Selected Developments in BAO++ Theory

Stephen Chen

(w/ Zvonimir Vlah, Martin White, Cullan Howlett, DESI collaboration)

Outline

Review of the BAO in LPT

BAO Reconstruction and IR resummation

The Bispectrum in LPT

- Efficient IR Safe Resummation of Zeldovich Displacements
- Wiggle/No-Wiggle Split
- Primordial Features?

Lagrangian Perturbation Theory in a quick minute

Can think of Lagrangian displacement as an added phase in overdensity

$$\delta_g(\mathbf{k}) = \int d^3 \mathbf{q} \ e^{-i\mathbf{k}\cdot\mathbf{q}} \left(\left(1 + \delta_{g,0}(\mathbf{q})\right) \ e^{-ik\cdot\Psi(\mathbf{q})} - 1 \right)$$

such that for example the power spectrum is $\Delta = \Psi(\mathbf{q}_1) - \Psi(\mathbf{q}_2)$:

$$P(\mathbf{k}) = \int d^3 \mathbf{q} \ e^{i\mathbf{k}\cdot\mathbf{q} - \frac{1}{2}k_ik_j\left\langle\Delta_i^{(1)}\Delta_j^{(1)}\right\rangle} \left(1 + 2ib_1k_i\left\langle\delta_1\Delta_i^{(1)}\right\rangle + 2b_1b_2ik_i\left\langle\delta_1\Delta_i^{(1)}\right\rangle\left\langle\delta_1\delta_2\right\rangle + \dots\right)$$

Extension to redshift space is "easy": $\Psi \to \Psi_s = \Psi + \hat{n}\Psi_{\hat{n}}$. Note Galilean symmetry of the expression!

Nonlinear BAO in another 30 seconds

These effects are controlled by simple parameters

$$\begin{split} &-\frac{1}{2}k_{i}k_{j}\left\langle \Delta_{i}^{(1)}\Delta_{j}^{(1)}\right\rangle _{q=r_{s}}\approx-\frac{1}{2}k^{2}\int\frac{dk}{2\pi^{2}}\ P_{\mathrm{lin}}(k)\ (1-j_{0}(kr_{s})+2j_{2}(kr_{s}))\\ &\left\langle \delta\Delta_{i}^{(1)}\right\rangle _{q=r_{s}}=-\frac{1}{3}q_{i}\ \sigma_{R=r_{s}}^{2} \end{split}$$

In LPT: Vlah et al 2016, Chen et al 2024 Lots of earlier/other work! e.g. Senatore et al 2015, Blas et al 2016

Nonlinear BAO in Pictures and Plots

Analytically, we understand the damping very well!*

^{*}up to small-scale effects we have to fit

(Recent?) Application: Reconstruction and Algorithm Choice

Known, quasi-magical way to undo the damping ("reconstruction"):

- 1. Smooth the density field with (Gaussian) filter S(k).
- 2. Reconstruct Zeldovich displacement with smoothed field:

$$\Psi_{\rm rec} = \frac{i\mathbf{k}}{k^2} \frac{\mathcal{S}(k) \ \delta_g}{b + f\mu^2}$$

- 3. Shift galaxies ('d') and randoms ('s') by the *negative* displacement.
- 4. Construct the reconstructed density field as $\delta_{rec} = \delta_d \delta_s$.

In redshift space, two options: **RecIso** (shift randoms in real space) or **RecSym** (shift randoms in redshift space too).

Reconstruction (II)

Important point: BAO in randoms "s" subject to the same IR effects as galaxies *moved by the same amount*—because they are made from the galaxy density!

In fact a little calculation shows that e.g. the damping for both from IR displacements is given in **RecSym** by (cf. Chen et al 2020)

$$\Sigma_{s,\text{rec}}^2 = \int \frac{dk}{3\pi^2} (1 - j_0(kr_s) + 2j_2(kr_s)) \ P_{\text{lin}}(k)(1 - \mathcal{S}(k))^2$$

Not so in **RecIso**! Similarly the BAO shift is also fully not cancelled in RecIso, which therefore has more shift and less signal (in principle). (cf. also using Wiener filter instead of Gaussian)

Beyond the Power Spectrum: Bispectrum in LPT

Extension of the Zeldovich exponent from the power spectrum $(q_{nm} = q_n - q_m)$:

$$\exp\left[-\frac{1}{2}k_{i}k_{j}A_{ij}(\mathbf{q})\right] \to \exp\left[\frac{1}{2}\left(k_{1,i}k_{3,j}A_{ij}(\mathbf{q}_{13}) + k_{2,i}k_{3,j}A_{ij}(\mathbf{q}_{23}) + k_{1,i}k_{2,j}A_{ij}(\mathbf{q}_{12})\right)\right]$$

such that the bispectrum is

$$\int d^3 \mathbf{q}_{13} d^3 \mathbf{q}_{23} \ e^{-i\mathbf{k}_1 \cdot \mathbf{q}_{13} - i\mathbf{k}_2 \cdot \mathbf{q}_{23}} \exp\left[\text{Zeldovich terms}\right] (1 + \text{bias terms})$$

Again, manifestly Galilean invariant, and you can probably guess the N-point function extension!

How to compute it (efficiently)

This calculation has historically been (numerically) difficult.

- (But see Tassev (2013) in configuration space).

