The Effective Field Theory of Large-Scale Structure and Multi-tracer

Rodrigo Voivodic In collaboration with Thiago Mergulhão, Henrique Rubira and Raul Abramo

> Juan de la Cierva Postdoctoral fellow Donostia International Physics Center (DIPC)

> > June 05, 2024

Table of contents

Motivation

Real Space

Redshift Space

Conclusion

Main Result

Multi-tracer block diagonalize the correlation matrix of parameters!

(Gaussian) Fisher Forecast

For two tracers, the fisher matrix is diagolanized by the three degrees of freedom (L. Raul Abramo, *et al.*, 2021):

$$\begin{split} \mathcal{Q}_1 &= \mathcal{P}\left[1 + \frac{1}{2} \mathrm{log}\left(\frac{\mathcal{P}_{11}^2 + \mathcal{P}_{22}^2 + 2\mathcal{P}_{12}^2}{\mathcal{P}^2}\right)\right] \,,\\ \mathcal{Q}_2 &= \mathrm{log}\left(\frac{\mathcal{P}_{11}^2 + \mathcal{P}_{12}^2}{\mathcal{P}_{22}^2 + \mathcal{P}_{12}^2}\right) \,,\\ \mathcal{Q}_3 &= \frac{\mathcal{P}_{12}^2 - \mathcal{P}_{11}\mathcal{P}_{22}}{\mathcal{P}^2} \,. \end{split}$$

In the linear limit where $\mathcal{P}_{12}^2 = \mathcal{P}_{11}\mathcal{P}_{22}$ these reduces to:

$$(\mathcal{Q}_1, \mathcal{Q}_2, \mathcal{Q}_3) = (\mathcal{P}, \log (\mathcal{P}_{11}/\mathcal{P}_{22}), 0).$$

(Gaussian) Fisher Forecast

The information in the cross-spectrum is of the same order of the information in the auto-spectra.

L. Raul Abramo, et al., 2021.

Real Space EFT

The power spectra, for multi-tracer, is given by [computed with CLASS-PT (Anton Chudaykin, Mikhail M. Ivanov, Oliver H.E. Philcox and Marko Simonović, 2020)]:

$$\begin{split} P^{AB}(k) &= b_{1}^{A}b_{1}^{B}\left[P_{0}(k) + P_{1}(k)\right] + \frac{1}{2}\left(b_{1}^{A}b_{2}^{B} + b_{1}^{B}b_{2}^{A}\right)\mathcal{I}_{\delta^{2}}(k) + \left(b_{1}^{A}b_{\mathcal{G}_{2}}^{B} + b_{1}^{B}b_{\mathcal{G}_{2}}^{A}\right)\mathcal{I}_{\mathcal{G}_{2}}(k) \\ &+ \left[\left(b_{1}^{A}b_{\mathcal{G}_{2}}^{B} + b_{1}^{B}b_{\mathcal{G}_{2}}^{A}\right) + \frac{2}{5}\left(b_{1}^{A}b_{\Gamma_{3}}^{B} + b_{1}^{B}b_{\Gamma_{3}}^{A}\right)\right]\mathcal{F}_{\mathcal{G}_{2}}(k) \\ &+ \frac{1}{4}b_{2}^{A}b_{2}^{B}\mathcal{I}_{\delta^{2}\delta^{2}}(k) + b_{\mathcal{G}_{2}}^{B}b_{\mathcal{G}_{2}}^{A}\mathcal{I}_{\mathcal{G}_{2}\mathcal{G}_{2}}(k) + \frac{1}{2}(b_{2}^{A}b_{\mathcal{G}_{2}}^{B} + b_{2}^{B}b_{\mathcal{G}_{2}}^{A})\mathcal{I}_{\delta^{2}\mathcal{G}_{2}}(k) \\ &+ P_{\nabla^{2}\delta}^{AB}(k) + P_{\varepsilon^{A}\varepsilon^{B}}(k)\,, \end{split}$$

where

$$\begin{split} \mathcal{P}^{AB}_{\nabla^{2}\delta} &= -k^{2} \mathcal{P}_{0} \left[2 \frac{c_{s}^{2} b_{1}^{A} b_{1}^{B}}{k_{\mathrm{NL}^{2}}} + b_{1}^{A} \left(\mathcal{R}^{B}_{*} \right)^{2} + b_{1}^{B} \left(\mathcal{R}^{A}_{*} \right)^{2} \right] \\ &= - \left(b^{A}_{\nabla^{2}\delta} b^{B}_{1} + b^{B}_{\nabla^{2}\delta} b^{A}_{1} \right) k^{2} \mathcal{P}_{0} \,, \end{split}$$

and

$$P_{\varepsilon^A\varepsilon^B}(z,k) = \frac{1}{\sqrt{\bar{n}_A\bar{n}_B}} \left[c_0^{AB} + c_2^{AB} \frac{k^2}{k_{\rm norm}^2} + \mathcal{O}(k^4) \right] \,.$$

