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Overall structure of CLASS v3.4
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external/oneloop1. compute linear (+no-wiggle) spectrum 
2. call one of nonlinear modules 
3. store information (see next slide)
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starting point =  
older code in real space                     

by A. Moradinezhad  
(used also in cosmosis_gclust)
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‣ log-Fourier approach with oneloop_integration = log_fourier (also: direct_integration) 

‣ if (cosmology-independent) kernels  not found in binary files or cached in memory, 
compute them and write them, otherwise read them 

‣ log-Fourier transform linear spectrum  into coefficients  at selected  

‣ compute 42 loops  at these  

‣ oneloop_strategy = store_spectra [stick to old CLASS logic] 

‣ uses input {biases} {counter-terms} {stoch. terms} to store , , 

 for {matter, tracer (e.g. galaxies), cross} at tabulated values 

‣ observables can be retrieved at any  within output.c or classy.pyx using 
interpolation  

‣ oneloop_strategy = store_loops [fast/slow parameters in MCMC] 

‣ only store  -independent  at each  

‣ in classy.pyx, fast functions can build observables on demand for requested {bias} 
{counter-terms} {stoch. terms} { } { }

Kn
ij

Plin ci zk

L(n) = ci K(n)
ij cj zk

Preal
X (k, z) Prsd

X (k, z, μ)
Prsd

X,ℓ=0,2,4(k, z) X ∈

z

μ {L(n)} zk

z μ

4

What happens in the oneloop module ?

can be just zero ,  
and then scaling with , 

or several values

z = 0
D(z, k), f (z, k)
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‣ Comparisons in  for  

‣ Direct integration vs. FFTlog (see 2402.09778 Fig 1): 

‣ Difference in each individual loop contribution < 0.1%  

‣ CLASS-OneLoop vs. CLASS-PT [Chudaykin, Ivanov, Philcox, Simonovic 20] (see 2402.09778 Fig. 2,3,4):  

‣ Different de-wiggling algorithms (Gaussian filter vs. spectral decomposition):                              
< 0.5% in real space, < 5% for multipoles; could be absorbed by counter-terms… 

‣ Same de-wiggling algorithms (Gaussian filter): < 0.2% in real space, < 0.3% for multipoles 

‣ Also consistent with cosmosis_gclust [Moradinezhad et al.], velocilaptors [Chen et al. 20], PyBird 
[D’Amico et al. 20]

k ∈ [0.01, 0.3] h /Mpc NFFT = 256

5

What is the numerical accuracy of the oneloop module?
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Figure 3: Comparison of the one-loop, IR-resummed galaxy power spectra computed by CLASS-PT
(dotted lines) and CLASS-OneLoop (solid lines). The top row shows the real-space power spectrum,
while the bottom row shows the first three power spectrum multipoles in redshift space in di↵erent colors.
In the left panels, we stick to the default wiggle/no-wiggle algorithm of each code, while on the right we
enforce the same Gfilter decomposition in both codes. In the upper panels of the top row, the CLASS-PT
and CLASS-OneLoop predictions are indistinguishable by eye. The bottom panels show the fractional
di↵erence between the two codes. All the EFT counter terms and shot noise contributions are set to
zero, while the biases are fixed to values described in the text. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate.

schemes yielding minimal features in the wiggle component (like our Gfilter) are expected to

provide more accurate results than schemes enhancing these features (like the DST). Moreover,

even if we consider that none of these two schemes is better than the other, the induced discrep-

ancy would not necessarily play a role in the analysis of next-generation surveys. Indeed, this

di↵erence is coming from the UV-sensitivity of the loop integrals and can therefore be absorbed

