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Twisted Holography

• What are the holographic duals of BPS subsectors of SQFT?

• Restrict to subsector by twisting (and Ω-deformations)

• Usually topological strings/BCOV theory (or twisted M-theory)

• State it as an independent duality

▶ Mathematically rigorous (eg. VOAs)

▶ Dependence on coupling drops out =⇒ combinatorics of large N

In this talk:

2d chiral algebra ⇐⇒ B-model on SL(2,C)
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Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

[Q, ϕ] = 0 (Q-closed)

ϕ ∼ ϕ+ [Q, ψ] (modulo Q-exact)

• Restricts to a protected (BPS) subsector of SQFT

• Correlation functions independent of some coordinates:

{Q, Q̃} ∼ P

▶ topological twist [Witten, . . . ]

▶ holomorphic twist [Johansen, Nekrasov, Costello . . . ]

• Extra math structure [Gwilliam, Saberi, Williams, . . . ]

▶ ∞-dim symmetry algebras

▶ λ-brackets

3 / 13



Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

[Q, ϕ] = 0 (Q-closed)

ϕ ∼ ϕ+ [Q, ψ] (modulo Q-exact)

• Restricts to a protected (BPS) subsector of SQFT

• Correlation functions independent of some coordinates:

{Q, Q̃} ∼ P

▶ topological twist [Witten, . . . ]

▶ holomorphic twist [Johansen, Nekrasov, Costello . . . ]

• Extra math structure [Gwilliam, Saberi, Williams, . . . ]

▶ ∞-dim symmetry algebras

▶ λ-brackets

3 / 13



Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

[Q, ϕ] = 0 (Q-closed)

ϕ ∼ ϕ+ [Q, ψ] (modulo Q-exact)

• Restricts to a protected (BPS) subsector of SQFT

• Correlation functions independent of some coordinates:

{Q, Q̃} ∼ P

▶ topological twist [Witten, . . . ]

▶ holomorphic twist [Johansen, Nekrasov, Costello . . . ]

• Extra math structure [Gwilliam, Saberi, Williams, . . . ]

▶ ∞-dim symmetry algebras

▶ λ-brackets

3 / 13



Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

[Q, ϕ] = 0 (Q-closed)

ϕ ∼ ϕ+ [Q, ψ] (modulo Q-exact)

• Restricts to a protected (BPS) subsector of SQFT

• Correlation functions independent of some coordinates:

{Q, Q̃} ∼ P

▶ topological twist [Witten, . . . ]

▶ holomorphic twist [Johansen, Nekrasov, Costello . . . ]

• Extra math structure [Gwilliam, Saberi, Williams, . . . ]

▶ ∞-dim symmetry algebras

▶ λ-brackets

3 / 13



Chiral algebra subsector

• Any 4d N = 2 SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees ’13]

▶ Restrict to 2d

▶ Take cohomology wrt
Q ≡ Q1

− + S̃2−̇

• The chiral algebra of N = 4 SYM is a u(N) gauged βγ system:

Xa
b (z)Y

c
d (0) ∼ δadδcb

1

N

1

z

QBRST ∼ N
∮

Tr

(
c[X,Y ] +

1

2
b[c, c]

)
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Twisted Holography

Protected subsector of AdS5/CFT4: [Costello, Gaiotto ’18]

N = 4 SYM with U(N) ≈ type IIB on AdS5 × S5

2d chiral algebra AN ≈ B-model on SL(2,C) ≈ AdS3 × S3

“Q+ S” twist
[Beem et al. ’13]

twisted
strings/SUGRA
[Costello, Li ’16]

[Baulieu ’10]

Simplifications:

• Dependence on t’Hooft coupling drops out

• Free field theory computations in the chiral algebra AN
• SFT of B-model is the Kodaira-Spencer/BCOV theory

• D1-branes are holomorphic curves in SL(2,C)
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Backreaction

• The chiral algebra AN is supported by N D1-branes wrapping C ⊂ C3

• The stack sources a Beltrami differential which deforms complex structure:

C3 \ C→ SL(2,C)

[Gopakumar, Vafa ’99] [Costello, Gaiotto ’18]

