New tests of dark matter and inflation with BOSS using perturbation theory

Mikhail (Misha) Ivanov CTP/MIT

(TP

Theoretical Modeling of Large Scale Structure, 05/06/2024

EFT - based Full Shape Analysis

CMB:

Parameters: $\rho_{\mathrm{dm}}, \ldots$

LSS:

CMB and LSS probe different scales, different redshifts different physics!

LSS is 3d \longrightarrow contains orders of magnitude more information

Information in Galaxy Surveys

- Finished
- Ongoing
- Proposed
- CMB, finished

CMB: $H_{0}=(67.36 \pm 0.5) \mathrm{km} / \mathrm{s} / \mathrm{Mpc}$ LSS: $H_{0}=(67.36 \pm 0.05) \mathrm{km} / \mathrm{s} / \mathrm{Mpc}$

PT (EFT) for LSS :

0
 EFT for Large Scale Structure:

Baumann (2012), Nicolis, Carrasco, Senatore, Zaldarriaga, White, Chen, Vlah, Schmidt, Pajer, Baldauf, Hertzberg+++

Time-sliced perturbation theory (TSPT)
Blas, Garny, MI, Sibiryakov (20I5)

Checks of EFT: data challenges

Nishimichi, Takada, MI, Simonovic, Zaldarriaga, D’Amico, Senatore, Zhang (2020)
White, Chen, Vlah, Castorina (202I)

Beyond - 2pt Challenge

redshift-space snapshots (mean of 10 realizations), analyzed in flat $\Lambda \mathrm{CDM}$

Figure 2. 1D marginalized constraints on Ω_{m} and σ_{8} for parameter-masked analyses of redshift-space mocks (mean of 10 realizations, errors of 1 box), marginalized over the remaining cosmological parameters of flat $\Lambda \mathrm{CDM}$ and nuisance parameters specific to each method.
E. Krause, MI, Philcox, Akitsu, Pallejero ++'24

Consider participating if you haven't yet!

Field-level comparison

Simulation

Success of the EFT is not due to fitting parameters

EFT

MI, Cuesta-Lazaro, Mishra-Sharma, Obuljen,Toomey'24

Schmittfull, Simonovic, MI, Philcox, Zaldarriaga'20
Schmittfull++'18, Nguen, Schmidt ++ Modi,White +++

CLASS-PT: a universal EFT calculator

Chudaykin, MI, Philcox Simonovic (2020)
Many codes in the market: Velocileptors, Spinosaurus, CLASS-PT, PBJ, PiBird, CLASS-I loop, FAST-PM, etc.
real space: Pmm, Pgm, Pgg
redshift space: P0,P2,P4,++
RSD Bispectrum: tree + lloop

PNG fNL loops

Coming up soon:
LOS-dependent operators
Field level transfer functions all in < Isecond!

https://github.com/Michalychforever/CLASS-PT

Galaxy Power Spectra (Real-Space)

Re-analysis of public BOSS 3×2 pt $+3 \times 3$ pt data

[km/s/Mpc]
MI, Simonovic, Zaldarriaga (2019), Philcox, MI (2021) ++ D'Amico, Kokron++(2019), Chen, White, Vlah (2021)

Re-analysis of public BOSS 7×2 pt $+3 \times 3$ pt data

$\left\{P_{\ell}, Q_{0}, B_{\ell}, \mathrm{BAO}, C_{\ell}^{\kappa g}\right\}$

Parameter	68% limits
Ω_{m}	0.3154 ± 0.0087
H_{0}	68.34 ± 0.77
σ_{8}	0.687 ± 0.027
S_{8}	0.704 ± 0.031

strongest PT-based constraints!

Tension w Planck is growing!

MI, Simonovic, Zaldarriaga (2019), Philcox, MI (2021) ++ MI, Philcox ++ (2023)
D'Amico, Kokron++(2019), Chen, White, Vlah (2021)
Chen, MI, Philcox, Wenzl, to appear!

