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Soft Radiation

Eikonal Feynman rules are simpler than normal Feynman rules

p + k p

k

igū(p)γµ
/p+ /k

2p · kT
a k�p−−−−→ igū(p)

pµ

p · kT
a

◦ Soft gluon emission gives rise to a rescaling invariance on the
external momenta pµ, and thus only depends on the four-velocity
βµ = pµ/Q

◦ However, we here are interested in the massless soft anomalous
dimension, and this rescaling invariance is spoiled in the presence
of cusps with light-like rays Dixon, Magnea, Sterman, arXiv:0805.3515 [hep-ph]
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Soft-Collinear Factorization

H

J
J

J
J

J
J

J
J

S

At fixed-angle, where pi · pj � ΛQCD, the massless n-parton amplitude
can be factorized in d = 4− 2ε dimensions as

An({pi}, ε, αs) = S({βi}, {Ti}, ε, αs)Hn({pi}, {ni}, ε, αs)
n∏
i=1

J(pi, ni, ε, αs)

J (βi, ni, ε, αs)

where S and J are the soft and jet functions, Hn is a
process-dependent hard function, and J are eikonal jet functions.

◦ Collinear singularities cancel in the ratio

S({βi}, {Ti}, ε, αs)∏n
i=1 J (βi, ni, ε, αs)

,

restoring the rescaling invariance in all four-velocities βi → κiβi
Dixon, Magnea, Sterman, arXiv:0805.3515 [hep-ph]; Gardi, Magnea, arXiv:0901.1091 [hep-ph]
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The Dipole Formula

This rescaling invariance gives rise to strong constraints on the
kinematic dependence and functional form of the soft function
Gardi, Magnea, arXiv:0901.1091 [hep-ph]; Becher, Neubert, arXiv:0901.0722 [hep-ph]

◦ We can collect all singular contributions into a single factor Zn

An
(
{pi}, ε, αs(µ2)

)
= Zn

(
{pi}, {Ti}, ε, αs(µ2f )

)
Hn

(
{pi},

µf

µ
, ε, αs(µ

2)

)
where the factor Zn is renormalized multiplicatively by the soft
anomalous dimension Γn

Zn = P exp

{
−

1

2

∫ µ2
f

0

dλ2

λ2
Γn({pi}, {Ti}, λ, αs(λ2))

}

◦ The minimal solution to the rescaling constraint βi → κiβi is
provided by the all-loop dipole formula

Γdip.
n = −

1

2
γ̂K(αs)

∑
i<j

log

(
−sij
λ2

)
Ti ·Tj +

n∑
i=1

γJi (αs)

where γ̂K(αs) is the part of the lightlike cusp anomalous
dimension that admits Casimir scaling
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Corrections to the Dipole Formula

◦ Casimir scaling fails starting at four loops
Boels, Huber, Yang, arXiv:1705.03444 [hep-th]

γ
(i)
K (αs) ≡ Ciγ̂K(αs) + γ̃

(i)
K (αs), γ̃

(i)
K (αs) = O(α4

s)

◦ Homogenous solutions to the rescaling-invariance constraint

• The conformally invariant cross ratios

ρijkl ≡
(−sij)(−skl)
(−sik)(−sjl)

=
(βi · βj) (βk · βl)
(βi · βk) (βj · βl)

are invariant under the rescaling of individual parton
momenta, so any function of these variables is allowed

• These variables can only
appear in front of color
factors that irreducibly
connect four partons,
which first happens at
three loops
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The Bootstrap Approach

∆
(3)
n was recently computed and found to be nonzero by direct

evaluation of the relevant Feynman integrals
Almelid, Duhr, Gardi, arXiv:1507.00047 [hep-ph]

However, could ∆
(3)
n have been ascertained without carrying out these

integrals? Perhaps we can find a unique linear combination of (some

relevant set of) functions that satisfies all known properties of ∆
(3)
n

◦ Need to know the types of functions that can appear in ∆
(3)
n

◦ Known color structure, symmetries, and transcendental properties

◦ Constrained behavior in special kinematic limits
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The Space of Functions

To identify the class of functions that depend on n massless
four-velocities in a rescaling-invariant way, we parametrize

βµi =
(

1 +
ziz̄i

4
,
zi + z̄i

2
,
zi − z̄i

2i
, 1− ziz̄i

4

)
in terms of variables zi, z̄i that can be thought of as living on the
Riemann sphere.

