HYMALAIA: A Hybrid Lagrangian Model for IA

FRANCISCO MAION, 3RD YEAR PHD CANDIDATE **HIGGS CENTER WORKSHOP ON LSS**

stablished by the European Comm

Collaborators

Prof. Raul Angulo (DIPC)

Prof. Elisa Chisari (Universiteit Utrecht)

Dr. Toshiki Kurita (Kavli IPMU, Tokyo)

Thomas Bakx, PhD Candidate (Universiteit Utrecht)

Dr. Marcos Pellejero-Ibañez (University of Edinburgh)

Intrinsic Alignments

$$\langle \epsilon_i \epsilon_j \rangle = \underbrace{\langle g_i g_j \rangle}_{GG} + \underbrace{\langle \epsilon_i^{(s)} \epsilon_j^{(s)} \rangle}_{II} + \underbrace{\langle \epsilon_i^{(s)} g_j \rangle}_{IG} + \underbrace{\langle g_i \epsilon_j^{(s)} \rangle}_{GI}$$

II term: Correlations between physically close galaxies

• Positive correlation

GI term: Correlations between one foreground galaxy and one background galaxy

• Negative correlation

Credit: Joachimi et. al (2015)

WL Systematic

Dissolving constraining power with more IA parameters

Neglecting IA in cosmic shear analyses

Neglecting IA as a selection effect in spectroscopic surveys

Many IA applications do not require modelling beyond the **linear regime**.

Physics	Proposed	Verified in sims	Constrained from LOWZ
Growth rate	<u>Taruya & Okumura (2020)</u>	X	<u>Okumura & Taruya</u> <u>(2023)</u>
Primordial (anisotropic) non-Gaussianity	<u>Schmidt, Chisari, Dvorkin (2015)</u>	<u>Akitsu+ (2021)</u>	<u>Kurita & Takada</u> <u>(2023)</u>
Primordial magnetic fields	<u>Schmidt, Chisari, Dvorkin (2015)</u> <u>Saga+ (2023)</u>	through PNG only	Χ
Isotropy	Shiraishi, Okumura, Akitsu (2023)	X	X
BAO	<u>Chisari & Dvorkin (2013)</u>	<u>Okumura, Taruya &</u> <u>Nishimichi (2019)</u>	<u>Xu+ (2023)</u>
Primordial gravitational waves	<u>Schmidt, Pajer, Zaldarriaga (2014)</u> <u>Chisari, Dvorkin, Schmidt (2014)</u>	<u>Akitsu, Li & Okumura</u> (2023)	Χ
Parity breaking	Parity breaking Biagetti & Orlando (2020)		X

Alignments probe cosmology

Tidal Alignment

To lowest order, the intrinsic shear of the galaxy shapes will be linearly related to the matter tidal field

$$\gamma^{I} = c_{s} s_{ij} = c_{s} \left(\partial_{x}^{2} - \partial_{y}^{2}, 2 \partial_{x} \partial_{y} \right) \nabla^{-2} \delta$$

Breaks down quickly at small scales.

EFTofIA can reach $k_{max} = 0.28 h/Mpc$ at the expense of adding many free parameters

Credit: Bakx et. al (2023)

Hybrid Lagrangian Models

Lagrangian Bias Expansion

N-Body Simulations

Hybrid models

Robust and valid to small scales

Kokron et. al (2021)

Zennaro et. al (2021)

Hadzhiyska et al (2021)

...

