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Outline

An overview of N = 4 SYM. Finding the four-point stress-energy
multiplet correlation function in planar N = 4 SYM to ten loops.

Ideas: Integrand Basis Representation (Planar Graph Representation
by Planarity), Dualities, Hidden Symmetry of the Correlator, Graphical
Bootstraps.

Tools: A coefficient is associated to each planar graph (f-graphs).
Coefficients are fixed using various combinations of efficient
graphical rules: Triangle, Square and Pentagon Rules.

Dicussion of novel results for ` ≥ 8 loops. Conclusion and future
directions.



N = 4 Super-Yang Mills (SYM)

SU(Nc) 4D Gauge Theory in Planar Limit (Nc →∞ with ’t Hooft
coupling, a = g2Nc fixed)
Field content (all in the adjoint rep.):

One gauge field,
Six massless scalar fields,
Four massless fermions.

Motivation: the simplest and most symmetric D = 4 Quantum
Field Theory.
Used as a toy model to understand QFT in 4D. The symmetries give
rise to intriguing mathematical structures that encourage further study.

Enjoys conformal symmetry (β = 0) and supersymmetry (4
generators)⇒ superconformal symmetry.
AdS/CFT Correspondence.



Four-point correlators in N = 4 SYM

Simplest protected gauge invariant (half-BPS) operator
O(x)≡Tr(φ(x)2) (φ is one of the six scalars).
Two- and three-point correlators formed from these operators are
known to be non-renormalised - independent of a and fixed by
the free value.
Therefore, the simplest non-trivial correlation function is the
four-point correlator (formed from the operators above):

G4(x1, x2, x3, x4) ≡ 〈O(x1)O(x2)O(x3)O(x4)〉

O(x) belongs to the stress-energy tensor multiplet (which contains
the Lagrangian and stress-tensor of the theory).
This correlator is known to be finite.



Representing the Correlator Perturbatively

Define the F (`) as the integrand of the ` loop correlator divided by its
tree component:

F (`)(x1, . . . , x4, x5, . . . , x4+`) ≡
1
2

(
G(`)4 (x1, x2, x3, x4)

G(0)4 (x1, x2, x3, x4)

)
/ξ(4),

where ξ(4) := x2
12x2

23x2
34x2

14(x2
13x2

24)2.

It is useful to now regard F (`) as the ‘` loop correlator’.

The integrands must have the following properties:
1 Locality and conformality⇒ rational conformally covariant

functions of x2
ij := (xi − xj)

2 of weight 4 for each xi .
2 OPE limits ensures only single poles.
3 Planar theory⇒ planar graphs.



Representing the Correlator Perturbatively - f -graphs

We can therefore represent the integrands as planar graphs with
4 + ` vertices and signed degree 4 (by conformality) at each point.
One can expand F (`) in a basis with arbitrary coefficients

F (`) =
∑
α

c(`)
α f (`)

Enumerating the f -graphs is doable using their defining properties.
The hard part is finding the coefficients.
Superconformal symmetry⇒ (powerful) hidden symmetry:

Hidden Symmetry [Eden Heslop Korchemsky Sokatchev]:

f (`)(x1, . . . , x4+`) = f (`)(xσ1 , . . . , xσ4+`
) ∀σ ∈ S4+`

This puts external variables x1, . . . x4 and integration variables
x5 . . . x4+` on the same footing!



f -graphs - Integrands as Graphs

The correlator is defined (perturbatively) via f (`)

Conformal weight 4 at each point
Permutation invariant (hidden symmetry)
No double poles.

Naively equivalent to: degree (valency) 4 graphs on 4+` points
where

Graph edge between vertices xi and xj =
1
x2

ij
=

1
(xi − xj)2

but we also allow for numerator lines⇒ degree ≥ 4 graphs. So
that the signed degree (no. xi in denominator subtract no. xi in
numerator equals 4).
Don’t need to label graph thanks to hidden symmetry, sum over
permutations⇒ sum over all labellings of a given f -graph.
f graphs: (equivalent to the edges and vertices of 3D polytopes).