EFT for Lyman alpha

Symmetries: LOS rotations ($\mathrm{SO}(2)$), equivalence principle

$$
\frac{F-\bar{F}}{\bar{F}} \equiv \delta_{F}=b_{1} \delta+b_{\eta} \hat{z}^{i} \hat{z}^{j} \partial_{i} \partial_{j} \Phi=b_{1} \delta+b_{\eta} \eta \quad \mathbf{} \ldots
$$

Desjasques, Jeong, Schmidt (2018), Ivanov (2023)
SDSS DRI4 re-analysis:

$$
\sigma_{8}=0.841 \pm 0.017 \quad \sum m_{\nu}<0.08 \mathrm{eV}
$$

Beyond Standard Model Extensions

Exotic Energies

w/ Chudaykin, Dolgikh, Toomey, Hill, McDonough, An, He, Gluscevic

Dark Matter

w/ Rogers, Lague, He, An, Gluscevic

Inflation

w/ Philcox, Cabass
Akitsu, Zaldariagga

Exotic Energy Before Recombination

Early DE

MI, McDonough, Hill, Toomey, ++ (2020)

Energy injections can address Hubble tension
EFTxFS: new channel to break CMB degeneracies

Self-interacting Neutrinos

He, Rui, MI, Gluscevic (2023)

High Precision Dark Matter Probe

O
Galaxy PS is a direct probe of dark matter fluctuations Imagine two DM components, one is not exactly cold ~ there's a Jeans scale beyond which it won't cluster!

Axion Dark Matter constraints

Rogers, Laguë, MI, Akitsu, Cabass, Philcox ++ (2023)

DM - baryon interactions

 motivated by direct detectionsDvorkin, Blum, Kamionkowski ++ (2014) Gluscevic, Boddy (2018)
Slatyer, Wu (2018)
$\sim 10 \%$ of $\mathrm{DM} \sim m_{\chi} \sim 1 \mathrm{MeV}$ interacts w/ baryons

$$
\sigma_{0}=1.34_{-0.67}^{+0.51} \times 10^{-25} \mathrm{~cm}^{2}
$$

\author{

A	\mathbf{A}
	\mathbf{S}

\& of the American Astronomical Society\end{aligned}\)
}

Adam He, MI, Rui, Gluscevic (2023)

Constraints on Single-Field Inflation with LSS

Effective Lagrangian

Cheung, Creminelli, Senatore ++ (2007)

$$
\begin{aligned}
& S_{\mathrm{EFT}}=\int d^{4} x \sqrt{-g}\left[\frac{M_{P}^{2}|\dot{H}|}{c_{s}^{2} H^{2}}\left(\dot{\zeta}^{2}-c_{s}^{2} \frac{(\nabla \zeta)^{2}}{a^{2}}\right)\right. \\
& \left.+\frac{M_{P}^{2}|\dot{H}|}{c_{s}^{2} H^{3}}\left(1-c_{s}^{2}\right)\left(\frac{\dot{\zeta}(\nabla \zeta)^{2}}{a^{2}}-\left(1+\frac{2}{3} \frac{\tilde{c}_{3}}{c_{s}^{2}}\right) \dot{\zeta}^{3}\right)\right]
\end{aligned}
$$

Interactions, speed of propagation, + \#of fields

$$
c_{s} \geq 0.013 \text { at } 95 \% \mathrm{CL}
$$

BOSS limits:

$$
\begin{aligned}
f_{\mathrm{NL}}^{\text {equil }} & =260 \pm 300 \\
f_{\mathrm{NL}}^{\text {ortho }} & =-23 \pm 120 \\
f_{\mathrm{NL}}^{\text {local }} & =-33 \pm 28
\end{aligned}
$$

see also Castorina, D'Amico, +++

More detail in Oliver's talk next!

Cosmological Collider in Action

Decay of massive particles during inflation
First constraints (using BOSS)

Chan, Wang (2009)
Arkani-Hamed, Maldacena (2015)
Cabass, Philcox, MI, Akitsu+(2024)
More detail in Oliver's talk next!

Improving EFT with Simulation - based priors

Marginalization over nuisance parameters is the main show stopper

Philcox, MI, Cabass, Simonovic, Zaldarriaga (2022)

One can get better priors from simulations (HOD, hydro, abundance matching, etc.)

> MI, Cuesta-Lazaro, MishraSharma, Obuljen,Toomey'24
see also Sullivan, Seljak, Singh' 21

HOD-based priors

Summary

EFT/PT - robust analytic tool for LSS
Cosmo. parameters similar to CMB - better in future
Novel ways to test new physics

Many $\mathrm{O}(\mathrm{I})$ question on inflation, DM and exotic energies can be answered with future LSS surveys

Thank you!

