CLASS-OneLoop Numerical aspects and outlook

Julien Lesgourgues (TTK, RWTH Aachen university)

Theoretical Modeling of Large-Scale Structure of the Universe, Edinburgh, 4.06.2024

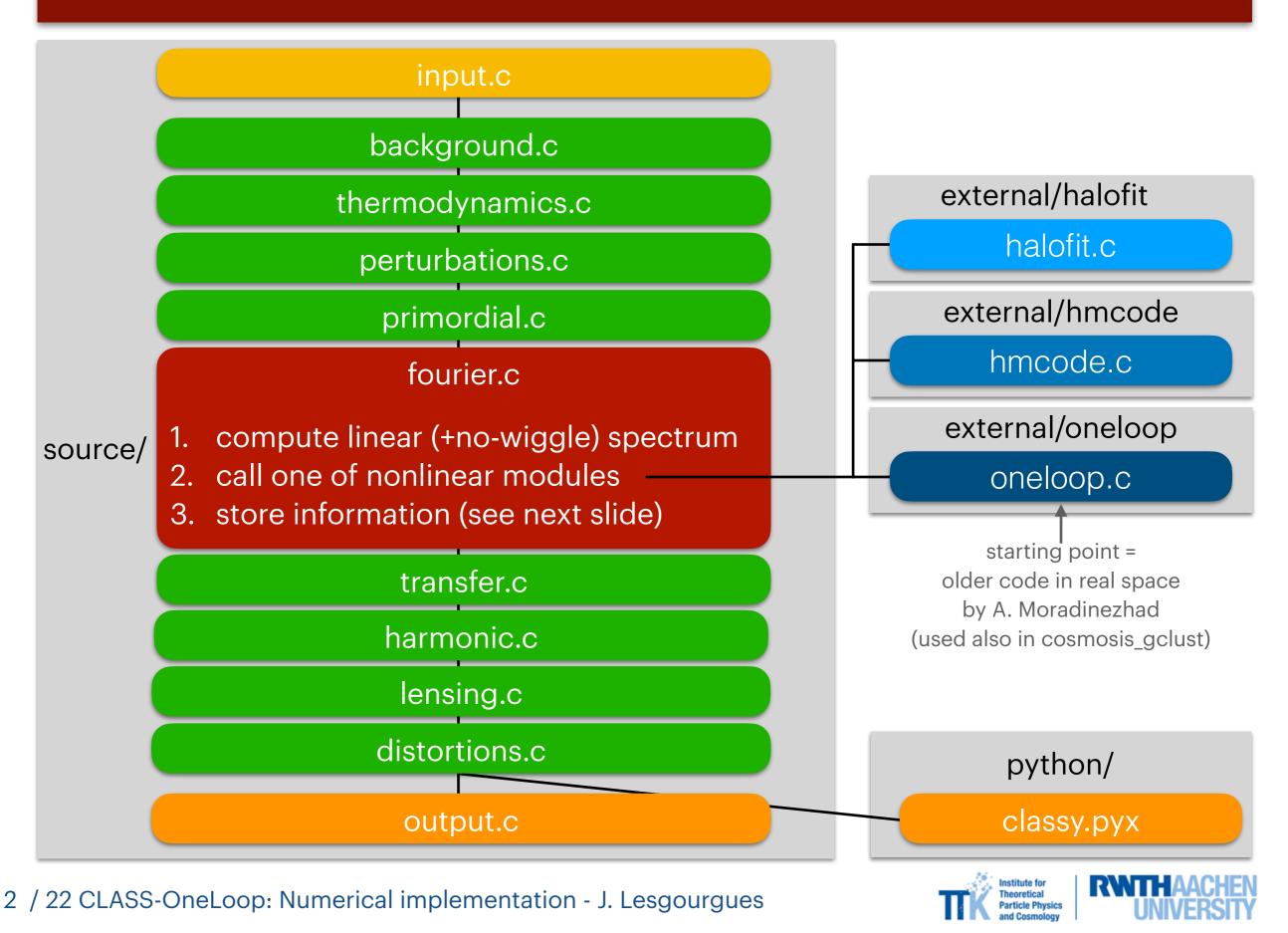
collab. with Dennis Linde, Azadeh Moradinezhad, Christian Radermacher, Santiago Casas, arXiv 2402.09778, accepted in JCAP

In preparation: release of the code in CLASS v3.4 + release paper with tests and documentation

