Maximal Cuts in Arbitrary Dimensions

Amplitudes Summer School 2017, Edinburgh Based on [1704.04255] with Mads Søgaard & Yang Zhang

Jorrit Bosma ETH Zurich

July 4, 2017

FNSNF

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

European Research Council

Established by the European Commission

Motivation

Want to calculate loop amplitudes,

$$\mathcal{A}_n^{L-loop} = \sum_{ ext{diagrams}} \int \left(\prod_{i=1}^L rac{ ext{d} I_i}{(2\pi)^D}
ight) rac{ extsf{N}_j}{\prod\limits_{lpha_j} D_{lpha_j}},$$

where

•
$$N_j = N_j(l, k, \epsilon)$$
 are numerators,

• D_{α_j} are propagators.

Motivation

Want to calculate loop amplitudes,

$$\mathcal{A}_n^{L-loop} = \sum_{ ext{diagrams}} \int \left(\prod_{i=1}^L rac{ ext{d}I_i}{(2\pi)^D}
ight) rac{ extsf{N}_j}{\prod\limits_{lpha_i} D_{lpha_i}},$$

where

• D_{α_j} are propagators.

This is tough.

Motivation

Want to calculate loop amplitudes,

$$\mathcal{A}_n^{L-loop} = \sum_{ ext{diagrams}} \int \left(\prod_{i=1}^L rac{ ext{d}I_i}{(2\pi)^D}
ight) rac{ extsf{N}_j}{\prod\limits_{lpha_i} D_{lpha_i}},$$

where

•
$$N_j = N_j(l, k, \epsilon)$$
 are numerators,

• D_{α_j} are propagators.

This is tough.

Using *maximal cuts*, progress can be made.

Table of Contents

Background & Motivation

(Generalized) Unitarity Method Maximal Cuts & Leading Singularities Integration-by-parts (IBP) Reduction Differential Equations

Computing Maximal Cuts

The Baikov Representation Example: Massless Sunset Example: Massless Double Box

Conclusion & Outlook

Table of Contents

Background & Motivation

(Generalized) Unitarity Method Maximal Cuts & Leading Singularities Integration-by-parts (IBP) Reduction Differential Equations

Computing Maximal Cuts

The Baikov Representation Example: Massless Sunset Example: Massless Double Box

Conclusion & Outlook

(Generalized) Unitarity Method [Cutkosky, ..., Bern, Dixon, Dunbar, Kosower, ...]

See reviews [Bern & Huang '11; Britto '11] and the textbook [Elvang & Huang '15]

Main idea: use *unitarity* to determine the *analytic structure* of loop amplitudes.

Write $S = \mathbb{1} + i\mathcal{T}$ and insert in $S^{\dagger}S = \mathbb{1}$:

 $2\text{Im}(\mathcal{T}) = \mathcal{T}^{\dagger}\mathcal{T}.$

Perturbatively this means $Im(L-loop) \propto \prod(Lower loop)$.

Unitarity cut: put propagators corresponding to a physical momentum channel on-shell.

Example: s-Channel unitarity cut of $A_4^{1-\text{Loop}}$:

Unitarity cut: put propagators corresponding to a physical momentum channel on-shell.

Example: s-Channel unitarity cut of $A_4^{1-\text{Loop}}$:

Generalized unitarity cut: put any combination of propagators on-shell, even if they don't correspond to a physical momentum channel.

Two ways to use information from cuts:

- 1. Merge the analytic information from a 'spanning set' of cuts;
- 2. Determine coefficients in an expansion in basis (master) integrals.

Two ways to use information from cuts:

- 1. Merge the analytic information from a 'spanning set' of cuts;
- 2. Determine coefficients in an expansion in basis (master) integrals.

Example: scalar *n*-gons for 1-loop amplitudes in D = 4:

$$A^{1-\text{Loop}} = c_2$$
: $+ c_3$ $+ c_4$ $+ rational terms$

Two ways to use information from cuts:

- 1. Merge the analytic information from a 'spanning set' of cuts;
- 2. Determine coefficients in an expansion in basis (master) integrals.

