Non-perturbative effects in Twisted Holography

Kasia Budzik

Simons Collaboration on Celestial Holography

April 2024

In collaboration with Davide Gaiotto

• What are the holographic duals of BPS subsectors of SQFT?

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by **twisting** (and Ω -deformations)

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by **twisting** (and Ω -deformations)
- Usually topological strings/BCOV theory (or twisted M-theory)

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by **twisting** (and Ω -deformations)
- Usually topological strings/BCOV theory (or twisted M-theory)
- State it as an independent duality
 - ► Mathematically rigorous (eg. VOAs)
 - \blacktriangleright Dependence on coupling drops out \implies combinatorics of large N

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by **twisting** (and Ω -deformations)
- Usually topological strings/BCOV theory (or twisted M-theory)
- State it as an independent duality
 - ► Mathematically rigorous (eg. VOAs)
 - \blacktriangleright Dependence on coupling drops out \implies combinatorics of large N

In this talk:

2d chiral algebra \iff B-model on $SL(2, \mathbb{C})$

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [{\pmb Q}, \phi] &= 0 & ({\pmb Q}\text{-closed}) \\ \phi &\sim \phi + [{\pmb Q}, \psi] & (\text{modulo } {\pmb Q}\text{-exact}) \end{split}$$

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [{\pmb Q}, \phi] &= 0 & ({\pmb Q}\text{-closed}) \\ \phi &\sim \phi + [{\pmb Q}, \psi] & (\text{modulo } {\pmb Q}\text{-exact}) \end{split}$$

· Restricts to a protected (BPS) subsector of SQFT

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [\boldsymbol{Q}, \phi] &= 0 & \quad (\boldsymbol{Q}\text{-closed}) \\ \phi &\sim \phi + [\boldsymbol{Q}, \psi] & \quad (\text{modulo } \boldsymbol{Q}\text{-exact}) \end{split}$$

- Restricts to a protected (BPS) subsector of SQFT
- Correlation functions independent of some coordinates:

 $\{\boldsymbol{Q}, \tilde{Q}\} \sim P$

topological twist

[Witten, ...]

holomorphic twist

[Johansen, Nekrasov, Costello ...]

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [\boldsymbol{Q}, \phi] &= 0 & (\boldsymbol{Q}\text{-closed}) \\ \phi &\sim \phi + [\boldsymbol{Q}, \psi] & (\text{modulo } \boldsymbol{Q}\text{-exact}) \end{split}$$

- Restricts to a protected (BPS) subsector of SQFT
- Correlation functions independent of some coordinates:

 $\{\boldsymbol{Q}, \tilde{Q}\} \sim P$

- ► topological twist [Witten, ...]
- ▶ holomorphic twist [Johansen, Nekrasov, Costello ...]
- Extra math structure
 - \blacktriangleright ∞ -dim symmetry algebras
 - ▶ λ-brackets

[Gwilliam, Saberi, Williams, ...]

Chiral algebra subsector

• Any 4d $\mathcal{N} = 2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]

Chiral algebra subsector

- Any 4d $\mathcal{N} = 2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
 - Restrict to 2d
 - ► Take cohomology wrt

$$\boldsymbol{Q} \equiv Q_{-}^{1} + \tilde{S}^{2 \dot{-}}$$

Chiral algebra subsector

- Any 4d $\mathcal{N} = 2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
 - Restrict to 2d
 - Take cohomology wrt

$$\boldsymbol{Q} \equiv Q_{-}^{1} + \tilde{S}^{2 \dot{-}}$$

• The chiral algebra of $\mathcal{N} = 4$ SYM is a u(N) gauged $\beta \gamma$ system:

$$\begin{split} X^a_b(z) Y^c_d(0) &\sim \delta^a_d \delta^c_b \frac{1}{N} \frac{1}{z} \\ Q_{\text{BRST}} &\sim N \oint \text{Tr} \bigg(c[X,Y] + \frac{1}{2} b[c,c] \bigg) \end{split}$$

Simplifications:

Dependence on t'Hooft coupling drops out

Simplifications:

- Dependence on t'Hooft coupling drops out
- Free field theory computations in the chiral algebra \mathcal{A}_N

Simplifications:

- Dependence on t'Hooft coupling drops out
- Free field theory computations in the chiral algebra \mathcal{A}_N
- SFT of B-model is the Kodaira-Spencer/BCOV theory

Simplifications:

- Dependence on t'Hooft coupling drops out
- Free field theory computations in the chiral algebra \mathcal{A}_N
- SFT of B-model is the Kodaira-Spencer/BCOV theory
- D1-branes are holomorphic curves in $SL(2, \mathbb{C})$