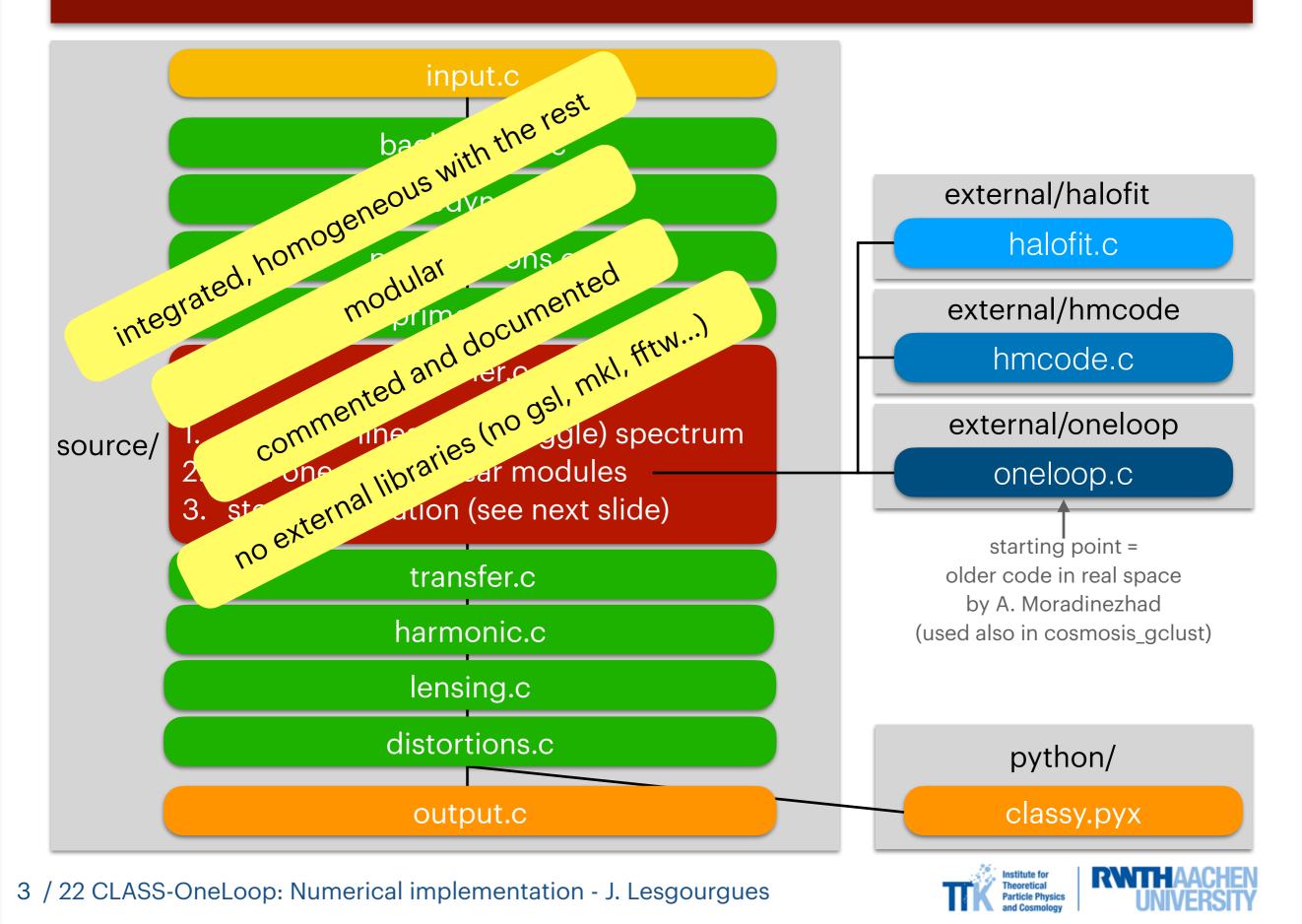
Final version still under development, input/suggestions/requests welcome!

