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Motivation

Want to calculate loop amplitudes,

AL−loop
n =

∑
diagrams

∫ ( L∏
i=1

dli
(2π)D

)
Nj∏

αj

Dαj

,

where

I Nj = Nj(l , k, ε) are numerators,

I Dαj are propagators.

This is tough.

Using maximal cuts, progress can be made.
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(Generalized) Unitarity Method
[Cutkosky, . . . , Bern, Dixon, Dunbar, Kosower, . . . ]

See reviews [Bern & Huang ’11; Britto ’11] and the textbook [Elvang & Huang ’15]

Main idea: use unitarity to determine the analytic structure of loop
amplitudes.

Write S = 1 + iT and insert in S†S = 1:

2Im(T ) = T †T .

Perturbatively this means Im(L-loop) ∝∏(Lower loop).
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(Generalized) Unitarity Method

Unitarity cut: put propagators corresponding to a physical momentum
channel on-shell.

Example: s-Channel unitarity cut of A1-Loop
4 :

∆sA
1-Loop
4 =

=
∑
states

Atree
4 [−l1, 1, 2, l3]Atree

4 [−l3, 3, 4, l1]

Generalized unitarity cut: put any combination of propagators on-shell,
even if they don’t correspond to a physical momentum channel.
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(Generalized) Unitarity Method

Two ways to use information from cuts:

1. Merge the analytic information from a ‘spanning set’ of cuts;

2. Determine coefficients in an expansion in basis (master) integrals.

Example: scalar n-gons for 1-loop amplitudes in D = 4:

A1-Loop = c2 + c3 + c4 + rational terms

Rational terms:
I Come from the −2ε-dimensional part;
I Can be captured by working in arbitrary D dimensions.
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(Generalized) Unitarity Method

A1-Loop = c2 + c3 + c4 + rational terms

Take cuts on both sides:

∆A1-Loop = c2∆
( )

+ c3∆

( )
+ c4∆

( )

Take different cuts to determine c ′i s.

1. Start with maximal cuts, which cut D propagators, to get cD ;

2. Then consider D − 1 cuts to get cD−1;

3. ...
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Maximal Cuts & Leading Singularities

Cut conditions on maximal cut generically have 2L distinct solutions.
Leading singularity: contribution from a single solution.

I Average over distinct solutions
→ Cut amplitude matches average of LSs

I Match each distinct solution
→ Cut amplitude reproduces each LS

All loop integrands in planar N = 4 Super Yang-Mills are completely
determined by their LSs [Arkani-Hamed, Bourjaily, Cachazo, Trnka ’12].
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Integration-by-parts (IBP) Reduction
[Chetyrkin & Tkachov ’81]

What if cows are not spherical and we don’t know a full basis of integrals?

Use integration-by-parts identities to relate different integrals:∫ ( L∏
i=1

dD li

)
L∑

j=1

∂

∂lµj

vµ
j∏

α
Daα

α
= 0,

where

I vµ
j are polynomials in internal and external momenta;

I aα ≥ 0 are integers.
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Integration-by-parts (IBP) Reduction

More precisely, this relates integrals within an integral family:

Fix propagators D1, . . . ,Dk and irreducible scalar products Dk+1, . . . ,Dm.
Their integral family is the set of integrals

I [a1, . . . , am] =

∫ ( L∏
i=1

dD li

)
Dak+1

k+1 . . .D
am
m

Da1
1 . . .Dak

k

,

with ai ≥ 0 integers.
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Integration-by-parts (IBP) Reduction

More hardcore / practical approach to loop amplitudes:

1. Generate diagrams;

2. Reduce to scalar integrals;

3. Reduce to master integrals via (scalar) IBPs;

4. Evaluate master integrals.
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Differential Equations
[Kotikov ’91, Henn ’13]

See also the lecture notes by Johannes Henn

Evaluate master integrals by deriving and solving a DE system in external
kinematic invariants for them:

1. Calculate ∂x~I ;

2. Reduce answer to master integrals;

3. Get ∂x~I = A~I ;

4. Solve DE system → expressions for MIs.
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The Baikov Representation

We now discuss a method to compute maximal cuts of multi-loop
Feynman integrals.

For the integral family, use propagators and irreducible scalar products as
variables,

zi = Di .

Integrate out the (−2ε)-dim solid angle.

→ I [a1, . . . , am] = C (D, k, ε)

∫
A

dz1 · · · dzm F (z)
D−L−m

2
zak+1

k+1 · · · zamm
za1

1 · · · zamm
,

where F (z) is called the Baikov polynomial and A is defined by F ≥ 0.
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The Baikov Representation

One preferably avoids doubled propagators at any step, i.e. one only
considers the integrals I [1, . . . , 1, ak+1, . . . , am].

Cuts in the Baikov representation turn out to be very simple:

∆i :

∫
F (z)

1

zi
7→ F (z)|zi=0.

See also the related works [Frellesvig & Papadopoulos ’17; Harley,
Moriello, Schabinger ’17].
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Example: Massless Sunset

k

l1

k − l1 − l2

l2

D1 = l21 , D2 = l22 , D3 = (l1 + l2 − k)2,

D4 = (l1 + k)2 − 2s, D5 = (l2 + k)2 − 2s,

k2 = m2 = s.

In the Baikov representation:

I [1, 1, 1, a, b] =
1

s

2D−4πD−2

Γ(D − 2)

∫
A

dz1 · · · dz5F (z)
D−4

2
za4z

b
5

z1z2z3
.
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Example: Massless Sunset

On the maximal cut the Baikov polynomial is

F (z4, z5) =
1

s
z4z5 (s + z4 + z5) .