• The chiral algebra \mathcal{A}_N is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^3$

- The chiral algebra \mathcal{A}_N is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^3$
- The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

- The chiral algebra \mathcal{A}_N is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^3$
- The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

```
[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on \mathbb{C}^3 + N D1-branes \longrightarrow B-model on SL(2, \mathbb{C}) \approx \text{AdS}_3 \times S^3
\uparrow
chiral algebra \mathcal{A}_N
```

- The chiral algebra \mathcal{A}_N is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^3$
- The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

Holographic dictionary: [Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

• Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $SL(2,\mathbb{C})$

- The chiral algebra \mathcal{A}_N is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^3$
- The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18] B-model on $\mathbb{C}^3 + N$ D1-branes \longrightarrow B-model on $SL(2, \mathbb{C}) \approx \text{AdS}_3 \times S^3$ \uparrow chiral algebra \mathcal{A}_N

Holographic dictionary: [Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $SL(2,\mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $SL(2,\mathbb{C})$

- The chiral algebra \mathcal{A}_N is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^3$
- The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18] B-model on $\mathbb{C}^3 + N$ D1-branes \longrightarrow B-model on $SL(2, \mathbb{C}) \approx \text{AdS}_3 \times S^3$ \uparrow chiral algebra \mathcal{A}_N

Holographic dictionary: [Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $SL(2,\mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $SL(2,\mathbb{C})$
- Non-conformal \longleftrightarrow "Multicenter" asymptotically $SL(2,\mathbb{C})$ geometries vacua

Giant Gravitons

Determinant operator in the chiral algebra

$$\det(m+Z(u;z)), \qquad Z(u;z)=X(z)+uY(z), \qquad m\in\mathbb{C}$$

is dual to a D1-brane wrapping $\mathbb{C}^*\cong\mathbb{R}_+\times S^1$ in $SL(2,\mathbb{C})\cong\mathsf{EAdS}_3\times S^3$

- z = position at the boundary of AdS₃
- u controls orientation of $S^1 \subset S^3$
- $m \text{ controls size of } S^1 \subset S^3$

Giant Gravitons

Many possible brane configurations with the same boundary behaviour

We will match saddles ρ^{\ast} of correlation functions of determinants with brane configurations

- m_i, u_i, z_i control boundary behaviour
- Saddles ρ will control the shape in the bulk

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

• Fermionize determinants

$$\det(m+Z(u;z)) = \int \mathrm{d}\bar{\psi}\mathrm{d}\psi \; e^{\bar{\psi}(m+Z(u,z))\psi}, \qquad \bar{\psi}_I, \; \psi^I, \quad I = 1, \dots, N$$

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

• Fermionize determinants

$$\det(m+Z(u;z)) = \int \mathrm{d}\bar{\psi}\mathrm{d}\psi \; e^{\bar{\psi}(m+Z(u,z))\psi}, \qquad \bar{\psi}_I, \; \psi^I, \quad I = 1, \dots, N$$

• Rewrite correlators using auxiliary bosonic variables ρ_j^i for $i \neq j$, $\rho_i^i \equiv m_i$

$$\left\langle \prod_{i}^{k} \det(m_{i} + Z(u_{i}; z_{i})) \right\rangle \sim \int d\rho \ e^{N S[\rho]}$$

with action

$$S[\rho] = \frac{1}{2} \sum_{i \neq j} \frac{z_i - z_j}{u_i - u_j} \rho_j^i \rho_i^j + \log \det \rho$$

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

Fermionize determinants

$$\det(m+Z(u;z)) = \int \mathrm{d}\bar{\psi}\mathrm{d}\psi \; e^{\bar{\psi}(m+Z(u,z))\psi}, \qquad \bar{\psi}_I, \psi^I, \quad I = 1, \dots, N$$

• Rewrite correlators using auxiliary bosonic variables ρ_j^i for $i \neq j$, $\rho_i^i \equiv m_i$

$$\left\langle \prod_{i}^{k} \det(m_{i} + Z(u_{i}; z_{i})) \right\rangle \sim \int d\rho \ e^{N S[\rho]}$$

with action

$$S[\rho] = \frac{1}{2} \sum_{i \neq j} \frac{z_i - z_j}{u_i - u_j} \rho_j^i \rho_i^j + \log \det \rho$$

• Saddle point equations in the matrix form:

$$[\zeta, \rho] + [\mu, \rho^{-1}] = 0$$

where

$$\zeta = \operatorname{diag}(z_i), \quad \mu = \operatorname{diag}(u_i), \quad \rho_i^i = m_i$$

Spectral curve

For each saddle ρ we define a **spectral curve** S_{ρ} in $SL(2, \mathbb{C})$:

Spectral curve

For each saddle ρ we define a **spectral curve** S_{ρ} in $SL(2, \mathbb{C})$:

• Define commuting matrices:

$$B(a) = a\mu - \rho$$

$$C(a) = a\zeta + \rho^{-1}$$

$$D(a) = a\zeta\mu + \rho^{-1}\mu - \zeta\rho$$

• Define spectral curve:

$$\begin{aligned} \mathcal{S}_{\rho} &= \left\{(a,b,c,d) \\ &\text{ s.t. } b,c,d \text{ are simultaneous eigenvalues of } B(a),C(a),D(a) \right\} \end{aligned}$$

Spectral curve

For each saddle ρ we define a **spectral curve** S_{ρ} in $SL(2, \mathbb{C})$:

• Define commuting matrices:

$$B(a) = a\mu - \rho$$

$$C(a) = a\zeta + \rho^{-1}$$

$$D(a) = a\zeta\mu + \rho^{-1}\mu - \zeta\rho$$

• Define spectral curve:

 $S_{\rho} = \{(a, b, c, d) \\ \text{s.t. } b, c, d \text{ are simultaneous eigenvalues of } B(a), C(a), D(a) \}$

- The matrices are defined so that:
 - \blacktriangleright They commute when ρ satisfies the saddle point equations
 - They satisfy

$$aD(a) - B(a)C(a) = 1$$

▶ S_{ρ} has expected boundary behavior

Holographic checks

• Correlation functions of determinants with a **single trace** operator [Jiang, Komatsu, Vescovi '19]

Holographic checks

- Correlation functions of determinants with a **single trace** operator [Jiang, Komatsu, Vescovi '19]
- OSFT action on Giant Graviton D1-brane

$$S[\rho] = \frac{1}{2} \sum_{i \neq j} \frac{z_i - z_j}{u_i - u_j} \rho_j^i \rho_j^j + \log \det \rho$$

Holographic checks

- Correlation functions of determinants with a **single trace** operator [Jiang, Komatsu, Vescovi '19]
- OSFT action on Giant Graviton D1-brane

$$S[\rho] = \frac{1}{2} \sum_{i \neq j} \frac{z_i - z_j}{u_i - u_j} \rho_j^i \rho_i^j + \log \det \rho$$

• BRST-closed modifications of determinants \longleftrightarrow excitations of the brane

• Duality can be extended to **non-conformal vacua** of the chiral algebra \mathcal{A}_N

- Duality can be extended to **non-conformal vacua** of the chiral algebra \mathcal{A}_N
- Twisted analog of

Coulomb branch of $\mathcal{N} = 4$ SYM \longleftrightarrow multi-center solutions

- Duality can be extended to **non-conformal vacua** of the chiral algebra \mathcal{A}_N
- Twisted analog of

Coulomb branch of $\mathcal{N}=4$ SYM $\, \longleftrightarrow \,$ multi-center solutions

• Backreact stack of non-coincident branes

- Duality can be extended to **non-conformal vacua** of the chiral algebra \mathcal{A}_N
- Twisted analog of

Coulomb branch of $\mathcal{N} = 4$ SYM \longleftrightarrow multi-center solutions

- Backreact stack of non-coincident branes
- Dual Calabi-Yau geometries are deformations of $SL(2,\mathbb{C})$

$$z_{I} - z_{I'} = + \frac{N_{i}/N}{(x - x_{i})(y - y_{i})}$$

For standard $SL(2, \mathbb{C})$ geometry:
$$z_{0} - z_{\infty} = \frac{1}{xy}$$
$$N_{1}$$

 (x_1, y_1)

Studying saddles in twisted holography:

• Stokes phenomena for brane saddles

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Non-perturbative effects in non-commutative BCOV:

• Holomorphic twist of 4d $\mathcal{N} = 1$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^3 [KB, Gaiotto, Kulp, Williams, Wu, Yu '23]

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants → backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Non-perturbative effects in non-commutative BCOV:

- Holomorphic twist of 4d $\mathcal{N} = 1$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^3 [KB, Gaiotto, Kulp, Williams, Wu, Yu '23]
- Holomorphic twist of 4d $\mathcal{N}=4$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^5

[Costello, Li '16]

▶ 1/16 BPS subsector

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Non-perturbative effects in non-commutative BCOV:

- Holomorphic twist of 4d $\mathcal{N} = 1$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^3 [KB, Gaiotto, Kulp, Williams, Wu, Yu '23]
- Holomorphic twist of 4d $\mathcal{N}=4$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^5

[Costello, Li '16]

▶ 1/16 BPS subsector

Thank you!