1 / 22 CLASS-OneLoop: Numerical implementation - J. Lesgourgues

Overall structure of CLASS v3.4



Overall structure of CLASS v3.4

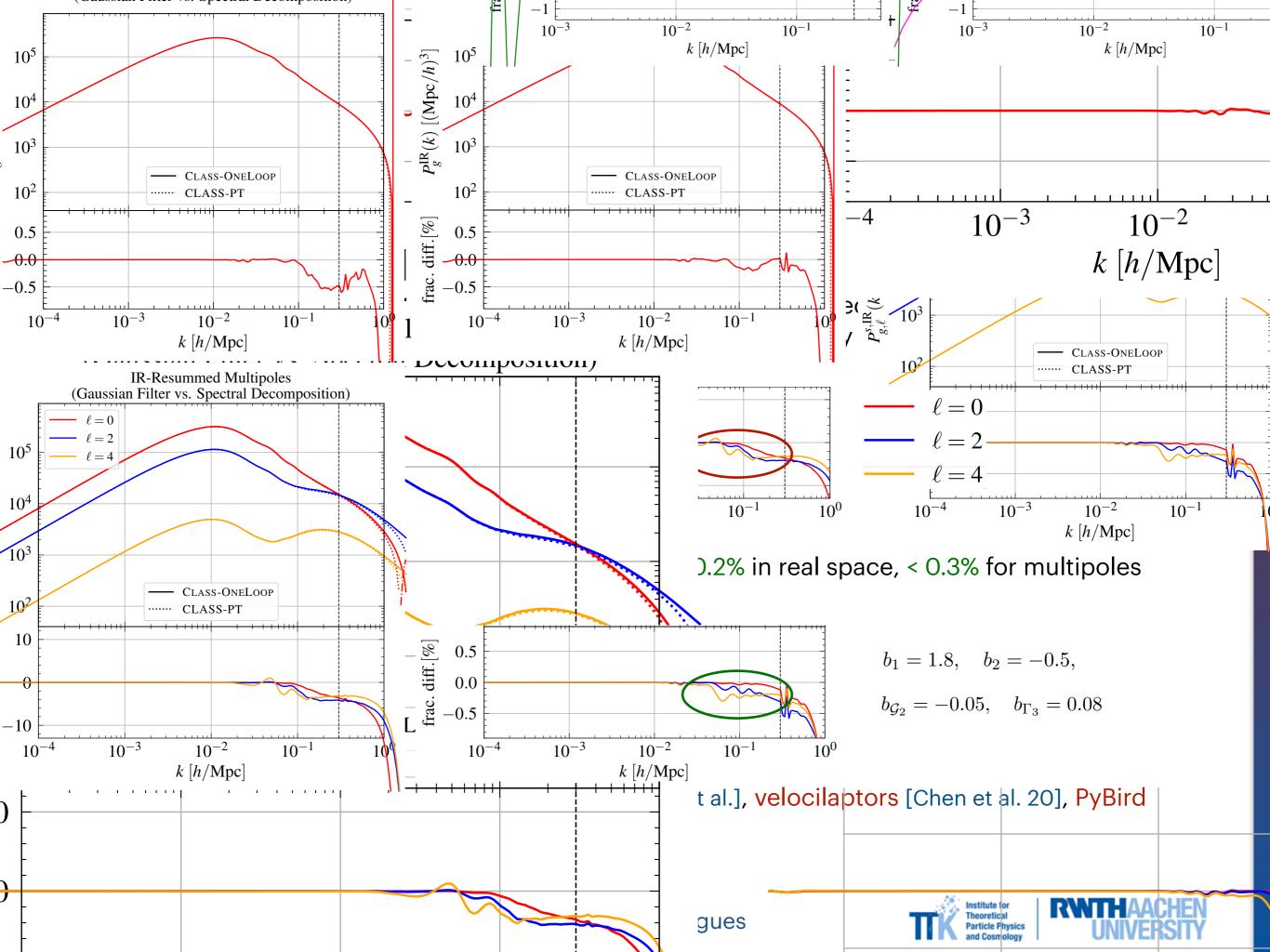


What happens in the oneloop module ?

- Iog-Fourier approach with oneloop_integration = log_fourier (also: direct_integration)
 - if (cosmology-independent) kernels Kⁿ_{ij} not found in binary files or cached in memory, compute them and write them, otherwise read them
 - ▶ log-Fourier transform linear spectrum P_{lin} into coefficients c_i at selected z_k
 - compute 42 loops $L^{(n)} = c_i K_{ij}^{(n)} c_j$ at these z_k

can be just zero z = 0, and then scaling with D(z, k), f(z, k), or several values

- oneloop_strategy = store_spectra [stick to old CLASS logic]
 - uses input {biases} {counter-terms} {stoch. terms} to store $P_X^{\text{real}}(k, z)$, $P_X^{\text{rsd}}(k, z, \mu)$, $P_{X,\ell=0,2,4}^{\text{rsd}}(k, z)$ for $X \in \{\text{matter, tracer (e.g. galaxies), cross}\}$ at tabulated values
 - observables can be retrieved at any z within output.c or classy.pyx using interpolation
- oneloop_strategy = store_loops [fast/slow parameters in MCMC]
 - only store μ -independent $\{L^{(n)}\}$ at each z_k
 - in classy.pyx, fast functions can build observables on demand for requested {bias} {counter-terms} {stoch. terms} {z} {μ}



How fast is the oneloop module?

- time flow [PRELIMINARY] on MacBookPro Intel i9 2.3GHz 16 cores:
 - $\Lambda \text{CDM} + m_{\nu}$, no CMB, single $\{z_k\} = 0$
 - P_{lin} computed till $k_{\text{max}} = 50 h/\text{Mpc}$ and extrapolated till $k_{\text{max}} = 10^3 h/\text{Mpc}$ (× 4 for tracers)
 - Request: spectrum $P_{\text{tracer}}^{\text{rsd}}(k, \mu, z)$ for array of 3 z, 137 k,

	version	
Times in [s] , $N_c = #$ of cores	FFTlog N _{FFT} = 256	
kernels K (once per MCMC)	73/N _c = 4.5	
log-Fourier transform P_{lin} into c (once per cosmology and z_k)	0.005/N _c ~ 10 ⁻⁴	\longrightarrow scales like $N_{\rm FFT} \ln(\Lambda)$
individual loops ($L = c K c$) (once per cosmology and z_k)	$2.1/N_c = 0.13$	\longrightarrow scales like $N_{\rm FFT}^2$
build spectrum from loops (scale with # of output <i>z</i> , here 3)	0.006/N _c ~ 10 ⁻⁴	
rest of CLASS with $N_c = 16$	0.5	
total CLASS with $N_c = 16$ (cached kernels)	0.6	

slower

vargion

Can we do better?