Example: scalar *n*-gons for 1-loop amplitudes in D = 4:

$$A^{1-\text{Loop}} = c_2$$
: $+ c_3$ $+ c_4$ $+ rational terms$

Rational terms:

- Come from the -2ϵ -dimensional part;
- Can be captured by working in arbitrary *D* dimensions.

$$A^{1-\text{Loop}} = c_2$$
: $+ c_3$ $+ c_4$ $+ rational terms$

$$A^{1-\text{Loop}} = c_2$$
: $+ c_3$ $+ c_4$ $+ rational terms$

Take cuts on both sides:

$$\Delta A^{1\text{-Loop}} = c_2 \Delta \left(\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \right) + c_3 \Delta \left(\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \right) + c_4 \Delta \left(\begin{array}{c} \vdots \\ \end{array} \right)$$

$$A^{1-\text{Loop}} = c_2$$
: $+ c_3$ $+ c_4$ $+ rational terms$

Take cuts on both sides:

$$\Delta A^{1\text{-Loop}} = c_2 \Delta \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right) + c_3 \Delta \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right) + c_4 \Delta \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right)$$

Take different cuts to determine $c'_i s$.

- 1. Start with *maximal cuts*, which cut *D* propagators, to get c_D ;
- 2. Then consider D-1 cuts to get c_{D-1} ;

3. ...

Cut conditions on maximal cut generically have 2^L distinct solutions. *Leading singularity:* contribution from a single solution.

Cut conditions on maximal cut generically have 2^L distinct solutions. *Leading singularity:* contribution from a single solution.

- Average over distinct solutions
 - \rightarrow Cut amplitude matches average of LSs

Cut conditions on maximal cut generically have 2^L distinct solutions. *Leading singularity:* contribution from a single solution.

- Average over distinct solutions
 - \rightarrow Cut amplitude matches average of LSs
- Match each distinct solution
 - \rightarrow Cut amplitude reproduces each LS

Cut conditions on maximal cut generically have 2^L distinct solutions. *Leading singularity:* contribution from a single solution.

- Average over distinct solutions
 - \rightarrow Cut amplitude matches average of LSs
- Match each distinct solution
 - \rightarrow Cut amplitude reproduces each LS

All loop integrands in planar $\mathcal{N} = 4$ Super Yang-Mills are completely determined by their LSs [Arkani-Hamed, Bourjaily, Cachazo, Trnka '12].

[Chetyrkin & Tkachov '81]

What if cows are not spherical and we don't know a full basis of integrals?

[Chetyrkin & Tkachov '81]

What if cows are not spherical and we don't know a full basis of integrals? Use *integration-by-parts* identities to relate different integrals:

$$\int \left(\prod_{i=1}^{L} \mathsf{d}^{D} I_{i}\right) \sum_{j=1}^{L} \frac{\partial}{\partial I_{j}^{\mu}} \frac{v_{j}^{\mu}}{\prod_{\alpha} D_{\alpha}^{\mathfrak{a}_{\alpha}}} = 0,$$

where

 \triangleright v_i^{μ} are polynomials in internal and external momenta;

• $a_{\alpha} \geq 0$ are integers.

More precisely, this relates integrals within an *integral family*:

Fix propagators D_1, \ldots, D_k and irreducible scalar products D_{k+1}, \ldots, D_m . Their integral family is the set of integrals

$$I[a_1,\ldots,a_m] = \int \left(\prod_{i=1}^L d^D I_i\right) \frac{D_{k+1}^{a_{k+1}} \ldots D_m^{a_m}}{D_1^{a_1} \ldots D_k^{a_k}},$$

with $a_i \ge 0$ integers.

More hardcore / practical approach to loop amplitudes:

1. Generate diagrams;

More hardcore / practical approach to loop amplitudes:

- 1. Generate diagrams;
- 2. Reduce to scalar integrals;

More hardcore / practical approach to loop amplitudes:

- 1. Generate diagrams;
- 2. Reduce to scalar integrals;
- 3. Reduce to master integrals via (scalar) IBPs;

More hardcore / practical approach to loop amplitudes:

- 1. Generate diagrams;
- 2. Reduce to scalar integrals;
- 3. Reduce to master integrals via (scalar) IBPs;
- 4. Evaluate master integrals.

[Kotikov '91, Henn '13]

See also the lecture notes by Johannes Henn

Evaluate master integrals by deriving and solving a DE system in external kinematic invariants for them:

1. Calculate $\partial_x \vec{l}$;

[Kotikov '91, Henn '13]

See also the lecture notes by Johannes Henn

Evaluate master integrals by deriving and solving a DE system in external kinematic invariants for them:

- 1. Calculate $\partial_x \vec{l}$;
- 2. Reduce answer to master integrals;

[Kotikov '91, Henn '13]

See also the lecture notes by Johannes Henn

Evaluate master integrals by deriving and solving a DE system in external kinematic invariants for them:

- 1. Calculate $\partial_x \vec{l}$;
- 2. Reduce answer to master integrals;
- 3. Get $\partial_x \vec{l} = A\vec{l}$;

[Kotikov '91, Henn '13]

See also the lecture notes by Johannes Henn

Evaluate master integrals by deriving and solving a DE system in external kinematic invariants for them:

- 1. Calculate $\partial_x \vec{l}$;
- 2. Reduce answer to master integrals;
- 3. Get $\partial_x \vec{l} = A\vec{l}$;
- 4. Solve DE system \rightarrow expressions for MIs.

