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Semi-classical gravity (=sum over saddle points plus 

perturbative computations) provides approximate answers 

only and therefore contains incomplete information. 

Lesson from physics: if you have incomplete information 

apply the principles of statistical physics. 

A concrete approach (which is the basis for statistical 

physics and Bayesian inference) is to:

Build a description which maximizes ignorance/entropy 

while being compatible with observations/computations

Such a description may not be microscopically correct but it 

is the best we can do..



Example: Suppose that we have a quantum mechanical 

system whose Hamiltonian H we know, and suppose that we 

measure the energy of the system. What is the best possible 

description in the absence of any other information?

Answer: maximize

Entropy = “ignorance” of 

the state of the system

Lagrange multiplier which 

enforces energy constraint. 

Vary ρ to get



One can play a similar game for much more general choices 

of data. Suppose for example that we know some correlators 

of an operator A and we want to extract a probability 

distribution         on the space of operators. 

The general picture is one where if one e.g. inputs connected 
≤k-point correlators, one gets a “matrix model” with up to k-th 

order interactions in the exponent. 



If we input only one- and two-point functions we get a 

quadratic matrix model. Famously, the spectrum has level 

repulsion. This is one way to interpret the success of random 

matrix theory to model the spectra of nuclei of heavy atoms by 

Wigner (1955). This interpretation goes back to Balian (1968). 

If random matrix descriptions are related to ignorance, one 

might expect they play an important role in chaotic systems, as 

chaos makes systems unpredictable and renders the energy 

spectrum unsolvable. 

Indeed, the Bohigas–Giannoni–Schmit (BGS) 

conjecture(1984) asserts that the spectral statistics of quantum 

systems whose classical counterparts exhibit chaotic behavior 

are described by random matrix theory.



Yet another example: if we apply this reasoning to a system 

where the information we have available are approximate 

finite temperature two-point functions of simple operators, 

the result is the so-called Eigenstate Thermalization 

Hypothesis:

 

Deutsch ’91

Srednicki ’94

Foini, Kurchan ‘19

: one point functions of simple operators

: two point functions of simple operators

: Gaussian random variables

JdB, Liska, Post, Sasieta, ‘23



We now apply this logic to semi-classical gravity in AdS.

Semi-classical gravity is an incomplete theory so we will 

inevitably get a statistical description which contains all (not 

necessarily consistent) microscopic theories which are semi-

classically indistinguishable. 

Semi-classical gravity involves a coarse-graining over high-

energy microstates (e.g. semi-classical black hole entropy). 

Therefore the ignorance and statistical description will mostly 

involved the high-energy spectrum. 



For 2d theories with a holographic AdS3 dual:

➢ we only have explicit access to low-lying operators 

(denoted L) and not to very high dimension operators 

corresponding to black holes (denoted H)

➢ we can compute correlation functions where the number of 

operators is <<c

➢ we can compute partition functions on surfaces with genus 

<<c

➢ we can compute correlation functions in Lorentzian 

signature as long as the center of mass is sub Planckian

➢ all computations are at best done up to non-perturbative 

errors of order e-c



L L

L L

L L

H

H

H’

H

H’’

H’

Input gives rise to quadratic matrix model for the C’s



This is what gave rise to the OPE randomness hypothesis 

(Belin, JdB ’20):

Slowly varying 

function of 

arguments

• Pseudorandom

• Mean=0

• Variance=1

• Can have higher moments 

which are exponentially 

suppressed.

Example of 

ETH
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Example:

Pappadopulo, Rychkov, Espin, Ratazzi ‘12



In 2d, the result of all of this is a mixed matrix/tensor model 

which encodes statistics in the spectrum and statistics of 

OPE coefficients. 

In d>2, we do not know what the minimal set of data is to 

fully describe a CFT, but whatever those are, we get a 

corresponding statistical model. (Casimir energy on          is 

not obviously expressible in terms of      and         )   

cf Jafferis, Kolchmeyer, Mukhametzhanov, Sonner ’22

Belin, JdB, Kruthoff, Michel, Shaghoulian, Shyani ’16

Belin, JdB, Kruthoff’’18

To model the spectrum of a 2d CFT (Cardy density of states) 

we can use a matrix representing the Hamiltonian. (cf JT)



In this way we build a statistical model using gravitational 

computations with a single boundary. 

This yields a “single trace” matrix/tensor model. 

Statistical models predict correlations between multiple 

copies of the theory.

In gravity, these should correspond to connected wormhole 

geometries. 

Conjecture: wormholes compute the correlations of the one-

sided statistical model. They contain no new information. 



Intuition for the conjecture: one-sided computations allow 

one to reconstruct the bulk Lagrangian. Crossing symmetry 

is closely related to bulk locality. So all information which is 

needed to compute wormholes semi-classically is in 

principle available

This conjecture has been tested fairly extensively (Alex Belin, 

JdB ’20; Chandra, Collier, Hartman, Maloney ’22) but in remainder will 

instead describe:

➢ A wormhole prediction

➢ Connection to off-shell gravitational configurations

➢ A matrix/tensor model for 3d gravity?