` ≤ 3 correlator

f (1) =
1∏

1≤i<j≤5 x2
ij

f (2) =
x2

12x2
34x2

56 + S6 perms∏
1≤i<j≤6 x2

ij

f (3) =
(x4

12)(x2
34x2

45x2
56x2

67x2
73) + S7 perms∏

1≤i<j≤7 x2
ij



` = 4 correlator

f (4)1 = f (4)2 = f (4)3 =

F (1) = f (1), F (2) = f (2), F (3) = f (3), F (4) = f (4)1 + f (4)2 − f (4)3

The f -graph (integrand) expressions above are implicitly summed
over permutations. Upon multiplication by ξ(4), these are
integrated to define the perturbative correlator.
Hidden symmetry uniquely fixes the four-point planar correlator to
3 loops (using the so-called “square” rule).



Graph Statistics
plane graphs, f-graphs and DCI integrands



The One-Loop Four-Point Gluon Amplitude

Consider the usual one-loop box integral in D-dimensional
regularisation D = 4− 2ε, ε < 0 and loop momenta k :

I(1)(p1,p2,p3,p4) =

∫
dDk

k2(k − p1)2(k − p1 − p2)2(k + p4)2

one can rewrite this as (for p2
i 6= 0 (off-shell regularisation):

I(1)(x1, x2, x3, x4) =

∫
d4x5

x2
15x2

25x2
35x2

45

for pi := xi − xi+1 (cyclicity over external points assumed) and k = x15.
xi are called ‘dual momenta’, they not configuration space
variables.
We’ve taken D = 4 for a covariant conformal transformation under
xµi → xµi /x

2
i .



The One-Loop Four-Point Gluon Amplitude
Relation to the Correlator

I(1)(x1, x2, x3, x4) =

∫
d4x5

x2
15x2

25x2
35x2

45

Comparing this to integrand of the one loop correlator, we find they
coincide:

ξ(1)F (1)/(x2
13x2

24) =
x2

12x2
23x2

34x2
14x2

13x2
24

x2
12x2

13x2
14x2

15x2
23x2

24x2
25x2

34x2
35x2

45
=

1
x2

15x2
25x2

35x2
45

This motivates a duality between scattering amplitudes and correlators
in the planar limit.



Scattering Amplitude/ Correlator Duality
Not LSZ reduction!

Planar correlators in a polygonal light-like limit is the amplitude
squared:

The (four-point) Scattering Amplitude/ Correlator Duality:

lim
x2

12,x
2
23,x

2
34,x

2
41→0

(
G4(x1, x2, x3, x4)

G(0)4 (x1, x2, x3, x4)

)
= A4(x1, x2, x3, x4)2,

Momenta pi have been reparametrised in terms of “dual
momenta” xi .
Correlator is finite for generic xi but diverge in the lightlike limit.
Amplitudes are IR divergent.
However, the integrands of both sides are well-defined.



Extracting four-point amplitudes from f -graphs

Multiplying F (`) by ξ(4) := x2
12x2

23x2
34x2

14(x2
13x2

24)2 and taking the
relevant limit gives a graphical procedure for extracting amplitudes.
This corresponds to picking inequivalent four-cycles.
Some four-cycles are on the “surface” - a face of the graph.
Some four-cycles are on the “inside” - splitting into lower loop
amplitude graphs.

An example of an “inside” four-cycle, where one extracts A(1)
4 ×A

(2)
4

from f (3):



Extracting four-point amplitudes from f -graphs

The 3-loop four-point lightlike limit in fact gives: 2A(3)
4 + 2A(1)

4 A
(2)
4 .

Two 3-loop graphs from two inequivalent faces.
A lower loop amplitude product from an “inside” 4-cycle.

We’ve ommitted external numerators x2
12x2

34 factors.