by the corresponding counter-terms.
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Figure 3: Comparison of the one-loop, IR-resummed galaxy power spectra computed by CLASS-PT
(dotted lines) and CLASS-OneLoop (solid lines). The top row shows the real-space power spectrum,
while the bottom row shows the first three power spectrum multipoles in redshift space in di↵erent colors.
In the left panels, we stick to the default wiggle/no-wiggle algorithm of each code, while on the right we
enforce the same Gfilter decomposition in both codes. In the upper panels of the top row, the CLASS-PT
and CLASS-OneLoop predictions are indistinguishable by eye. The bottom panels show the fractional
di↵erence between the two codes. All the EFT counter terms and shot noise contributions are set to
zero, while the biases are fixed to values described in the text. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate.
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Figure 3: Comparison of the one-loop, IR-resummed galaxy power spectra computed by CLASS-PT
(dotted lines) and CLASS-OneLoop (solid lines). The top row shows the real-space power spectrum,
while the bottom row shows the first three power spectrum multipoles in redshift space in di↵erent colors.
In the left panels, we stick to the default wiggle/no-wiggle algorithm of each code, while on the right we
enforce the same Gfilter decomposition in both codes. In the upper panels of the top row, the CLASS-PT
and CLASS-OneLoop predictions are indistinguishable by eye. The bottom panels show the fractional
di↵erence between the two codes. All the EFT counter terms and shot noise contributions are set to
zero, while the biases are fixed to values described in the text. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate.

schemes yielding minimal features in the wiggle component (like our Gfilter) are expected to

provide more accurate results than schemes enhancing these features (like the DST). Moreover,

even if we consider that none of these two schemes is better than the other, the induced discrep-

ancy would not necessarily play a role in the analysis of next-generation surveys. Indeed, this

di↵erence is coming from the UV-sensitivity of the loop integrals and can therefore be absorbed

by the corresponding counter-terms.

– 17 –

10�3

100

103

106

109

Plo
op

�(1
)

n̂
(k

,
µ

=
0.

5)
[(

M
pc

/
h)

3 ]

Nfft = 256, nm = �0.3, ng = �1.55

Plin

I22
01

Id 2
01

IG2
01

FG2
01

J121
01

J112
01

J211
01

Jd 2
01 JG2

01

10�3 10�2 10�1

k [h/Mpc]

�1

0

1

fr
ac

.
di

ff
.[

%
] 10�3

100

103

106

109

Plo
op

�(2
)

n̂
(k

,
µ

=
0.

5)
[(

M
pc

/
h)

3 ]

Nfft = 256, nm = �0.3, ng = �1.55

Plin

J121
02

J211
02

Jd 2
02

JG2
02

I22
11

I13
11

J121
11

J112
11

J211
11

N11

10�3 10�2 10�1

k [h/Mpc]

�1

0

1

fr
ac

.
di

ff
.[

%
]

Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).16

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2 = �0.05, b�3 = 0.08 . (2.46)

These precise values are arbitrary, but ensure that the real- and redshift-space power spectrum

are positive on all scales.

Third, the codes assume an Einstein-de Sitter (EdS) Universe to factorize the time and

momentum dependence of the loops (replacing the EdS growth with the one in the true cosmol-

16
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).16

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and
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sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2 = �0.05, b�3 = 0.08 . (2.46)

These precise values are arbitrary, but ensure that the real- and redshift-space power spectrum

are positive on all scales.

Third, the codes assume an Einstein-de Sitter (EdS) Universe to factorize the time and

momentum dependence of the loops (replacing the EdS growth with the one in the true cosmol-

16
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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‣ time flow [PRELIMINARY] on MacBookPro Intel i9 2.3GHz 16 cores:  

‣  , no CMB, single  

‣   computed till  and extrapolated till  (  for tracers) 

‣ Request: spectrum  for array of 3 , 137 , 5 

ΛCDM + mν {zk} = 0

Plin kmax = 50 h /Mpc kmax = 103 h /Mpc × 4

Prsd
tracer(k, μ, z) z k μ

Times in [s] , Nc = # of cores
FFTlog  

NFFT = 256 
Nk=NFFT

SFTlog 
NFFT = 96 
Nk = 301

kernels K 
(once per MCMC) 73/Nc = 4.5 10/Nc = 0.6

log-Fourier transform Plin into c 

(once per cosmology and zk)

0.005/Nc ~ 10-4 0.010/Nc ~ 5 10-4

individual loops (L = c K c) 

(once per cosmology and zk)

2.1/Nc = 0.13 0.3/Nc = 0.02

 build spectrum from loops 

(scale with # of output z, here 3) 0.006/Nc ~ 10-4 0.006/Nc ~ 10-4

rest of CLASS with Nc = 16 0.5 0.5

total CLASS with Nc = 16

(cached kernels) 0.6 0.5

6

How fast is the oneloop module?