Table of Contents

Background & Motivation

(Generalized) Unitarity Method Maximal Cuts & Leading Singularities Integration-by-parts (IBP) Reduction Differential Equations

Computing Maximal Cuts

The Baikov Representation Example: Massless Sunset Example: Massless Double Box

Conclusion & Outlook

We now discuss a method to compute maximal cuts of multi-loop Feynman integrals.

For the integral family, use propagators and irreducible scalar products as variables,

 $z_i = D_i$.

Integrate out the (-2ϵ) -dim solid angle.

We now discuss a method to compute maximal cuts of multi-loop Feynman integrals.

For the integral family, use propagators and irreducible scalar products as variables,

$$z_i = D_i$$
.

Integrate out the (-2ϵ) -dim solid angle.

$$\rightarrow \quad I[a_1,\ldots,a_m] = C(D,k,\epsilon) \int_A \mathrm{d} z_1 \cdots \mathrm{d} z_m F(z)^{\frac{D-L-m}{2}} \frac{z_{k+1}^{a_{k+1}} \cdots z_m^{a_m}}{z_1^{a_1} \cdots z_m^{a_m}},$$

where F(z) is called the *Baikov polynomial* and A is defined by $F \ge 0$.

One preferably avoids doubled propagators at any step, i.e. one only considers the integrals $I[1, \ldots, 1, a_{k+1}, \ldots, a_m]$.

One preferably avoids doubled propagators at any step, i.e. one only considers the integrals $I[1, \ldots, 1, a_{k+1}, \ldots, a_m]$.

Cuts in the Baikov representation turn out to be very simple:

$$\Delta_i: \int F(z) rac{1}{z_i} \quad \mapsto \quad F(z)|_{z_i=0}.$$

See also the related works [Frellesvig & Papadopoulos '17; Harley, Moriello, Schabinger '17].

$$\begin{split} D_1 &= l_1^2, \qquad D_2 = l_2^2, \qquad D_3 = (l_1 + l_2 - k)^2, \\ D_4 &= (l_1 + k)^2 - 2s, \qquad D_5 = (l_2 + k)^2 - 2s, \\ k^2 &= m^2 = s. \end{split}$$

$$\begin{split} D_1 &= l_1^2, \qquad D_2 = l_2^2, \qquad D_3 = (l_1 + l_2 - k)^2, \\ D_4 &= (l_1 + k)^2 - 2s, \qquad D_5 = (l_2 + k)^2 - 2s, \\ k^2 &= m^2 = s. \end{split}$$

In the Baikov representation:

$$I[1,1,1,a,b] = \frac{1}{s} \frac{2^{D-4} \pi^{D-2}}{\Gamma(D-2)} \int_{A} dz_1 \cdots dz_5 F(z)^{\frac{D-4}{2}} \frac{z_4^a z_5^b}{z_1 z_2 z_3}.$$

On the maximal cut the Baikov polynomial is

$$F(z_4, z_5) = \frac{1}{s} z_4 z_5 (s + z_4 + z_5).$$

On the maximal cut the Baikov polynomial is

$$F(z_4, z_5) = \frac{1}{s} z_4 z_5 (s + z_4 + z_5).$$

Rescale the variables to $x = z_4/s$ and $y = z_5/s$. This yields

$$F(x,y) = xy(1+x+y)$$

and

$$I[a,b] = C(D,s) s^{a+b} \int_{\Omega} \mathrm{d}x \mathrm{d}y \, F^{\frac{D-4}{2}} x^a y^b.$$

$$I[a,b] = C(D,s)s^{a+b}\int_{\Omega} \mathrm{d}x\mathrm{d}y \, F^{\frac{D-4}{2}}x^a y^b.$$

The integration region Ω splits into four different regions:

Consider the first region,

$$I_1[a,b] = \int_0^\infty \mathrm{d}x \int_0^\infty \mathrm{d}y \left(xy(1+x+y)\right)^{\frac{D-4}{2}} x^a y^b.$$