Yes, at least by revisiting the log-Fourier transform...

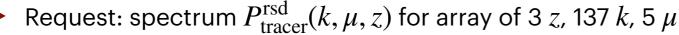
► logFT of P_{lin} : N_{FFT} coefficients $c_j = \frac{1}{T} \int_{\ln(k_{\min})}^{\ln(k_{\max})} d\ln k P_{\text{lin}}(k) \exp\left[\left(\frac{2\pi i j}{T} - \nu\right) \ln(k)\right]$

- fourier_mode = fourier_mode_fft (FFTlog)
 - discrete Fast Fourier Transform with $N_{\rm FFT}$ values k_i , divide-and-conquer algorithm
 - (implemented in C from scratch by N. Schöneberg for arXiv:1807.09540 in tools/fft.c)
 - decrease number of coefficients $N_{\rm FFT} \Rightarrow$ decrease their accuracy
- fourier_mode = fourier_mode_spline (SFTlog)
 - ► spline $P_{\text{lin}}(k_i) \rightarrow \text{piece-wise cubic polynomial, moments } P''_i \rightarrow c_j = \sum_i \alpha_{i,j} P''_i$
 - (implemented in C from scratch by C. Radermacher for this work in tools/array.c)
 - works with $P_{\text{lin}}(k_i)$ sampled at non-evenly-spaced $\ln k_i$ (e.g. taken from previous modules and dense for BAO, sparse elsewhere)
 - decrease number of coefficients $N_{\rm FFT}$ with constant accuracy

Can we do better?

- time flow [PRELIMINARY] on MacBookPro Intel i9 2.3GHz 16 cores:
 - $\Lambda \text{CDM} + m_{\nu}$, no CMB, single $\{z_k\} = 0$
 - P_{lin} computed till $k_{\text{max}} = 50 h/\text{Mpc}$ and extrapolated till $k_{\text{max}} = 10^3 h/\text{Mpc}$ (× 4 for tracers)

• Request: spectrum $P_{\text{tracer}}^{\text{rsd}}(k, \mu, z)$ for array of 3 z , 137 k , s	accuracy stable at 10 ⁻⁴ level	
Times in [s] , $N_c = \#$ of cores	FFTlog N _{FFT} = 256	SFTlog $N_{FFT} = 96$ $N_k = 301$
kernels K (once per MCMC)	73/N _c = 4.5	$10/N_c = 0.6$
log-Fourier transform P_{lin} into c (once per cosmology and z_k)	0.005/N _c ~ 10 ⁻⁴	0.010/N _c ~ 5 10 ⁻⁴
individual loops ($L = c K c$) (once per cosmology and z_k)	$2.1/N_c = 0.13$	$0.3/N_c = 0.02$
build spectrum from loops (scale with # of output <i>z</i> , here 3)	0.006/N _c ~ 10 ⁻⁴	0.006/N _c ~ 10 ⁻⁴
rest of CLASS with $N_c = 16$	0.5	0.5
total CLASS with $N_c = 16$ (cached kernels)	0.6	0.5



8 / 22 CLASS-OneLoop: Numerical implementation - J. Lesgourgues

• Class-OneLoop already fast enough (~ 20 ms) unless P_{lin} calculation substituted by emulator...

Before release of v3.4: need time to polish style (user-friendliness), set robust default precision parameters, provide clear documentation in release paper

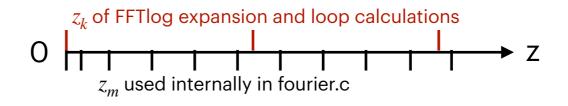
Possible developments -> panel discussion this evening