 $\{b_{1}^{A}, b_{2}^{A}, b_{\mathcal{G}_{2}}^{A}, b_{\Gamma_{3}}^{A}, b_{\nabla^{2}\delta}^{A}, b_{1}^{B}, b_{2}^{B}, b_{\mathcal{G}_{2}}^{B}, b_{\Gamma_{3}}^{B}, b_{\nabla^{2}\delta}^{B}, c_{0}^{AA}, c_{2}^{AA}, c_{0}^{BB}, c_{2}^{BB}, c_{0}^{AB}, c_{2}^{AB}\} - 16 \, \text{parameters}$

Simulation

We have used the halos of the (huge) MultiDark simulation (A. Klypin, *et al.*, 2014).

Halo Data set	Mass range [log M_{\odot}/h]	$\bar{n} \left[(\mathrm{Mpc}/h)^{-3} \right]$	number count
Halo A	[13.2, 13.5]	$1.44 imes10^{-4}$	$9.21 imes10^{6}$
Halo B	[13.5, 15.7]	$1.23 imes10^{-4}$	$7.90 imes10^{6}$
Halo $A + B$	[13.2, 15.7]	$2.67 imes10^{-4}$	$1.71 imes 10^7$

Thiago Mergulhão, Henrique Rubira, RV, L. Raul Abramo, 2021.

Priors

We used flat prior for the cosmological parameters

	Prior	
ω_{cdm}	Flat [0.095, 0.14]	
h	Flat [0.6, 0.75]	
A	Flat [1.49, 2.8]	

And both flat and Guassian priors for (some) of the bias and stochastic parameters

	Prior <i>Flat</i>	Prior $G_0(\sigma)$	
b_1	Flat [1.0, 2.2]		
<i>b</i> ₂	Flat [-5.0, 5.0]	Gauss.(0, σ)	
$b_{\mathcal{G}_2}$	Flat [-5.0, 5.0]	$Gauss(0,\sigma)$	
b _{F3}	Flat [-10.0, 10.0]	$Gauss(0,2\sigma)$	
$b_{ abla^2\delta}$	Flat [-5.0, 5.0]		
<i>c</i> 0	Flat [-5.0, 5.0]		
<i>c</i> ₂	Flat [-5.0, 5.0]		

Cosmological Constraints

Unbiased and stronger constraints!

Model Complexity

The constraining power is weakly affected by the number of parameters!

Thiago Mergulhão, Henrique Rubira, RV, L. Raul Abramo, 2021.

Stochastic cross-term

The cross stochastic term seems to not be very important.

HOD Galaxies

More constraint for galaxies with populations with the similar b_1 !

Redshift Space EFT

The power spectra, for multi-tracer in redshift space, is given by [computed with CLASS-PT (Anton Chudaykin, Mikhail M. Ivanov, Oliver H.E. Philcox and Marko Simonović, 2020)]:

 $P^{AB}(k) =$ Usual thing with symmetrized bias parameters where

$$\begin{split} P_{\rm ct}^{AB}(k,\mu) &= \frac{k^2}{k_{\rm norm}^2} P_{\rm lin}(k) \left[Z_1^A \left(c_{\rm ct,20}^B + c_{\rm ct,22}^B \mu^2 + c_{\rm ct,24}^B \mu^4 + c_{\rm ct,44}^B \frac{k^2}{k_{\rm norm}^2} \mu^4 + c_{\rm ct,26}^B \mu^6 + c_{\rm ct,46}^B \frac{k^2}{k_{\rm norm}^2} \mu^6 \right) + A \leftrightarrow B \right] \,, \end{split}$$