Consider the first region,

$$I_1[a,b] = \int_0^\infty \mathrm{d}x \int_0^\infty \mathrm{d}y \left(xy(1+x+y)\right)^{\frac{D-4}{2}} x^a y^b.$$

Recall the Beta function,

$$\frac{\Gamma(\nu)\Gamma(w)}{\Gamma(\nu+w)} = B(\nu,w) = \int_0^\infty \mathrm{d}t \ t^{x-1}(1+t)^{-(x+y)}.$$

Consider the first region,

$$I_1[a,b] = \int_0^\infty \mathrm{d}x \int_0^\infty \mathrm{d}y \left(xy(1+x+y)\right)^{\frac{D-4}{2}} x^a y^b.$$

Recall the Beta function,

$$\frac{\Gamma(v)\Gamma(w)}{\Gamma(v+w)} = B(v,w) = \int_0^\infty \mathrm{d}t \ t^{x-1}(1+t)^{-(x+y)}.$$

The integration yields

$$J_1[a,b] = \frac{\Gamma(4-a-b-3D/2)\Gamma(-1+a+D/2)\Gamma(-1+b+D/2)}{\Gamma(2-D/2)}$$

Recall Γ-function identities,

$$\Gamma(z+1) = z\Gamma(z),$$

$$\Gamma(1-z)\Gamma(z) = \frac{\pi}{\sin(\pi z)} \quad (z \notin \mathbb{Z}),$$

$$\Gamma(z)\Gamma\left(z + \frac{1}{2}\right) = 2^{1-2z}\sqrt{\pi}\,\Gamma(2z).$$

Recall Γ -function identities,

$$\Gamma(z+1) = z\Gamma(z),$$

$$\Gamma(1-z)\Gamma(z) = \frac{\pi}{\sin(\pi z)} \quad (z \notin \mathbb{Z}),$$

$$\Gamma(z)\Gamma\left(z + \frac{1}{2}\right) = 2^{1-2z}\sqrt{\pi}\,\Gamma(2z).$$

Applying these we find for the other regions,

$$J_1[a, b] = J_2[a, b] = J_3[a, b],$$

$$J_4[a, b] = (1 + \cos D\pi)J_1[a, b],$$

so there is only one independent region.

Moreover, **F**-identities also yield the known IBP relations,

$$J[a, b] = J[0, 0] s^{a+b} \frac{(-1 + D/2)_a (-1 + D/2)_b}{(3 - 3D/2)^{(a+b)}},$$

with the ascending factorial

$$(z)_a = \frac{\Gamma(z+a)}{\Gamma(z)} = z(z+1)\cdots(z+a-1)$$

and the descending factorial

$$(z)^{(a)} = \frac{\Gamma(z+1)}{\Gamma(z-a+1)} = z(z-1)\cdots(z-a+1).$$

In the same fashion one recovers dimension shift identities,

$$J[0,0](D+2) = -J[0,0](D) s^2 \pi^2 \frac{(-1+D/2)^2}{2(1-3D/2)_3 (D-1)},$$

In the same fashion one recovers dimension shift identities,

$$J[0,0](D+2) = -J[0,0](D) s^2 \pi^2 \frac{(-1+D/2)^2}{2(1-3D/2)_3 (D-1)},$$

and the differential equation,

$$\frac{\partial}{\partial s}J[0,0] = \frac{D-2}{s}J[0,0]$$

which is immediately in ϵ -form in D = 2.

On the maximal cut we have

$$F(z) = \frac{z_8 z_9 (s^2 \chi - s z_8 - s z_9 - z_8 z_9)}{4 s^2 \chi (\chi + 1)}$$

and we want to calculate

$$J[a,b] = \int_{\Omega} \mathsf{d} z_8 \mathsf{d} z_9 F(z)^{\frac{D-6}{2}} z_8^a z_9^b.$$

$$J[\mathbf{a}, \mathbf{b}] = \int_{\Omega} \mathrm{d}z_8 \mathrm{d}z_9 F(z)^{\frac{D-6}{2}} z_8^{\mathbf{a}} z_9^{\mathbf{b}}.$$