◦ The space of iterated integrals on the Riemann sphere with n
marked points is known to be expressible as multiple
polylogarithms Brown, arXiv:math/0606419 [math.AG]

◦ Since our cross ratios only depend on the angles between Wilson
lines, we have an SL(2,C) symmetry that allows us to choose

zi ≡ z, zj = 0, , zk =∞, zl = 1

which implies that only polylogarithms of a single variable, namely
harmonic polylogarithms (HPLs), are needed at three loops

◦ Plugging this parametrization into our cross ratios, they become
simple rational combinations of z and z̄
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Single-Valued Harmonic Polylogarithms

Further simplifications occur in the Euclidean region, since branch cuts
can only end where a Mandelstam invariant becomes zero or infinite

◦ In this region, the soft anomalous dimension must be
single-valued, further restricting the relevant function space at
three loops to single-valued harmonic polylogarithms (SVHPLs)

Lw1···wn(z, z̄), wi ∈ {0, 1}

◦ Singularities only occur when two marked points zi and zj
coincide, which happens at z = 0, 1,∞

The correction ∆
(3)
n is also insensitive to the matter content of the

theory, and so is the same in QCD and N = 4 SYM. This implies it
must be a pure function of uniform transcendental weight five

◦ Each SVHPL has weight equal to its number of indices n.
Riemann zeta values ζn can also appear and have weight n



Determining the
Soft Anomalous
Dimension from

General
Constraints

Andrew McLeod

The Soft
Anomalous
Dimension

· The Dipole Formula

· Corrections to the
Dipole Formula

A Bootstrap
Approach

· An Ansatz at Three
Loops

· Collinear Limits

· Regge Limits

Future Work

Color Structure and Symmetries

The non-abelian exponentiation theorem, combined with rescaling
invariance, Bose symmetry, and color conservation, leaves only two
types of color factors that can appear in ∆

(3)
n

∆
(3)
n = 16fabefcde

{
− C

( n∑
i=1

∑
1≤j<k≤n;j,k 6=i

{
Tai ,T

d
i

}
TbjT

c
k

)
+

∑
1≤i<j<k<l≤n

[
TaiT

b
jT

c
kT

d
l

(
F (1− 1/z)− F (1/z)

)
+ TaiT

b
kT

c
jT

d
l

(
F (1− z)− F (z)

)
+ TaiT

b
lT

c
jT

d
k

(
F (1/(1− z))− F (z/(z − 1))

)]}
and implies that the objects multiplying the first of these color factors
must be a constant, while the object multiplying the second must be
antisymmetric under the parton indices associated with the same
structure constant
Gardi, Almelid, Duhr, arXiv:1606.05697 [hep-ph]
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An Ansatz at Three Loops

This reduces the problem to determining a set of rational coefficient in
F (z) and C

F (z) = F (z, z̄) = F (z̄, z)

= a1L00000 + a2L00100 + a3L10001

+ a4L10101 + a5 (L01001 + L10010)

+ a6 [L00101 + L10100 + 2(L00011 + L11000)]

+ a7 [L11010 + L01011 + 3(L00011 + L11000)]

+ a8 ζ2L000 + a9 ζ2 (L001 + L100) + a10 ζ3 L00 + a11 ζ
2
2 L0

C = a12 ζ5 + a13 ζ2 ζ3

◦ An understanding of the symmetries of ∆
(3)
n and the space of

functions it can depend on determines its value up to only 13
rational coefficients
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Constraints from Collinear Limits
In the limit that two partons become collinear, the n-parton amplitude
is expected to factorize into an (n− 1)-parton amplitude times a
splitting function that only depends on the partons becoming collinear

◦ This translates into the condition that

∆
(3)
Sp(T1,T2) ≡

[
∆

(3)
n ({ρijkl},T1,T2, {Tj})

−∆
(3)
n−1({ρijkl},T1 + T2, {Tj})

]
p1‖p2

=
[
∆

(3)
3 (−T1 −T2,T1,T2)

]
p1‖p2

is a constant that depends only on the color of the partons
becoming collinear, here taken to be partons 1 and 2

◦ This gives rise to the nontrivial constraint that

8C =
[
F
(
1/(1− z)

)
+ F

(
1− z

)
− F

(
z
)
− F

(
z/(z − 1)

)]
p1‖p2

= −
a1

60
log5(zz̄)−

a8

3
ζ2 log3(zz̄)

− (4a7 + a10)ζ3 log2(zz̄)− 2a11ζ
2
2 log(zz̄)

