to derive the invariant
spectrum from the “integrated Perturbation Theory”
(iIPT, Matsubara 2011) are formulated

- In Paper |l, further methods to calculate nonlinear
corrections in perturbation theory are developed

- In Paper lll, the IPT is applied to the formulas of
projection effects

- In Paper |V, the formulas are generalized to those In
the full-sky, without assuming the flat-sky, distant-
observer limit.



Bias renormalization Schemes



Bias Renormalization Schemes

- Bias renormalization in conventional PT (orig., McDonald
2000)

- For illustration, let’s consider the simplest LIMD model
(Lagrangian space, Gaussian initial condition):
a2
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- Straightforward correlation function:

1

S.%((Q) LD (al2 =+ CLICLSO-2 aihith ) 50((]) + 5 (a22 + a2a40'2 + .. ) [fo(q)]2 + -

- Defining renormalized bias parameters:
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Bias Renormalization Schemes

- Bias renormalization in iPT
(when 0% (6g) is a local function at the same position)

v
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- Renormalized bias functions
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- IPT directly calculates the correlation function
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- If we apply Taylor expansion as in conventional PT

— ((6r)) = o*(p— D)

- on oL = G
L X \ _ 2m—+n _ 1L
= o = (G ) = X fmenti =t

n=1 m=0

- Exactly the same as renormalized bias parameters in conventional PT
- Contains full-order nonlinear effects

- non-perturbative, no need for order-by-order renormalizations