 Ω , defined by $F \ge 0$, splits into four regions:

$$J_{1}[a, b] = \frac{\Gamma\left(\frac{D}{2} - 2\right)\Gamma\left(a + \frac{D}{2} - 2\right)\Gamma\left(b + \frac{D}{2} - 2\right)s^{a+b+D-7}\chi^{a+b+D-5}}{16\pi^{4}\Gamma(D-4)} \times {}_{2}\tilde{F}_{1}\left(a + D - 4, b + D - 4; a + b + \frac{3D}{2} - 6; -\chi\right),$$

where ${}_{2}\tilde{F}_{1}$ is the regularized hypergeometric function, ${}_{2}\tilde{F}_{1}(\alpha, \beta, \gamma, z) = {}_{2}F_{1}(\alpha, \beta, \gamma, z)/\Gamma(\gamma).$

Similarly,

$$\begin{split} J_2[a,b] &= -\frac{(-1)^{a+b}\chi^{2-\frac{D}{2}}\sin(\pi D)\Gamma\left(\frac{D}{2}-2\right)\Gamma(-a-D+5)\Gamma(-b-D+5)s^{a+b}}{16\pi^4\Gamma(D-4)\sin\left(\frac{3\pi D}{2}\right)} \\ &\times \,_2\tilde{F}_1\left(-a-\frac{D}{2}+3,-b-\frac{D}{2}+3;-a-b-\frac{3D}{2}+8;-\chi\right) \\ &+ \frac{\Gamma\left(\frac{D}{2}-2\right)\Gamma\left(a+\frac{D}{2}-2\right)\Gamma\left(b+\frac{D}{2}-2\right)s^{a+b+D-7}\chi^{a+b+D-5}}{16\pi^4\Gamma(D-4)(1+2\cos(\pi D))} \\ &\times \,_2\tilde{F}_1\left(a+D-4,b+D-4;a+b+\frac{3D}{2}-6;-\chi\right), \end{split}$$

and, after applying hypergeometric function identities,

$$J_3[a, b] = J_2[a, b],$$

$$J_4[a, b] = J_1[a, b] - 2\cos(\pi D)J_2[a, b].$$

Hypergeometric function identities also

- give that $J_i[a, b]$ is generated by $J_i[0, 0]$ and $J_i[1, 0]$ for any region;
- provide all IBPs and dimension shift identities.

Hypergeometric function identities also

- give that $J_i[a, b]$ is generated by $J_i[0, 0]$ and $J_i[1, 0]$ for any region;
- provide all IBPs and dimension shift identities.

Put the independent functions from the independent regions in a matrix,

$${\cal S} = egin{pmatrix} J_1[0,0] & J_2[0,0] \ J_1[1,0] & J_2[1,0] \end{pmatrix}.$$

Turns out this is the Wronskian for the DE system.

Hypergeometric function identities also

- give that $J_i[a, b]$ is generated by $J_i[0, 0]$ and $J_i[1, 0]$ for any region;
- provide all IBPs and dimension shift identities.

Put the independent functions from the independent regions in a matrix,

$$S = egin{pmatrix} J_1[0,0] & J_2[0,0] \ J_1[1,0] & J_2[1,0] \end{pmatrix}.$$

Turns out this is the Wronskian for the DE system.

Furthermore, leading term of $S(\epsilon)$ can be used to transform the DE system to canonical form.

Hypergeometric function identities also

- give that $J_i[a, b]$ is generated by $J_i[0, 0]$ and $J_i[1, 0]$ for any region;
- provide all IBPs and dimension shift identities.

Put the independent functions from the independent regions in a matrix,

$$S = egin{pmatrix} J_1[0,0] & J_2[0,0] \ J_1[1,0] & J_2[1,0] \end{pmatrix}.$$

Turns out this is the Wronskian for the DE system.

Furthermore, leading term of $S(\epsilon)$ can be used to transform the DE system to canonical form.

For massive external legs one also gets $_2\tilde{F}_1$ functions or Appel F1 functions, depending on the configuration.

Table of Contents

Background & Motivation

(Generalized) Unitarity Method Maximal Cuts & Leading Singularities Integration-by-parts (IBP) Reduction Differential Equations

Computing Maximal Cuts

The Baikov Representation Example: Massless Sunset Example: Massless Double Box

Conclusion & Outlook

Conclusion

- Developed a consistent and precise method to compute (maximal) cuts of Feynman integrals in D dimensions;
- This method also works for massive and nonplanar integrals;
- We found compact, analytic results in all examples considered and all integral relations correspond to relations of special functions;
- The number of independent regions equals the number of master integrals;
- The independent functions form the Wronskian of the DE system. (See also recent work [Primo & Tancredi '17; Zeng '17])

Outlook

- Extend our method to complex momenta and complex Baikov variables;
- Consider elliptic Feynman integrals;
- Compute non-maximal cuts.

Thank you