and

$$P_{\varepsilon^A \varepsilon^B}(k,\mu) = \frac{1}{\sqrt{\bar{n}_A \bar{n}_B}} \left[c^{AB}_{\mathrm{st},00} + c^{AB}_{\mathrm{st},20} \frac{k^2}{k^2_{\mathrm{norm}}} + c^{AB}_{\mathrm{st},22} \frac{k^2}{k^2_{\mathrm{norm}}} f \mu^2 \right] \,.$$

$$\begin{cases} b_1^A, b_2^A, b_{G_2}^A, b_{\Gamma_3}^A, c_{ct,20}^A, c_{ct,22}^A, c_{ct,24}^A, c_{ct,26}^A, c_{ct,44}^A, c_{ct,46}^A, c_{st,00}^{AA}, c_{st,02}^{AA}, c_{st,22}^A, \\ b_1^B, b_2^B, b_{G_2}^B, b_{G_3}^B, c_{ct,20}^B, c_{ct,22}^B, c_{ct,24}^B, c_{ct,26}^B, c_{ct,44}^B, c_{st,46}^B, c_{st,00}^{BB}, c_{st,02}^{BB}, c_{st,22}^B, \\ c_{st,00}^{AB}, c_{st,02}^{AB}, c_{st,22}^B \end{cases} \} = 29 \, \text{parameters}$$

Galaxy Catalogue

The galaxy catalogues were generated from BACCO using the SHAMe method (S. Contreras, *et al.*, 2020).

Galaxy set	SFR [<i>M</i> _☉ /yr]	$\bar{n} [(Mpc/h)^{-3}]$
A	$\gtrsim 10^{-4}$	0.0015
В	$\lesssim 10^{-4}$	0.0015
A + B		0.0030
Galaxy set	SFR [<i>M</i> _☉ /yr]	$\bar{n} [(Mpc/h)^{-3}]$
Galaxy set	$egin{array}{c c c c c c c c } SFR [M_{\odot}/yr] \ \gtrsim 10^{-1} \end{array}$	$\bar{n} \left[(Mpc/h)^{-3} \right]$ 0.00015
Galaxy set A B	$egin{array}{c} {\sf SFR} \; [M_{\odot}/{ m yr}] \ \gtrsim 10^{-1} \ \lesssim 10^{-1} \end{array}$	$\frac{\bar{n}[(Mpc/h)^{-3}]}{0.00015}$ 0.00015

We assumed a Gaussian covariance (thanks to Enea di dio)

$$\begin{aligned} \operatorname{Cov}\left[P_{\ell}^{AB}(\boldsymbol{k}), P_{\ell'}^{CD}(\boldsymbol{k}')\right] &= \frac{\left(2\ell+1\right)\left(2\ell'+1\right)}{2V_{s}}\frac{\delta_{D}\left(k-k'\right)}{k^{2}}\\ &\sum_{\ell_{1}\ell_{2}\ell_{3}}\left(-1\right)^{\ell_{2}}\left(2\ell_{3}+1\right)\left(\begin{array}{cc}\ell_{1} & \ell_{2} & \ell_{3}\\ 0 & 0 & 0\end{array}\right)^{2}\left(\begin{array}{cc}\ell & \ell' & \ell_{3}\\ 0 & 0 & 0\end{array}\right)^{2}\\ &\left[P_{\ell_{1}}^{AC}\left(k\right)P_{\ell_{2}}^{BD}\left(k\right)+\left(-1\right)^{\ell'}P_{\ell_{1}}^{AD}\left(k\right)P_{\ell_{2}}^{BC}\left(k\right)\right].\end{aligned}$$

Galaxy Catalogue

Thiago Mergulhão, Henrique Rubira, RV, 2023.

Comparison in Redshift Space

Thiago Mergulhão, Henrique Rubira, RV, 2023.

Comparison in Redshift Space

Thiago Mergulhão, Henrique Rubira, RV, 2023.

Model Complexity

Higher order μ -terms are important for multi-tracer but the cross stochastic terms are not.

Thiago Mergulhão, Henrique Rubira, RV, 2023.

Shot Noise Impact

We can not go to deeply on non-linear scales if the shot noise is to small.

Thiago Mergulhão, Henrique Rubira, RV, 2023.

Conclusion

Multi-tracer block diagonalize the correlation matrix of parameters!

Taylor

Co-evolution Relations

HOD

Thiago Mergulhão, Henrique Rubira, RV, L. Raul Abramo, 2021.

eBOSS Footprint

Ruiyang Zhao, et al., 2023.