Back-up slides

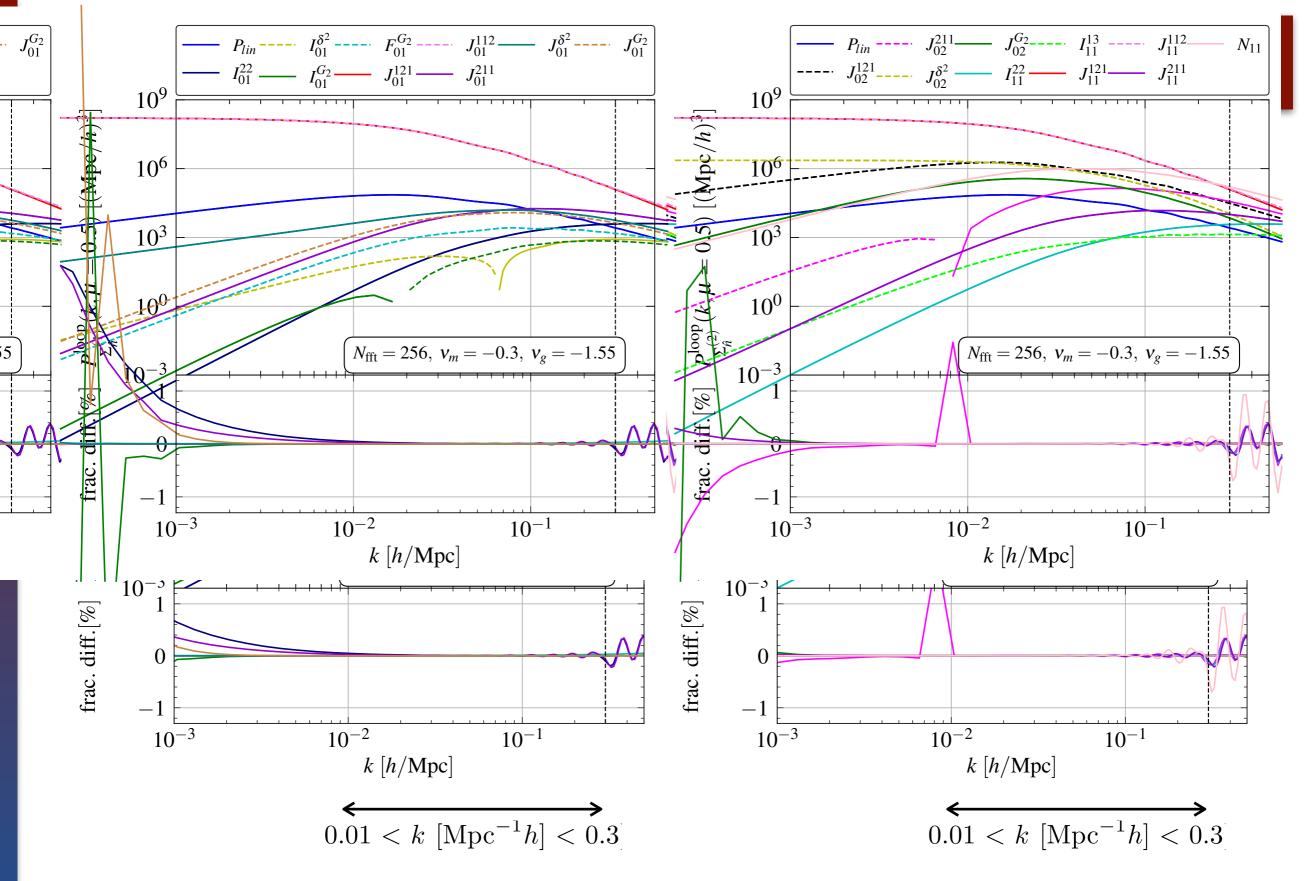
10 / 22 CLASS-OneLoop: Numerical implementation - J. Lesgourgues

Which redshifts are used in oneloop.c?