However we can use techniques developed for the power spectrum and compute:

$$\mathcal{E}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{p}) = \int d^3 \mathbf{q} \ e^{-i\mathbf{p}\cdot\mathbf{q} + \frac{1}{2}k_{1,i}k_{2,j}A_{ij}(\mathbf{q})}$$

(i.e. FFTLog)

such that the bispectrum is in terms of pairwise displacements

$$B(\mathbf{k}_1, \mathbf{k}_2) = \int_{\mathbf{p}} \mathcal{E}_{13}(\mathbf{k}_1 - \mathbf{p}) \mathcal{E}_{23}(\mathbf{k}_2 + \mathbf{p}) \mathcal{E}_{12}(\mathbf{p})$$

How to compute it (safely)

However we need to take a bit of care because

$$\mathcal{E}_{12}(\mathbf{p}) = \mathcal{E}_{12}^{\text{fin}}(\mathbf{p}) + \left(1 - \int_{\mathbf{p}'} \mathcal{E}_{12}^{\text{fin}}(\mathbf{p}')\right) (2\pi)^3 \delta_D(\mathbf{p})$$

has a finite and infinite piece that obey an integral equation.

In linear theory

$$\mathcal{E}_{12}^{\mathrm{lin}}(\mathbf{p}) = -\frac{(\mathbf{k}_1 \cdot \mathbf{p})(\mathbf{k}_2 \cdot \mathbf{p})}{p^4} P_{\mathrm{L}}(p) + \left(1 + \frac{1}{2}(\mathbf{k}_1 \cdot \mathbf{k}_2)\Sigma^2\right)(2\pi)^3 \delta_D(\mathbf{p})$$

So we have to be quite careful when integrating in **p**.

How to compute it (safely) II

However, we can use the same procedure as the 1-loop bispectrum to make things IR safe, splitting into 3 IR regions and subtracting off the integral contribution

Regions also naturally include k/2 sphere around each pole.

(Baldauf et al (2015), see also Angulo et al (2016))

Wiggles in the Bispectrum

In the bispectrum the freedom of the third vertex/other two legs means the saddle point requires UV/IR separation, unlike in the power spectrum where it is "just" a saddle point.

$$\mathcal{E}_{13}^{\text{fin}}(\mathbf{k}_1)\mathcal{E}_{23}^{\text{fin}}(\mathbf{k}_2) + (\text{IR Region of } k_{1,2}) = \int_{\mathbf{q}_{1,2}} e^{-i\mathbf{k}_1 \cdot \mathbf{q}_1 - i\mathbf{k}_2 \cdot \mathbf{q}_2} \left(e^{\frac{1}{2}k_{1,i}k_{2,j}A_{ij}(\mathbf{q}_1 - \mathbf{q}_2)} \right)_{\text{IR}} \tilde{\mathcal{E}}_{13}^{\text{fin}}(\mathbf{q}_1) \tilde{\mathcal{E}}_{23}^{\text{fin}}(\mathbf{q}_2)$$

If BAO is in q_1 , dropping q_2 dependence gives damping

$$e^{\frac{1}{2}(\mathbf{k}_1\cdot\mathbf{k}_2)\Sigma_s^2}e^{\frac{1}{2}(\mathbf{k}_1\cdot\mathbf{k}_3)\Sigma_s^2}P_{w,\mathrm{lin}}(k_1) = e^{-\frac{1}{2}k_1^2\Sigma_s^2}P_{w,\mathrm{lin}}(k_1)$$

as shown in TSPT.

This ignored dof incurs (perturbative) corrections due to IR modes on BAO scale due to derivatives of A_{ii} .

Wiggles in the N-point functions

It's the same!

$$C_w \sim \left(\prod_{m=2}^{N-1} \int_{\mathbf{q}_m} e^{-i\mathbf{k}_m \cdot \mathbf{q}_m}\right) \exp\left\{\frac{1}{2} \sum_{n,m>1}^{n \neq m} k_{n,i} k_{m,j} A_{ij}(\mathbf{q}_{nm})\right\}$$
$$\int_{\mathbf{q}_1} e^{-i\mathbf{k}_1 \cdot \mathbf{q}_1} \exp\left\{\frac{1}{2} \sum_{m \neq 1} k_{1,i} k_{m,j} A_{ij}(\mathbf{q}_{1m})\right\} \xi_w(\mathbf{q}_1)$$

$$\frac{1}{2}k_{1,i}\left(\sum_{m\neq n}k_{m,j}\right)A_{ij}(\mathbf{q}_s) = -\frac{1}{2}k_1^2\Sigma_s^2$$

Comparisons with 1-loop

As could've been foreseen, adding loops naively is bad, but adding loops smartly is very good! (i.e. corrections to Gaussian damping from Zeldovich are due to perturbative IR densities)

Primordial Features

Can also apply to the case of non-BAO features, e.g. for logarithmic wiggles

Can show that features in the power spectrum with nonlinear dispersion have damping $\phi(k)$ have k-dependent cutoff $r = \phi'(k)$ though this depends on a well-localized approximation and wiggle/no-wiggle split.

Conclusions

The state of the BAO is good.

Modern galaxy surveys can take advantage of what we know and e.g. do BAO reconstruction the "right" way.

The bispectrum at 1-loop is in excellent agreement between LPT and EPT, but need to be careful about primordial feature amplitude if only IR resuming at tree level.

triceratops

(Image courtesy of GPT-4o)

A Python code to compute bispectra in LPT. A cousin of velocileptors and spinosaurus. Requires NumPy, SciPy, pyFFTW and velocileptors to run.