The other two four-cycles of f (3):

→

→



Higher point amplitudes from the four-point correlator

Higher point lightlike limits of the four-point correlator gives higher
point amplitudes (k = Grassmann odd expansion index):

lim
n-point

light-like

(
ξ(n)F

)
=

1
2

n−4∑
k=0

Ak
n An−4−k

n /(An−4,(0)
n ).

ξ(n) ≡
n∏

a=1

x2
aa+1x2

aa+2,

Pentagonal lightlike limit withM5≡A0
5/A

0,(0)
5 andM5≡A1

5/A
1,(0)
5

(divided by tree).

lim
x2

12,x
2
23,x

2
34,x

2
45,x

2
51→0

(
ξ(5)F (`+1)

)
=
∑̀
m=0

M(m)
5 M

(`−m)
5 .

At 5-points, one can disentangleM5 fromM5M̄5, the even and
odd parts at ` and `− 1 loops, resp. [Ambrosio Eden Goddard Heslop Taylor].



Fixing Coefficients using Graphical Rules

Previous methods for fixing coefficients up to eight loops were
algebraic. Due to symmetrisation, these expressions grow
factorially and become problematic for ` ≥ 9.
Three graphical rules applied on f -graphs turn out to be vastly
more efficient in determining coefficients:

The “triangle” rule originates from the Euclidean limit of the
correlator. The original method was algebraic but can be
reinterpreted to be purely graphical (incorporating symmetrisation
without many terms).
The “square” rule originates from four-point version of the scattering
amplitude/ correlator duality.
Finally, the “pentagon” rule originates from understanding parts of
the parity odd structure in the pentagonal lightlike limit (the five
point version of the duality).

These three rules completely fix the correlator to ten loops.



The Square rule [Eden Heslop Korchemsky Sokatchev]

Gluing pyramids (preserving planarity) together to obtain higher
loop f -graphs = “square rule”⇒ coefficient of ` loop f graph =
coefficient of `− 1 loop f graph:

→

Derived from amplitude/correlator duality:
[Eden Heslop Korchemsky Sokatchev]

Expanding the duality: lim
x2

ij→0
F (`)ξ(4) → 2A(`)

4 + 2A(`−1)
4 A(1)

4 + . . . For

F (`) to correctly contain A(1)
4 , coefficients must be inherited from lower

loop f graph F (`−1).



The Triangle Rule [ Bourjaily Heslop Tran] [Eden Heslop Korchemsky Sokatchev]

Originates from projecting onto leading Konishi contribution of the log
of the correlator in the single Euclidean limit, equivalent (by conformal
invariance) to the double Euclidean limit in previous literature:

`+ 1 loop triangle shrinks = `-loop edge shrinks
Take the `+1 loop correlator as a sum of f -graphs with arbitrary
coefficients. Shrink all inequivalent triangular faces.
This equals (2×) the result of taking the (known) `-loop result and
shrinking all inequivalent edges.

1 It’s important to include symmetry factors to “graphically”
reproduce the algebra.

2 Each isomorphic shrunk graph induces a constraint on certain
coefficients.

3 Proceed by solving the linear system of constraints.



The Triangle Rule Example

Symmetry factors are taken to compensate for the difference
between the f -graph and its reduced version. An example of a
reduced graph equation:

3-Loop to 4-Loop Example

In the example above, {c(4)
1 , c(4)

2 , c(4)
3 , c(3)} = {+1,+1,−1,+1}.

In practice, can one simply divide by the number of times an
inequivalent edge or triangle is mapped to a permutation of itself
under automorphisms of the chosen f -graph.



Combining the Triangle and Square Rules
[ Bourjaily Heslop Tran]

Triangle and Square rules fix the correlator to seven loops.
At eight loops, solving the linear system gives 22 free coefficients.
Using the 22 parameter family solution at nine loops consistency
fixes 20 of the eight loop coefficients (consistent with previous
work on soft/collinear bootstrap [ Bourjaily Heslop Tran]). There are 3
free nine loop coefficients giving 5 free coefficients overall.
Consistency at ten loops fixes the remaining 5 free coefficients
and therefore fixes the correlator to nine loops.
Yet there are 1570 free ten loop coefficients that requiring further
fixing. We can go to higher loops or find a new graphical rule.