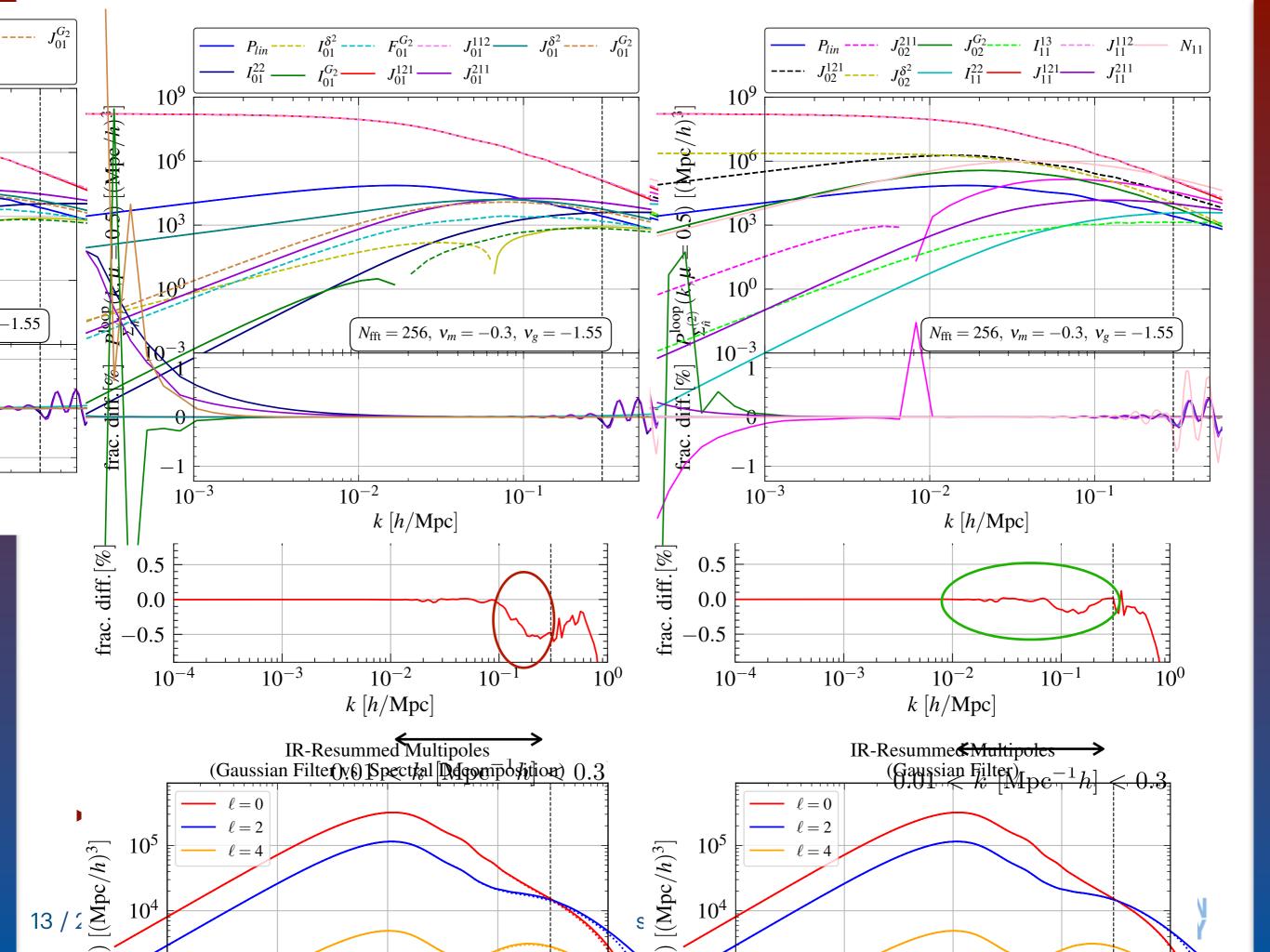
- oneloop_integration = log_fourier (also: direct_integration, uses CUBA library)
 - if (cosmology-independent) kernels Kⁿ_{ij} not found in binary files, compute them and write them, otherwise read them
 - ▶ log-Fourier transform linear spectrum coefficients c_i at selected z_k
 - compute n = 1, ..., 40 loops $L^n = c_i K_{ij}^n c_j$ at each z_k



- oneloop_redshift = single
 - only use $z_k = 0$
 - rescale to any other z using growth factor/rate of the model
- oneloop_redshift = all
 - expansion/loops at each z_m used internally by fourier.c (about a hundred)
 - no rescaling, but still, kernels are z-independent...
- oneloop_redshift = few
 - expansion/loops at z_k passed by user with "z_pk = ..., .."
 - rescaling to closest z_k using growth factor/rate of the model