➢ Statistical interpretation versus the page curve

➢ An alternative: state averaging



????

Vertex computed independently from the genus 3 

partition function

Prediction: a new wormhole?



The quartic vertex dominates over the second wormhole 

contribution. 

Suggests that there exists a new wormhole connecting two 

genus two Riemann surfaces with action

Result suggest that this is a wormhole supported by matter 

fields. Would be interesting to construct it explicitly. Can be 

constructed in Virasoro TQFT of (Collier, Eberhardt, Zhang ’23 ’24)

lightest scalar



Applications to off-shell gravitational solutions?

Cotler, Jensen ’21 – see also Di Ubaldo, Perlmutter ’23 and Haehl, Reeves, 

Rozali ‘23 

The off-shell gravity computation agrees to leading order 

with the universal random matrix theory result 

Ambjørn, Jurkiewicz, Makeenko ’90

Saad, Shenker, Sanford ’19



Individual off-shell geometries do not appear to have a 

simple interpretation in the dual CFTs.

One can try to generalize the above by including a matter 

field to compute the Loschmidt Spectral Form Factor

At late times this does not have a linear ramp but decays 

as            . Can be reproduced from wormhole with matter 

fields and also from 

JdB, Chandra, WIP

Winer, Swingle ‘22

Cotler, Jensen, ‘21

JdB, Chandra, WIP



A Matrix/Tensor model for 3d gravity?

Recall that for 2d theories with a holographic AdS3 dual:

➢ we only have explicit access to low-lying operators 

(denoted L) and not to very high dimension operators 

corresponding to black holes (denoted H)

➢ we can compute correlation functions where the number of 

operators is <<c

➢ we can compute partition functions on surfaces with genus 

<<c

➢ we can compute correlation functions in Lorentzian 

signature as long as the center of mass is sub Planckian

➢ all computations are at best done up to non-perturbative 

errors of order e-c



In arXiv:2308.03829 we called a set of conformal dimensions 

and OPE coefficients for which these computations 

approximately obey the CFT axioms (crossing and modular 

invariance of 1-pt functions) an approximate CFT

Note: by changing multiple conformal dimensions of heavy 

operators in a coordinated way, can prove every 2d CFT sits 

in an island of approximate CFTs

Note: the opposite is not obviously true. An approximate CFT 

may not be close to an actual CFT. Possible example: 

approximate 2d CFTs defined by pure 3d AdS gravity. 



The idea is now to average over all CFT2 data with a 

spectrum which is very close to that of 3d gravity, and with a 

weight schematically of the form

Result is a quartic tensor model with Feynman rules

Virasoro 6j symbol



Crossing:

Square of crossing



This is reminiscent of various other discrete descriptions of 

3d gravity.

It is also connected to the so-called Teichmüller TQFT 

(Andersen, Kishaev ‘11 ’13) which was recently connected to 3d 

gravity (Collier, Eberhardt, Zhang ’23 ’24) (Jafferis, Rosenberg, Wong 

to appear)

To be continued….

Regge ’61; Boulatov ‘92; Turaev Viro ‘92



Statistical interpretation versus the Page curve

If semi-classical gravity is described by a coarse-grained 

statistical ensemble, how can semi-classical gravity know 

about unitarity of black hole creation/evaporation?

Key: time evolution maps an initial state to a classical 

statistical mixture of pure states

Can be illustrated with a simple model which is a cartoon of 

the microcanonical Hilbert space of a black hole coupled to a 

bath

with 

JdB, Hollander, Rolph, ‘23

Black hole Vacuum



Full random unitary dynamics:  

No “wormholes”

Including “wormholes””



Features:

➢ Timescale is set by spectral form factor of matrix model

➢ “Wormholes” are related to types of contractions of random 

unitaries.

➢ Model has dynamics as opposed to many discrete qubit 

setups people have considered

➢ Mechanism is very simple and robust

➢ The final result is a classical statistical ensemble of pure 

states, not a mixed state. A replica computation like              

can distinguish the two. A non-replica computation can not. 

➢ No prediction for final state, just for unitarity.



So far we looked at semi-classical gravitational 

computations with a closed boundary.

However, we can also use gravitational path integrals with 

boundaries to semi-classically produce states.

i

j

Freivogel, Nikolapoulou, Rotundo ‘21

Chadra, Hartman ‘22

Penington, Shenker, Stanford, Yang ’19

Bah, Chen, Maldacena ’22

Goel, Lam, Turiaci, Verlinde ‘18

Balasubramanian, Lawrence, Magan, 

Sasieta ’22

JdB, Liska, Post, Sasieta ‘23

 
One can derive a suitable state-

averaging ansatz for an open 

path integral.