Pentagon Rule

Relates the following two topologies at the same loop order (with a minus sign)
by the cross ratio x2

abx2
cd/(x

2
ad x2

bc):

An example:

Rule implies the valid constraint c(7)
1 +c(7)

2 +c(7)
3 +c(7)

4 =0.

Arises from considering two seperate contributions of M(`−1)
odd to f (`+1) (many

contributions from multiplication of ε123456ε12345(m+6)).
One finds a constraint equation for each highlighted “pentawheel with missing
spoke” ⇒ another linear system of equations.



The Ten Loop Correlator

A table on the strength of just the square and pentagon rules
combined:

Square, triangle and pentagon rules in combination determine
everything to ten loops (the pentagon rule can be used to fix the
remaining 1570 free coefficients from the triangle rule).



Novel Features for ` ≥ 8: Finite Graphs

Whilst the amplitude is IR divergent, there are finite (elliptic?)
integrals contributing to the amplitude from 8 loops:

Signals potential non-polylog contribution to 4-point amplitude?
Consistent with BDS (elliptic contribution to the constant part) but
potential breakdown of maximal transcendentality?
Contradiction may occur in
[ Arkani-Hamed Bourjaily Cachazo Goncharov Postnikov Trnka] - MHV and NMHV
amplitudes are purely polylogarithmic.

On the other hand, the non-polylog contributions could cancel
(coefficients above are {−1,1/2,1/2,1}), preventing any
contradiction.



Novel Features for ` ≥ 8: Divergent Graphs

Conversely: divergent integrals contributing to the finite correlator
occur from eight loops (off shell).
E.g.

Previously assumed to have vanishing coefficient.
Divergences are logarithmic by a power counting. The divergence
can be removed by adding numerator terms.
The contributing divergent subgraphs cancel in the sum, keeping
the correlator finite.



Rule Comparison



New Features at High Loops

Appearance of half- and quarter-integer coefficients.
New integers appear only at even loops (up to signs).
Appearance of special coefficients for “anti-prism” graphs.



Anti-prism Coefficients

First new coefficient (-1) is the four-loop “4-sided anti-prism graph”
(first with a square face):

Next new coefficient (+2) is the six-loop “5-sided anti-prism graph”
(first with a pentagonal face):

Next new coefficient (-5) is the eight-loop “6-sided anti-prism
graph” (first with a hexagonal face):



+3/2 appears for the first time at nine loops (−3/2 was previously
seen at eight loops).
At ten loops, a new graph with unique coefficient +14, the
“7-sided anti-prism graph” (first seven-sided face):

Whilst the octahedron (three-sided antiprism) and four-side
antiprism can be accessed by the square and pentagon rule, resp.
Clearly, the coefficients of all higher loop antiprisms cannot be
found using these. The triangle rule is required to determine them.
Conjecture: Catalan numbers (up to a sign). ⇒ twelve loop
octagonal anti-prism with coefficient -42

where Cn =
1

n + 1

(
2n
n

)
=

(2n)!

(n + 1)! n!
is the nth Catalan number,

n = 0,1,2, . . .



Conclusions and Further Directions

Finding the ten loop correlator essentially gives the following:
1 Four-point (MHV ) amplitude to ten loops.
2 Five-point (MHV and MHV ) parity (even) amplitude to nine loops
3 Five-point (MHV and MHV ) amplitude to eight loops.

Different rules give a consistent overlapping result.
How far can we take these rules? Higher loop correlator eleven-,
twelve-loops?
Extraction of higher point amplitudes from four-point correlator.
Six point amplitudes have been successfully extracted to one loop
and ”even” part at two loops. Six point graphical rule?
n-point extraction from the four-point correlator?
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