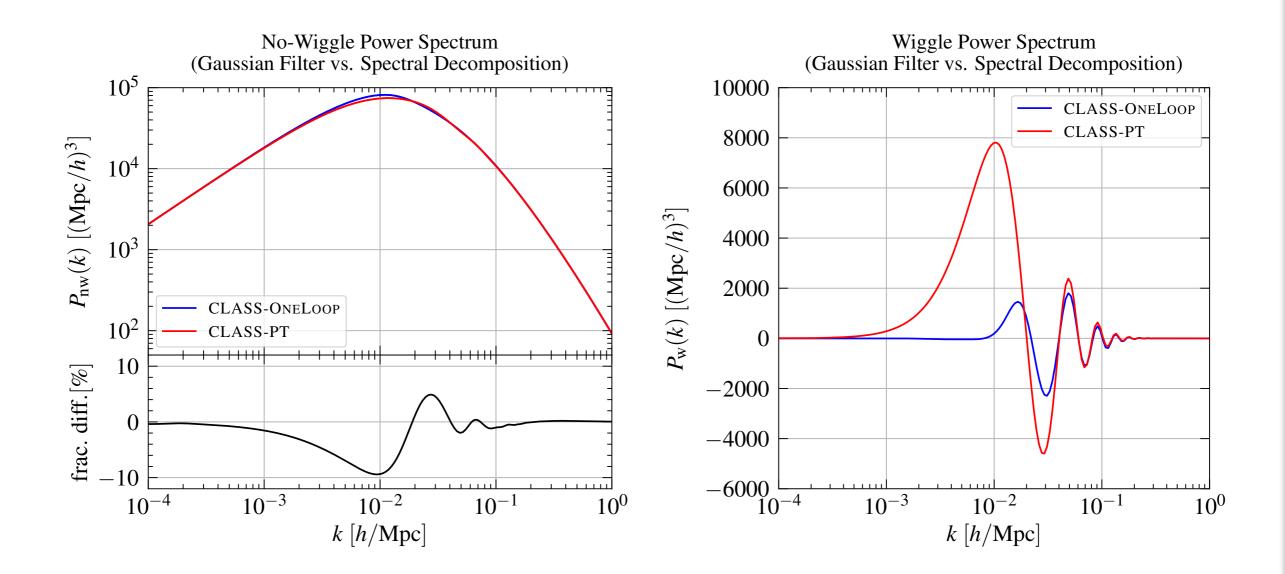


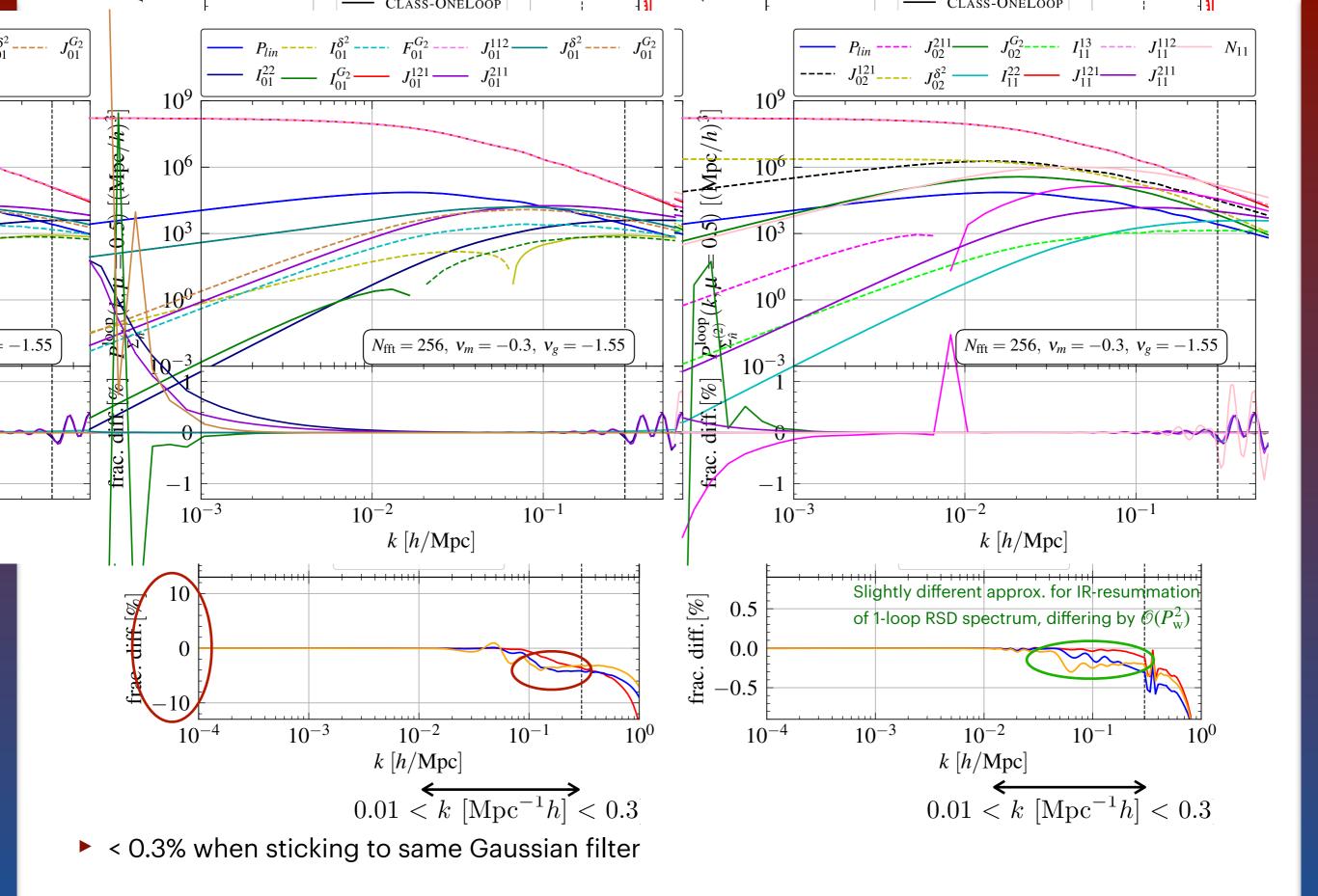
• Always < 0.1% difference in targeted k range for $N_{\rm FFT} = 256$



Comparison with CLASS-PT?

- Dewiggling method for IR resummation:
- Spectral decomposition (DST) [Hamann et al. 2010] vs. Gaussian filtering (of $P_{\text{lin}}/P_{\text{HE}}$)





Performance?