B-model on C3 +N D1-branes −→ B-model on SL(2,C) ≈ AdS3 × S3

↑
chiral algebra AN

Holographic dictionary: [Costello, Gaiotto ’18] [KB, Gaiotto ’21 ’22]

• Single traces ←→ Deformations of BCOV boundary conditions on SL(2,C)
• Determinants ←→ “Giant Graviton” D1-branes in SL(2,C)
• Non-conformal ←→ “Multicenter” asymptotically SL(2,C) geometries

vacua
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Giant Gravitons

Determinant operator in the chiral algebra

det(m+ Z(u; z)), Z(u; z) = X(z) + uY (z), m ∈ C

is dual to a D1-brane wrapping C∗ ∼= R+ × S1 in SL(2,C) ∼= EAdS3 × S3

×
EAdS3 S3

S1

R+

• z = position at the boundary of AdS3

• u controls orientation of S1 ⊂ S3

• m controls size of S1 ⊂ S3
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Giant Gravitons

Many possible brane configurations with the same boundary behaviour

SL(2,C)

We will match saddles ρ∗ of correlation functions of determinants with brane
configurations

• mi, ui, zi control boundary behaviour

• Saddles ρ will control the shape in the bulk
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Determinant correlation functions
[Jiang, Komatsu, Vescovi ’19]

• Fermionize determinants

det(m+ Z(u; z)) =

∫
dψ̄dψ eψ̄(m+Z(u,z))ψ, ψ̄I , ψ

I , I = 1, . . . , N

• Rewrite correlators using auxiliary bosonic variables ρij for i ̸= j, ρii ≡ mi〈 k∏
i

det(mi + Z(ui; zi))
〉
∼

∫
dρ eN S[ρ]

with action
S[ρ] =

1

2

∑
i ̸=j

zi − zj
ui − uj

ρijρ
j
i + log det ρ

• Saddle point equations in the matrix form:

[ζ, ρ] + [µ, ρ−1] = 0

where

ζ = diag(zi), µ = diag(ui), ρii = mi
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Spectral curve
For each saddle ρ we define a spectral curve Sρ in SL(2,C):

• Define commuting matrices:

B(a) = aµ− ρ

C(a) = aζ + ρ−1

D(a) = aζµ+ ρ−1µ− ζρ

• Define spectral curve:

Sρ =
{
(a, b, c, d)

s.t. b, c, d are simultaneous eigenvalues of B(a), C(a), D(a)
}

• The matrices are defined so that:

▶ They commute when ρ satisfies the saddle point equations

▶ They satisfy

aD(a)−B(a)C(a) = 1

▶ Sρ has expected boundary behavior
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Holographic checks

TrZn

• Correlation functions of determinants with a single trace operator
[Jiang, Komatsu, Vescovi ’19]

• OSFT action on Giant Graviton D1-brane

S[ρ] =
1

2

∑
i ̸=j

zi − zj
ui − uj

ρijρ
j
i + log det ρ

• BRST-closed modifications of determinants←→ excitations of the brane
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Coulomb branch geometries

• Duality can be extended to non-conformal vacua of the chiral algebra AN

• Twisted analog of

Coulomb branch of N = 4 SYM ←→ multi-center solutions

• Backreact stack of non-coincident branes

• Dual Calabi-Yau geometries are deformations of SL(2,C)

zI − zI′ = +
Ni/N

(x− xi)(y − yi)

For standard SL(2,C) geometry:

z0 − z∞ =
1

xy

. . .

(x1, y1)

(xn, yn)

N1

Nn
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Future directions

Studying saddles in twisted holography:

• Stokes phenomena for brane saddles

• Large powers of determinants −→ backreacted geometries

• Lift to SUSY configurations in untwisted holography

• Project D1-branes in twistor space to 4d

Non-perturbative effects in non-commutative BCOV:

• Holomorphic twist of 4d N = 1 SYM↔ non-commutative BCOV on C3

[KB, Gaiotto, Kulp, Williams, Wu, Yu ’23]

• Holomorphic twist of 4d N = 4 SYM↔ non-commutative BCOV on C5

[Costello, Li ’16]

▶ 1/16 BPS subsector

Thank you!
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