scales like NFFT ln(NFFT)

scales like N2
FFT

slower 
version
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‣ Yes, at least by revisiting the log-Fourier transform… 

‣ logFT of  :     coefficients   

‣ fourier_mode = fourier_mode_fft (FFTlog) 

‣ discrete Fast Fourier Transform with   values  , divide-and-conquer algorithm 

‣ (implemented in C from scratch by N. Schöneberg for arXiv:1807.09540 in tools/fft.c) 

‣ decrease number of coefficients   decrease their accuracy 

‣ fourier_mode = fourier_mode_spline (SFTlog) 

‣ spline   piece-wise cubic polynomial, moments      =   

‣ (implemented in C from scratch by C. Radermacher for this work in tools/array.c) 

‣ works with  sampled at non-evenly-spaced  (e.g. taken from previous modules and 
dense for BAO, sparse elsewhere) 

‣ decrease number of coefficients  with constant accuracy

Plin NFFT cj =
1
T ∫

ln(kmax)

ln(kmin)
d lnk Plin(k) exp [( 2πi j

T
− ν) ln(k)]

NFFT ki

NFFT ⇒

Plin(ki) → P′ ′ i → cj Σi αi, j P′ ′ i

Plin(ki) ln ki

NFFT

7

Can we do better?
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‣ time flow [PRELIMINARY] on MacBookPro Intel i9 2.3GHz 16 cores:  

‣  , no CMB, single  

‣   computed till  and extrapolated till  (  for tracers) 

‣ Request: spectrum  for array of 3 , 137 , 5 

ΛCDM + mν {zk} = 0

Plin kmax = 50 h /Mpc kmax = 103 h /Mpc × 4

Prsd
tracer(k, μ, z) z k μ

8

Can we do better?

Times in [s] , Nc = # of cores
FFTlog  

NFFT = 256 
Nk=NFFT

SFTlog 
NFFT = 96 
Nk = 301

kernels K 
(once per MCMC) 73/Nc = 4.5 10/Nc = 0.6

log-Fourier transform Plin into c 

(once per cosmology and zk)

0.005/Nc ~ 10-4 0.010/Nc ~ 5 10-4

individual loops (L = c K c) 

(once per cosmology and zk)

2.1/Nc = 0.13 0.3/Nc = 0.02

 build spectrum from loops 

(scale with # of output z, here 3) 0.006/Nc ~ 10-4 0.006/Nc ~ 10-4

rest of CLASS with Nc = 16 0.5 0.5

total CLASS with Nc = 16

(cached kernels) 0.6 0.5

accuracy stable 
at 10-4 level
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‣ Class-OneLoop already fast enough (~ 20 ms) unless  calculation substituted by emulator… 

‣ Before release of v3.4: need time to polish style (user-friendliness), set robust default 
precision parameters, provide clear documentation in release paper 

‣ Possible developments -> panel discussion this evening

Plin

9

Conclusions
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Back-up slides
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‣ oneloop_integration = log_fourier (also: direct_integration, uses CUBA library) 

‣ if (cosmology-independent) kernels  not found in binary files, compute them and 
write them, otherwise read them 

‣ log-Fourier transform linear spectrum coefficients  at selected  

‣ compute  loops  at each  

‣ oneloop_redshift = single 

‣ only use  

‣ rescale to any other z using growth factor/rate of the model 

‣ oneloop_redshift = all 

‣ expansion/loops at each  used internally by fourier.c (about a hundred) 

‣ no rescaling, but still, kernels are z-independent… 

‣ oneloop_redshift = few 

‣ expansion/loops at  passed by user with  “z_pk = .., , ..” 

‣ rescaling to closest  using growth factor/rate of the model

Kn
ij

ci zk

n = 1, . . . , 40 Ln = ci Kn
ij cj zk

zk = 0

zm

zk

zk

11

Which redshifts are used in oneloop.c ?

 used internally in fourier.czm

 of FFTlog expansion and loop calculationszk

0 z
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‣ Direct integration versus FFTlog for loops with first / second velocity momenta 

‣ Always < 0.1% difference in targeted k range for NFFT = 256

12

Numerical accuracy of FFTlog/integration scheme?
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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‣ Comparison in real space at ,             

‣ Difference dominated by dewiggling method for IR resummation; absorbed by counter-terms? 