+ 8a9ζ2ζ3 + (24a2 − 12a3 + 8a4 + 36a5 − 12a6 + 4a7)ζ5
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Constraints from the Regge Limit

In the high-energy limit s� −t the L-loop amplitude develops
logarithmically-enhanced terms proportional to

αLs logp
(
s

−t

)
, p ≤ L

at leading order in (−t)/s

◦ These contributions can be independently calculated using rapidity
evolution equations, and this has been done at three loops for

α3
s logp

(
s

−t

)
, p ≥ 1

iα3
s logp

(
s

−t

)
, p ≥ 2

arXiv:Caron-Huot, 1309.6521 [hep-th]; Caron-Huot, Gardi, Vernazza, arXiv:1701.05241 [hep-ph]

◦ The Regge limit of the dipole formula matches the predictions for
all of the above terms, so these powers of logarithms must be
absent from the Regge limit of ∆

(3)
n
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Constraints from the Regge Limit

◦ To compute one of the Regge limits of our ansatz in the case of
four-parton scattering, we must choose two partons i and j to be
incoming and analytically continue to the region where

sij = skl = s > 0

◦ For instance, taking partons 1 and 2 to be incoming, we take

zz̄ = ρ1234 =
(−s12)(−s34)

(−s13)(−s24)
=

∣∣∣∣ s12s34s13s24

∣∣∣∣ e−2iπt ,

(1− z)(1− z̄) = ρ1432 =
(−s14)(−s32)

(−s13)(−s42)
=

∣∣∣∣ s14s23s13s24

∣∣∣∣ ,
and advance t from 0 to 1

◦ This takes us out of the
space of SVHPLs and into
the space of HPLs with
arguments z and z̄, and
gives rise to imaginary terms

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
z̄(t)

z̄

z

z(t)
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Constraints from the Regge Limit

◦ To specialize to massless four-parton scattering, we impose
momentum conservation and s12 + s13 + s23 = 0, which sets

zz̄ =

(
s12

s12 + s23

)2

,

(1− z)(1− z̄) =

(
s23

s12 + s23

)2

,

implying that z = z̄ (up to opposite small imaginary parts)

◦ These relations tell us that the high-energy limit s12 � −s23
requires sending z = z̄ → 1, in which limits HPLs either vanish or
logarithmically diverge, which leaves us with a polynomial in the
expected large logarithm log(s/(−t))

log(1− z) s12�−s23−−−−−−−→ − log

(
s12

−s23

)
+ iπ

log(1− z̄) s12�−s23−−−−−−−→ − log

(
s12

−s23

)
− iπ

◦ We can go into six different Regge limits, where we require that
the predicted powers of large logarithms are always absent
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Determining ∆
(3)
n

The constraints from the Regge limit provide 8 relations between our
coefficients, while those from collinear limits provide 6 relations

Together, they determine the function ∆
(3)
n up to an overall scale:

F (z) = a4 (L10101 + 2ζ2(L100 + L001))

C = a4(ζ5 + 2ζ2ζ3)

which exactly matches its calculated value when a4 = 1
Almelid, Duhr, Gardi, arXiv:1507.00047 [hep-ph]
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The Soft Anomalous Dimension at Higher Loops

Further complications will arise beyond three loops

◦ Color structures involving more partons can appear

◦ Casimir Scaling breaks down Boels, Huber, Yang, arXiv:1705.03444 [hep-th]

◦ Corrections to the dipole formula become sensitive to the matter
content of the theory

However, a bootstrap approach can still be employed

◦ Contributions depending only on conformally invariant cross ratios
expressible in terms of single-valued multiple polylogarithms

◦ Two-particle collinear limits and Regge limits can again be applied

◦ Multi-particle collinear limits and multi-Regge limits may provide
further constraints
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Bootstrapping Other Quantities

We can also attempt to bootstrap other QCD quantities, such as the
soft gluon current

◦ Known to be expressible in terms of SVHPLs through two loops
Catani, Grazzini, arXiv:hep-ph/0007142; Duhr, Gehrmann, arXiv:1309.4393 [hep-ph]; Li, Zhu,

arXiv:1309.4391 [hep-ph]; Dixon, Zhu, forthcoming

Eventually, we can hope to bootstrap QCD amplitudes themselves

◦ Essentially none of the amplitudes relevant for 2→ 3 hard
scattering processes at the LHC known at two loops

◦ Need a better understanding of the relevant space of functions
before this can be attempted
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Thanks!
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