Bias Expansion - Density

Symmetries and Physical Principles:

- Equivalence Principle (only $\partial^{2n} \Phi$ contributions allowed)
- Statistical Homogeneity
- Statistical Isotropy
- Scalar under rotations

$1^{st} \text{ order } : \delta$ $2^{nd} \text{ order } : \delta^2, s^2$ Density: Non-local : $\nabla^2 \delta$ Stochastic : ε

 $\delta_g = (b_1 \delta + b_2 \delta^2 + b_{s^2} s^2 + b_{\nabla^2} \nabla^2 \delta + \varepsilon$

Correlations are setup very early in the universe

Advection - Density

The modelled galaxy field must be advected from Lagrangian to Eulerian space

Desjacques et. al (2016)

Zennaro et. al (2021)

Advection - Density

A set of 15 auto and cross-spectra will serve as basis for modelling of any biased tracer

$$P_{gg} = \sum_{i,j=1}^{4} b_i b_j P_{ij}(k) + P_e$$
$$i, j \in [1, 2, s^2, \nabla^2]$$

Bias Expansion - Shapes

Symmetries and Physical Principles:

- Equivalence Principle (only $\partial^{2n}\Phi$ contributions allowed)
- Statistical Homogeneity
- Statistical Isotropy
- Rank-2 tensor under rotations

$g_{ij} = c_s s_{ij} + c_{s\delta} \delta s_{ij} + c_{s\otimes s} (s \otimes s)_{ij} + c_t t_{ij} + c_{\nabla^2} \nabla^2 s_{ij} + \varepsilon_{ii}$

Shapes:

 $\begin{cases} 1^{st} \text{ order } : s_{ij} \\ 2^{nd} \text{ order } : (s \otimes s)_{ij}, \delta s_{ij}, t_{ij} \\ \text{Non-local } : \nabla^2 s_{ij} \\ \text{Stochastic } : \varepsilon_{ij} \end{cases}$

 $(s \otimes s)_{ij} = \left(s_{il}s_{lj} - \delta_{ij}^{K}\frac{s^{2}}{3}\right)$ $t_{ij} = \left(\frac{\partial_i \partial_j}{\nabla^2} - \frac{1}{3}\delta_{ij}^K\right) \left(\theta(\mathbf{x}) - \delta(\mathbf{x})\right)$

Shape Power Spectra of Haloes

Compute the Legendre multipoles of their auto and cross spectra

$$P_{XY}^{(\ell)}(k) = \int \frac{d\Omega}{4\pi} \left\langle X(\mathbf{k}) Y(-\mathbf{k}) \mathscr{L}_{\ell}(\mu) \right\rangle$$

 $X, Y \in [\delta, E, B]$

Model Validation

To evaluate the performance of the model we will use the reduced chi-squared,

$$\chi_{\text{red}}^2 = \frac{1}{N_{\text{dof}}} \sum_{\ell,\ell'=0,2} \sum_{\alpha,\beta} \sum_{i,j} \left(P_{\alpha}^{(\ell)}(k_i,\Theta) - \widehat{P}_{\alpha}^{(\ell)}(k_i) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell)}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell)}(k_j,\Theta) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell)}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell)}(k_j,\Theta) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell)}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell)}(k_j,\Theta) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_$$

the Figure of Bias, defined as

FoB(k_{max}) =
$$\frac{\left|c_{s}^{\text{fid}} - c_{s}(k_{max})\right|}{\sqrt{\sigma_{\text{fid}}^{2} + \sigma_{c_{s}}^{2}(k_{max})}}$$

and the Figure of Merit, given by

FoM =
$$\sqrt{\det \left[\frac{\Theta_{\alpha\beta}}{\theta_{\alpha}^{\text{fid}}\theta_{\beta}^{\text{fid}}}\right]^{-1}}$$

$$\widehat{P}_{\beta}^{(\ell')}(k_j)\Big)$$

FM et. al (2023)

Comparison to Other Models

FM et. al (2023)

Density Weighting

 $\mathbf{I}(\mathbf{x}) = \sum_{a}$

$$I_n = \int d^3 x W_{CIC}(\mathbf{x} - \mathbf{x}_i) I(\mathbf{x}) = \sum_{a \in i} I(\mathbf{x}_a) \approx n_{g,i} \langle I \rangle$$

$$\gamma_{I} = \left(1 + b_{1}\delta + \frac{1}{2}b_{2}(\delta^{2} - \langle \delta^{2} \rangle) + \cdots\right) \left(c_{s}s_{ij} + c_{\delta s}\delta s_{ij} + \cdots\right)$$