‣ < 0.2% when sticking to same Gaussian filter

z = 0 NFFT = 256,

13

Comparison with CLASS-PT?
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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Figure 3: Comparison of the one-loop, IR-resummed galaxy power spectra computed by CLASS-PT
(dotted lines) and CLASS-OneLoop (solid lines). The top row shows the real-space power spectrum,
while the bottom row shows the first three power spectrum multipoles in redshift space in di↵erent colors.
In the left panels, we stick to the default wiggle/no-wiggle algorithm of each code, while on the right we
enforce the same Gfilter decomposition in both codes. In the upper panels of the top row, the CLASS-PT
and CLASS-OneLoop predictions are indistinguishable by eye. The bottom panels show the fractional
di↵erence between the two codes. All the EFT counter terms and shot noise contributions are set to
zero, while the biases are fixed to values described in the text. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate.

this comparison highlights that the predicted IR-resummed galaxy power spectra, particularly

in redshift space, has a non-negligible dependence on the approach employed for the wiggle/no-

wiggle decomposition, which must be defined with much care. At face value, one may argue that

schemes yielding minimal features in the wiggle component (like our Gfilter) are expected to

provide more accurate results than schemes enhancing these features (like the DST). Moreover,

even if we consider that none of these two schemes is better than the other, the induced discrep-
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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‣ Dewiggling method for IR resummation:  

‣ Spectral decomposition (DST) [Hamann et al. 2010] vs. Gaussian filtering (of  )Plin /PHE
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Comparison with CLASS-PT?
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Figure 2: Comparison of the wiggle/no-wiggle decomposition of the linear matter power spectrum at
redshift z = 0 in CLASS-OneLoop (blue) and CLASS-PT (red). The left panel shows the broadband
(no-wiggle) spectra and the right panel the extracted BAO features (wiggle spectra). For the broadband
spectra, we also show the residuals (black). The two methods have a maximal 10% discrepancy around
the scale of the broadband peak, but for the purpose of fitting data the di↵erences at smaller scales tend
to be more relevant.

ogy). Since the time-dependence is factorized out in a trivial way, it is su�cient to compare the

two codes at a single redshift – in this section, z = 0.

Next, both CLASS-PT and CLASS-OneLoop perform the loop calculations using the

FFTLog algorithm introduced in ref. [20], with slightly di↵erent values of the FFT parameters.

The goal of our comparison is to check that their predictions agree despite of these numerical

di↵erences.

Finally, in both codes, the implementation of the IR-resummation is based on the wiggle

no-wiggle split, with a suppression of the wiggle component, as described in Eqs. (2.28) and

(2.32). However, while CLASS-PT uses a DST algorithm [67, 70] to split the matter power

spectrum into a wiggle and a no-wiggle component, our baseline implementation uses the Gfilter

method [58].

Overall, we find an excellent agreement between the two codes, with small di↵erences actu-

ally dominated by the use of di↵erent default algorithms for the wiggle/no-wiggle decomposition.

Indeed, residual di↵erences are even smaller when enforcing the same decomposition algorithm

in both codes. Below, we describe in more detail the results of this comparison.

In figure 2, we show the wiggle/no-wiggle decomposition of the linear matter power spec-

trum performed by default in CLASS-OneLoop (red, Gfilter) and CLASS-PT (blue, DST).

The extracted broadband spectrum and BAO features are shown in the left and right plots,

respectively. The fractional di↵erence of the broadband is shown at the bottom panel of the

left plot. We see that the DST artificially shifts the peak of the broadband spectrum towards

smaller scales, resulting in an enhanced first BAO peak, shifted to larger scales compared to

analytical predictions [89]. Furthermore, the amplitudes of the other BAO peaks di↵er in the

two schemes, with higher amplitudes in the DST scheme.17 On linear scales, these discrepancies

17
See Appendix B of [62] for the comparison of these two algorithms with yet another approach based on fitting

the broadband with a family of B-splines.
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‣ Comp. in redshift space at ,             

‣ Difference dominated by dewiggling method for IR resummation; absorbed by counter-terms? 