State Averaging



More precisely, we consider purification of density matrices

and assume such states can be prepared semiclassically (e.g. 

TFD state or PETS states). We then compute semiclassical 

overlaps of the form

and apply the maximal ignorance philosophy to obtain a 

quadratic matrix model for A.



Result:

Provides an alternative picture to OPE/spectral statistics. It 

more directly describes a coarse graining at the level of 

states. It is in particular useful for cutting/gluing 

constructions of correlation functions.

It reproduces many results of the OPE/spectral statistics 

picture. 

Interesting feature:   

JdB, Liska, Post, Sasieta, ‘23



Interestingly, the matrix model for A also gives rise to non-

gaussianities for

This makes the model subtly different from operator/spectral 

averages models, for example



The statistical interpretation of semi-classical gravity as 

constructed from a single boundary may provide an 

interesting new (discrete? combinatorial?) description of 

gravity.

Beyond this, it is instrumental in interpreting and 

understanding the results obtained in any semi-classical 

computation involving copies of the theory, or replicas of 

the theory.

Upshot:



COMMENT #1

It is an interesting question what type of coarse graining 

underlies semi-classical gravity. 

Both operator and state averaging are able to capture many 

semi-classical results.

Perhaps both are equally valid points of view and related by 

a suitable complicated change of variables?

 



COMMENT #2

None of the above implies that AdS/CFT fundamentally 

requires averaging. Averaging is purely a consequence of 

the semi-classical approximation. As one improves the 

description the averaging should become over 

increasingly smaller sets of data and ultimately disappear.

If the set of data would not become smaller as one would 

increase accuracy then the dual description would indeed 

be a proper average. This is what e.g. happens in 

topological theories like JT gravity.

But there currently is no evidence that anything like this is 

happening in standard examples of AdS/CFT.

 



COMMENT #3

It is an interesting question what the minimum number of 

ingredients are that we need to add to semiclassical gravity in 

order to uncover more detailed features of the UV and restore 

factorization.

Several suggestions exist in the literature, like half-

wormholes, various branes, non-local interactions, ….

See e.g. 

Gao, Jafferis, Kolckmeyer ‘21

Saad, Shenker, Stanford, Yao ’21

Blommaert, Kruthoff ‘21

Mukhametzhanov ‘21

Blommaert, Iliesiu, Kruthoff ‘21

A simple universal explanation 

could be that wormholes are 

unstable due to brane creation by 

an analogue of Schwinger pair 

production. The Swampland 

cobordism conjecture suggests 

that such branes always exist.
Alternative: gauging 

higher-form symmetries.
Benini, Copetti, Di Pietro ‘22Or overcounting? Eberhardt ‘20’21

cf Marolf Santos ‘21



COMMENT #4

The precise holographic definition of 3d pure AdS gravity 

remains confusing. The partition function of the putative dual 

theory naively has (i) a continuous spectrum and (ii) a non-

positive spectral density (Maloney, Witten ’07). 

Attempts to deal with this include adding heavy point particles, 

including off-shell configurations, finding the “minimal” modular 

invariant partition function with non-negative spectral density, 

etc.

Alternatively, is it an average (over approximate CFTs?)



COMMENT #5

Connection to α-vacua (Marolf, Maxfield ‘’20): 

We average over a set of objects which are semi-classicaly 

indistinguishable, and the correlations in these averages give 

rise to wormholes.

The individual elements of the ensemble can loosely be 

thought of as corresponding to α-vacua, although they are not 

really different vacua in this description and we do not perform 

a third quantization. 

   



COMMENT #6

What about celestial holograpy?

Inputs: S-matrix, black holes, what else? Black holes not dual 

to coarse graining an energy window. 

What to model? Celestial OPE’s? What is Moore-Seiberg of 

CCFT? Or better to model a Carroll theory?

Are there any interesting replica computations for flat space 

holography?

   



COMMENT #7

What about de Sitter space?

Inputs: cosmological collider, black holes, cosmological 

horizon, what else?

What to model? Euclidean CFT? Non-isometric embedding of 

semi-classical theory in finite dimensional Hilbert space? 

What are the interesting replica computations for de Sitter? 

Bra-Ket wormholes? 



CONCLUSIONS

➢ Standard principles of statistical physics lead to a statistical maximal 

ignorance description of semi-classical gravity. In 3d one finds an 

interesting matrix/tensor model description. 

➢ Wormholes correspond to correlations in this statistical description. 

Conjecturally, they contain no new information.

➢ It is not yet clear whether there is a simple universal mechanism 

which restores factorization in the UV. 

➢ It would be interesting to apply this logic to (observer-centric 

approaches to) quantum gravity in flat space and de Sitter. 

➢ Semi-classical gravity is averaging agnostic. 

➢ Should we stop pretending we are meta-observers who can solve 

everything? Especially when we are part of a chaotic system 

ourselves?
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