Rescale the variables to x = z4/s and y = z5/s. This yields

F (x , y) = xy(1 + x + y)

and

I [a, b] = C (D, s) sa+b

∫
Ω

dxdy F
D−4

2 xayb.
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Example: Massless Sunset

I [a, b] = C (D, s) sa+b

∫
Ω

dxdy F
D−4

2 xayb.

The integration region Ω splits into four different regions:

19
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Example: Massless Sunset

Consider the first region,

I1[a, b] =

∞∫
0

dx

∞∫
0

dy (xy(1 + x + y))
D−4

2 xayb.

Recall the Beta function,

Γ(v)Γ(w)

Γ(v + w)
= B(v ,w) =

∞∫
0

dt tx−1(1 + t)−(x+y).

The integration yields

J1[a, b] =
Γ(4− a− b − 3D/2)Γ(−1 + a + D/2)Γ(−1 + b + D/2)

Γ(2− D/2)
.

20
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Example: Massless Sunset

Recall Γ-function identities,

Γ(z + 1) = zΓ(z),

Γ(1− z)Γ(z) =
π

sin(πz)
(z 6∈ Z),

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z).

Applying these we find for the other regions,

J1[a, b] = J2[a, b] = J3[a, b],

J4[a, b] = (1 + cosDπ)J1[a, b],

so there is only one independent region.
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Example: Massless Sunset

Moreover, Γ-identities also yield the known IBP relations,

J[a, b] = J[0, 0] sa+b (−1 + D/2)a (−1 + D/2)b

(3− 3D/2)(a+b)
,

with the ascending factorial

(z)a =
Γ(z + a)

Γ(z)
= z(z + 1) · · · (z + a− 1)

and the descending factorial

(z)(a) =
Γ(z + 1)

Γ(z − a + 1)
= z(z − 1) · · · (z − a + 1).

22
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Example: Massless Sunset

In the same fashion one recovers dimension shift identities,

J[0, 0](D + 2) = −J[0, 0](D) s2π2 (−1 + D/2)2

2(1− 3D/2)3 (D − 1)
,

and the differential equation,

∂

∂s
J[0, 0] =

D − 2

s
J[0, 0],

which is immediately in ε-form in D = 2.
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Example: Massless Double Box

D2

D1

D3

D5

D4

D6

D7

1

2 3

4

On the maximal cut we have

F (z) =
z8z9(s2χ− sz8 − sz9 − z8z9)

4s2χ(χ+ 1)

and we want to calculate

J[a, b] =

∫
Ω

dz8dz9 F (z)
D−6

2 za8z
b
9 .

24
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Example: Massless Double Box

J[a, b] =

∫
Ω

dz8dz9 F (z)
D−6

2 za8z
b
9 .

Ω, defined by F ≥ 0, splits into four regions:

25
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Example: Massless Double Box

J1[a, b] =
Γ
(
D
2 − 2

)
Γ
(
a + D

2 − 2
)

Γ
(
b + D

2 − 2
)
sa+b+D−7χa+b+D−5

16π4Γ(D − 4)

× 2F̃1

(
a + D − 4, b + D − 4; a + b +

3D

2
− 6;−χ

)
,

where 2F̃1 is the regularized hypergeometric function,

2F̃1(α, β, γ, z) = 2F1(α, β, γ, z)/Γ(γ).

26
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Example: Massless Double Box

Similarly,

J2[a, b] = − (−1)a+bχ2− D
2 sin(πD)Γ

(
D
2 − 2

)
Γ(−a− D + 5)Γ(−b − D + 5)sa+b+D−7

16π4Γ(D − 4) sin
(

3πD
2

)
× 2F̃1

(
−a− D

2
+ 3,−b − D

2
+ 3;−a− b − 3D

2
+ 8;−χ

)
+

Γ
(
D
2 − 2

)
Γ
(
a + D

2 − 2
)

Γ
(
b + D

2 − 2
)
sa+b+D−7χa+b+D−5

16π4Γ(D − 4)
(
1 + 2 cos(πD)

)
× 2F̃1

(
a + D − 4, b + D − 4; a + b +

3D

2
− 6;−χ

)
,

and, after applying hypergeometric function identities,

J3[a, b] = J2[a, b],

J4[a, b] = J1[a, b]− 2 cos(πD)J2[a, b].

27
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Example: Massless Double Box

Hypergeometric function identities also

I give that Ji [a, b] is generated by Ji [0, 0] and Ji [1, 0] for any region;

I provide all IBPs and dimension shift identities.

Put the independent functions from the independent regions in a matrix,

S =

(
J1[0, 0] J2[0, 0]
J1[1, 0] J2[1, 0]

)
.

Turns out this is the Wronskian for the DE system.

Furthermore, leading term of S(ε) can be used to transform the DE
system to canonical form.

For massive external legs one also gets 2F̃1 functions or Appel F1
functions, depending on the configuration.

28
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Conclusion

I Developed a consistent and precise method to compute (maximal)
cuts of Feynman integrals in D dimensions;

I This method also works for massive and nonplanar integrals;

I We found compact, analytic results in all examples considered and
all integral relations correspond to relations of special functions;

I The number of independent regions equals the number of master
integrals;

I The independent functions form the Wronskian of the DE system.
(See also recent work [Primo & Tancredi ’17; Zeng ’17])
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Outlook

I Extend our method to complex momenta and complex Baikov
variables;

I Consider elliptic Feynman integrals;

I Compute non-maximal cuts.
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Thank you
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