‣ < 0.3% when sticking to same Gaussian filter
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Figure 3: Comparison of the one-loop, IR-resummed galaxy power spectra computed by CLASS-PT
(dotted lines) and CLASS-OneLoop (solid lines). The top row shows the real-space power spectrum,
while the bottom row shows the first three power spectrum multipoles in redshift space in di↵erent colors.
In the left panels, we stick to the default wiggle/no-wiggle algorithm of each code, while on the right we
enforce the same Gfilter decomposition in both codes. In the upper panels of the top row, the CLASS-PT
and CLASS-OneLoop predictions are indistinguishable by eye. The bottom panels show the fractional
di↵erence between the two codes. All the EFT counter terms and shot noise contributions are set to
zero, while the biases are fixed to values described in the text. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate.

this comparison highlights that the predicted IR-resummed galaxy power spectra, particularly

in redshift space, has a non-negligible dependence on the approach employed for the wiggle/no-

wiggle decomposition, which must be defined with much care. At face value, one may argue that

schemes yielding minimal features in the wiggle component (like our Gfilter) are expected to

provide more accurate results than schemes enhancing these features (like the DST). Moreover,

even if we consider that none of these two schemes is better than the other, the induced discrep-
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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Figure 1: Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or the
FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed and
solid lines correspond to negative and positive values, respectively. The vertical dashed line corresponds to
k = 0.3 h/Mpc, which is the small-scale cuto↵ beyond which the perturbative one-loop model is expected
to be inaccurate. The bottom panels show the fractional di↵erences between DI and FFTLog results.
On the scales most relevant for the modeling of nonlinear contributions (0.01 < k [Mpc�1

h] < 0.3) the
DI and FFTLog computations agree to better than 0.1% (the spike on the residual di↵erence plot on the
right corresponds to a change of sign in the loop contributions and is not a point of concern).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-OneLoop,

we compare the numerical evaluations of the real- and redshift-space galaxy power spectra

against the publicly available code CLASS-PT, which have many similarities and few technical

di↵erences that we now review.

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly di↵ers

between CLASS-PT and CLASS-OneLoop. In the former, the counter-term parameters are

defined for each Legendre multipole, while in our implementation they are associated to each

velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT and

CLASS-OneLoop cover the same range of models, but a case-by-case comparison is di�cult

when the counter-terms are non-zero. Fortunately, such a comparison is not necessary for the

sake of validation, because the counter-term parameters only multiply the linear power spectrum.

Thus, for the purpose of the present comparison, we can fix all counter-terms to zero. We can

actually do the same with the shot noise terms since they are not combined with any loop

integral, see eq. (2.22). Without loss of generality, we set the values of the bias parameters to

b1 = 1.8, b2 = �0.5, bG2
= �0.05, b�3

= 0.08 . (2.46)

17
We have also performed a comparison with Velocileptor [36] and found very good overall agreement.

However, because of di↵erences in the definition of bias parameters in Velocileptor and CLASS-OneLoop (or

CLASS-PT), we do not present this comparison in this section.
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‣ FFTlog expansion domain: ,  (  for tracers) (avoid ringing) 

‣ use  extrapolation for  without impact on  

‣ on RWTH Aachen cluster node: 2 Intel Xeon Platinum 8160 (24 cores each), 192GB RAM 

‣ [preliminary from paper I]: already improved, can still gain more 

‣ if kernels are not cached:  

‣ computation of kernels  + spectrum coefficients  + loops  at one z: 

in seconds: 

‣ If kernels are cached:  

‣ computation of spectrum coefficients  + loops  at one z: 

in seconds: 

‣ slightly smaller than to rest of CLASS!

kmin = 10−6 h /Mpc kmax = 103 h /Mpc × 4

Plin(k) k ∈ [50,103] h /Mpc Poneloop(k < 1 h /Mpc)

Kn
ij ci Ln = ci Kn

ij cj

ci Ln = ci Kn
ij cj

16

Performance?

ancy would not necessarily play a role in the analysis of next-generation surveys. Indeed, this

di↵erence is coming from the UV-sensitivity of the loop integrals and can therefore be absorbed

by the corresponding counter-terms.

