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* At tree-level they are given by the Kawai—Lewellen—Tye (KLT) relations:
Acr ~ Z A
* |In fact, KLT relations were originally discovered in string theory:

2
Ac]osed ~ E :*Aopen

» Where do KLT relations come from? In trying to answer this question,
one finds a surprising connection between string theory amplitudes and the
mathematics of twisted cycles.
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The goal for this talk:

How to understand KLT relations in terms of combinatorics and topology.
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* Quick recap of tree-level open string amplitudes:

_ single-valued 1—f0{1
AP (1234) = / 25(1 — 2)" o(2)
0<z<1 }
#4=00 z3=1 multi-valued Koba—Nielsen factor

» Topological cycle: (0 1
» Twisted cycle: C(1234) = (0, 15 ®2°(1 — 2)*

* Then an open string amplitude is given as a pairing between a twisted cycle
C(1234) and a twisted cocycle ¢(z), e.g.,

A°PeR(1234) = <C(1234), C,O>
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(2134): -- >e .
(1234) : z:O >z;1
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 Twisted cycles are defined analogously:

C(2134) ;® 1—z

C(1234) = (0,1) ® 25(1 — 2)* ) e'™ phase difference

e~ '™ phase difference
1324 ) R 2° z — 1 > P

* Twisted cycles live in the real section of the moduli space My 4 = C\ {0, 1}.
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* The resulting regularized twisted cycle is compact. Let’s call it reg C(1234).
« WWe can now compute intersection numbers of twisted cycles with the rules:

reg (0,1) =

W9 W1 W1 W

(w1, wa) : >< = +1 or >< = —1
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« First calculate the self-intersection number of C(1234) with itself:

(C(1234), C(1234))

* Three contributions:; / ) \
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— (C(1234), C(1234)) = —( F14 )
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(C(1234),C(1324)) = T t-channel

1 1 s,t-channel
C(1234), C(1234)) = — . 1 - |
< ( ) ( )> (6271'1,8 —1 Tl elmit _ 1) + contact
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 Before blowup, e.g., C(12345) = {0 < 22 < 23 < 1} ® ...
 After blowup each twisted cycle E(B) IS a pentagon.
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* Intersection numbers of twisted cycles describe how associahedra intersect
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- Always given as tree diagrams with “propagators” 1/sin(mwa’p*/2) and
1/tan(wa’p?/2). But we don’t need to actually draw associahedra. Use
diagrams instead, e.g., [SM 16, 17]

1 1 1 1

SIN TS19 SIN TS34 SIN TS5g SIN TS78




» There are three types of pairings we can define:




» There are three types of pairings we can define:

mas (B]7)




» There are three types of pairings we can define:

mas (B]7)




» There are three types of pairings we can define:
Aclosed

mas (B]7)




» There are three types of pairings we can define:
Aclosed

mas (B]7)

» They are related by the twisted period relations: [Cho & Matsumoto 94, SM 16, 17]

Acosed = 37 AP (B) m (B]7) AP ()
By



» There are three types of pairings we can define:
Aclosed
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» They are related by the twisted period relations: [Cho & Matsumoto 94, SM 16, 17]

Acosed = 37 AP (B) m (B]7) AP ()
By

* These are the Kawai—Lewellen—Tye relations with KLT kernel given by m;,l!
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* In the field theory limit, o' — 0, each facet contributes

1 1 n
- - > ° — . ? : .
F e2mia’sp ] 2wt o/ S

« Hence only places where the maximal number of facets meet, i.e., vertices,
contribute in this limit.

sum over trivalent

Feynman diagrams | = m(@h)
planar w.r.t. 8,

e Since A°°sed _y AGR gnd A°Pem s AYM in this limit, KLT relations become:

ACR = 3 AN () m~ (8]) AYM ()
)l A bi-adjoint scalar amplitudes
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« KLT relations have a natural interpretation as twisted period relations.
 Twisted cycles for string theory amplitudes are given by associahedra.
* Inverse of the KLT kernel is given by intersections of these associahedra.

FUTURE DIRECTIONS

* Promising direction towards loop-level KLT relations
« Connection to the Cachazo—He—Yuan formalism [SM & Zhang 17, SM 17]
to the Amplituhedron [Arkani-Hamed'’s talk at Strings 2017]
to colour-kinematics duality [Carrasco later this week
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