- FFTlog expansion domain: $k_{\min} = 10^{-6} h/Mpc$, $k_{\max} = 10^{3} h/Mpc$ (× 4 for tracers) (avoid ringing)
- use $P_{\text{lin}}(k)$ extrapolation for $k \in [50, 10^3] h/\text{Mpc}$ without impact on $P_{\text{oneloop}}(k < 1 h/\text{Mpc})$
- on RWTH Aachen cluster node: 2 Intel Xeon Platinum 8160 (24 cores each), 192GB RAM
- [preliminary from paper I]: already improved, can still gain more
- if kernels are not cached:
 - computation of kernels K_{ij}^n + spectrum coefficients c_i + loops $L^n = c_i K_{ij}^n c_j$ at one z:

		$N_{\rm FFT} = 128$	$N_{\rm FFT} = 256$	$N_{\rm FFT} = 512$	Direct integration
in seconds:	4 threads	0.61 ± 0.26	2.05 ± 0.15	6.98 ± 0.14	~ 600
	8 threads	0.40 ± 0.09	(1.38 ± 0.12)	3.51 ± 0.23	-
	16 threads	0.52 ± 0.11	1.13 ± 0.13	2.00 ± 0.22	-

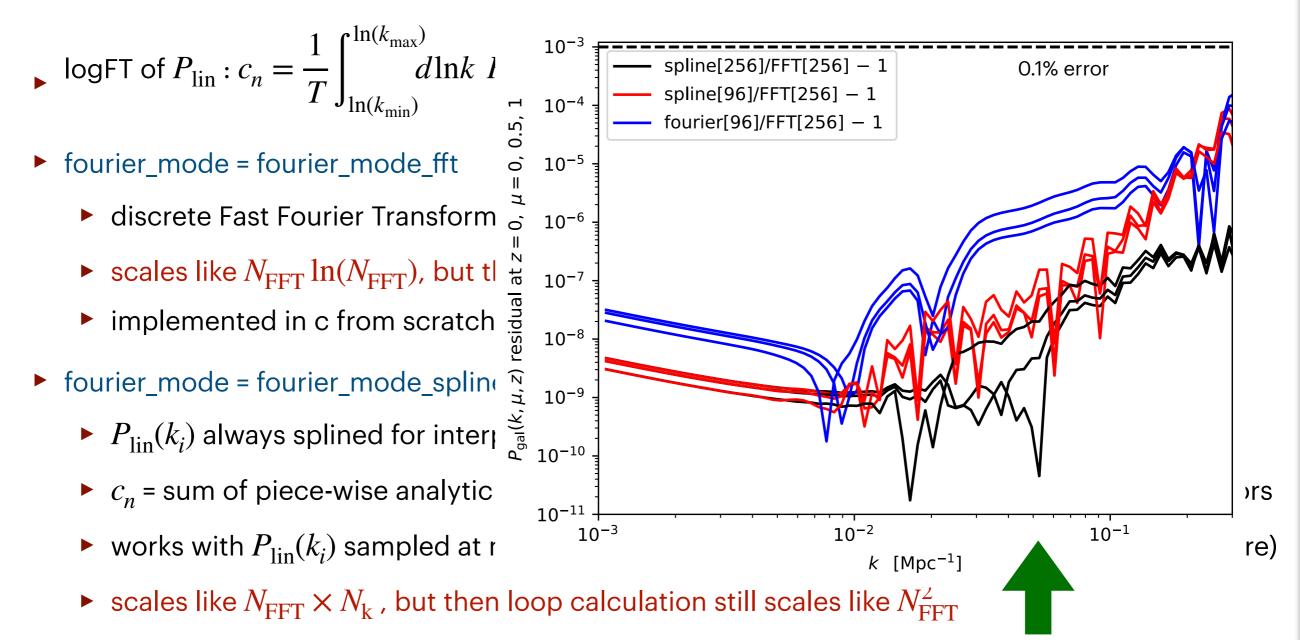
- If kernels are cached:
 - computation of spectrum coefficients c_i + loops $L^n = c_i K_{ij}^n c_j$ at one z:

		$N_{\rm FFT} = 128$	$N_{\rm FFT} = 256$	$N_{\rm FFT} = 512$
in seconds:			0.400 ± 0.003	
	8 threads	0.046 ± 0.004	0.212 ± 0.018	0.776 ± 0.037
	16 threads	0.028 ± 0.003	0.105 ± 0.003	0.382 ± 0.0

slightly smaller than to rest of CLASS!

Which log-Fourier Transform algorithms?

No external libraries (only optionally CUBA if direct integration required)



- decorrelates N_{FFT} from N_k samples. N_{FFT} can be reduced without degrading c_n precision.
- implemented in c from scratch by C. Radermacher for this work in tools/array.c