2.2.4 Performance

Table 1 presents the wallclock time for computing the one-loop IR-resummed galaxy power

spectrum in redshift space with NFFT = 128, 256 or 512 Fourier components in the range k 2⇥
10�5

, 51
⇤

Mpc�1 using the FFTLog method to compute the loop integrals. The quoted times

include the full computation of FFTLog matrices and the calculation of each loop integral for

an array of k bins. It neglects the (very small) time for summing the loops and re-evaluating

them for multiple µ values. If the loop matrices are cached between consecutive evaluations, the

runtimes reduce drastically to those compiled in table 2. The reported timings were measured

on the RWTH Cluster CLAIX-2018 subtracting the runtime of CLASS for computing the linear

matter power spectrum. The computing nodes contain 2 Intel Xeon Platinum 8160 Processors

with 24 cores each and a total of 192GB of RAM. For these tests the code was compiled with

icc 2021.6.0 at optimization level 3.

As a reference, we also quote the timing for computing the model by performing direct

numerical integration of the loops using 4 OpenMP threads.

Multi-threading is very e�cient for accelerating the evaluation of loop integrals as every

mode is independent and requires the same amount of work, while the number of entries in each

loop matrix vary between O(NFFT) and O(N2

FFT
).

NFFT = 128 NFFT = 256 NFFT = 512 Direct integration

4 threads 0.61 ± 0.26 2.05 ± 0.15 6.98 ± 0.14 ⇠ 600

8 threads 0.40 ± 0.09 1.38 ± 0.12 3.51 ± 0.23 -

16 threads 0.52 ± 0.11 1.13 ± 0.13 2.00 ± 0.22 -

Table 1: Wallclock time in seconds for a single CLASS-OneLoop run (deducting the linear part of the
CLASS workflow) for di↵erent numbers of Fourier components NFFT and OpenMP threads. Timings
were measured on CLAIX-2018 systems averaging 150 consecutive runs.

NFFT = 128 NFFT = 256 NFFT = 512

4 threads 0.101 ± 0.008 0.400 ± 0.003 1.467 ± 0.085

8 threads 0.046 ± 0.004 0.212 ± 0.018 0.776 ± 0.037

16 threads 0.028 ± 0.003 0.105 ± 0.003 0.382 ± 0.0

Table 2: Wallclock time in seconds for evaluating all loop integrals using the FFTLog method (deducting
the linear part of the CLASS workflow) on cached loop matrices for di↵erent numbers of Fourier com-
ponents NFFT and OpenMP threads. Timings were measured on CLAIX-2018 systems averaging 150
consecutive runs

The final version of CLASS-OneLoop, to be publicly released, is expected to have further

improvement in speed, and will be presented in more details in an upcoming publication [41].
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‣ No external libraries (only optionally CUBA if direct integration required) 

‣ logFT of  :        for  

‣ fourier_mode = fourier_mode_fft 

‣ discrete Fast Fourier Transform with  , with divide-and-conquer algorithm (FFTlog) 

‣ scales like , but then loop calculation scales like  

‣ implemented in c from scratch by N. Schöneberg for arXiv:1807.09540 in tools/fft.c 

‣ fourier_mode = fourier_mode_spline 

‣  always splined for interpolation -> piece-wise cubic polynomial, moments  

‣  = sum of piece-wise analytic integrals = linear combination of  with precomputed factors 

‣ works with  sampled at non-evenly-spaced  (e.g. coarse for BAO, sparse elsewhere) 

‣ scales like  , but then loop calculation still scales like  

‣ decorrelates  from  samples.  can be reduced without degrading  precision. 

‣ implemented in c from scratch by C. Radermacher for this work in tools/array.c 

Plin cn =
1
T ∫

ln(kmax)

ln(kmin)
dlnk Plin(k) exp [( 2πi n

T
− ν) ln(k)] n = 0, . . . , NFFT

NFFT ki

NFFT ln(NFFT) N2
FFT

Plin(ki) P′ ′ i

cn P′ ′ i

Plin(ki) ln ki

NFFT × Nk N2
FFT

NFFT Nk NFFT cn

17

Which log-Fourier Transform algorithms?

0.1% error