 $\gamma_I = c_s s_{ij} + (c_{\delta s} + b_1 c_s) \delta s_{ij} + \cdots$

$$I(\mathbf{x}_a)\delta^D(\mathbf{x}-\mathbf{x}_a)$$

Bias Relations

Akitsu et. al (2021) have shown that there is an universal relation between c_s and b_1^E . We find compatible results.

Under the assumption of a Linear Lagrangian bias model, $g_{ij}(\mathbf{q}) = c_s s_{ij}(\mathbf{q})$, density weighting the model introduces a non-zero $c_{s\delta}$ bias, given by

$$c_{s\delta} = b_1^L c_s$$

we find some qualitative agreement with this scenario

Akitsu et. ø (202 Ľ

Conclusions

• HYMALAIA is capable of describing shape power spectra of haloes

Consistent determination of linear bias parameter ✓ Most accurate model until $k \sim 0.85 h Mpc^{-1}$ ✓ Small number of free parameters • What's next?

• Accuracy required for Euclid? Do we satisfy it?

• Emulator of model in cosmological parameter space

Will defend my PhD in Fall 2025

In the job market from Fall 2024

Access tinyurl.com/FM-articles to see my publications

Write me at:

francisco.maion@dipc.org

Extra Slides

Bias Expansion - Density

Zennaro, Angulo, Contreras, Pellejero-Ibañez, **FM** (2022)

Simulations

Three cold-matter only Fixed and Paired simulations with the following parameters:

	σ_8	Ω_m	Ω_b	n _s	h	M_{ν}	$L[h^{-1}Mpc]$	$m_p[h^{-1}M_{\odot}]$	N_p	z
Nenya	0.9	0.315	0.05	1.01	0.60	0.0	[512, 1440]	3.2×10^{9}	$[1536^3, 4320^3]$	0
Narya	0.9	0.36	0.05	1.01	0.70	0.0	[512, 1440]	3.7×10^{9}	$[1536^3, 4320^3]$	-0.2
The One	0.9	0.307	0.05	0.96	0.68	0.0	[512, 1440]	3.2×10^{9}	$[1536^3, 4320^3]$	-0.2

From these, select four halo populations in increasing mass bins

	Mass Range $\left[\log_{10}(M/M_{\odot})\right]$	$\bar{n}(z=0)\left[h^{-1}\mathrm{Mpc}\right]^{-3}$
M_1	[12, 12.5]	26.9×10^{-4}
M_2	[12.5, 13]	10.1×10^{-4}
M_3	[13, 13.5]	3.7×10^{-4}
M_4	[13.5, 14.5]	1.7×10^{-4}

Shape Power Spectra

From the simulations, one can get the shape tensor for each halo,

Since this is a spin-2 field, one can define E and B modes, similarly as with light polarisation

 $E(\mathbf{k}) = \epsilon_1(\mathbf{k})\cos(2\phi_k) + \epsilon_2(\mathbf{k})\sin(2\phi_k)$ $B(\mathbf{k}) = -\epsilon_1(\mathbf{k})\sin(2\phi_k) + \epsilon_2(\mathbf{k})cc$

$$(x_i^{(n)} - \overline{x}_i) \left(x_j^{(n)} - \overline{x}_j \right),$$

Simulation of $L = 512 h^{-1} Mpc$

$$= \frac{S_{xx} - S_{yy}}{S_{xx} + S_{yy}}$$
$$= \frac{2S_{xy}}{S_{xx} + S_{yy}}$$

$$(2\phi_k) \qquad \qquad \phi_k = \tan^{-1}(k_y/k_x)$$

os(2\phi_k)

