Non-perturbative effects in Twisted Holography

Kasia Budzik

Simons Collaboration on Celestial Holography
April 2024

In collaboration with Davide Gaiotto

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFT?

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by twisting (and Ω-deformations)

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by twisting (and Ω-deformations)
- Usually topological strings/BCOV theory (or twisted M-theory)

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by twisting (and Ω-deformations)
- Usually topological strings/BCOV theory (or twisted M-theory)
- State it as an independent duality
- Mathematically rigorous (eg. VOAs)
- Dependence on coupling drops out \Longrightarrow combinatorics of large N

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFT?
- Restrict to subsector by twisting (and Ω-deformations)
- Usually topological strings/BCOV theory (or twisted M-theory)
- State it as an independent duality
- Mathematically rigorous (eg. VOAs)
- Dependence on coupling drops out \Longrightarrow combinatorics of large N

In this talk:

$$
\text { 2d chiral algebra } \Longleftrightarrow \text { B-model on } S L(2, \mathbb{C})
$$

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Restricts to a protected (BPS) subsector of SQFT

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Restricts to a protected (BPS) subsector of SQFT
- Correlation functions independent of some coordinates:

$$
\{\boldsymbol{Q}, \tilde{Q}\} \sim P
$$

- topological twist
- holomorphic twist
[Johansen, Nekrasov, Costello ...]

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Restricts to a protected (BPS) subsector of SQFT
- Correlation functions independent of some coordinates:

$$
\{\boldsymbol{Q}, \tilde{Q}\} \sim P
$$

- topological twist
- holomorphic twist
- Extra math structure
[Gwilliam, Saberi, Williams, ...]
- ∞-dim symmetry algebras
- λ-brackets

Chiral algebra subsector

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]

Chiral algebra subsector

- Any 4d $\mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- Restrict to 2d
- Take cohomology wrt

$$
\boldsymbol{Q} \equiv Q_{-}^{1}+\tilde{S}^{2} \dot{-}
$$

Chiral algebra subsector

- Any 4d $\mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- Restrict to 2d
- Take cohomology wrt

$$
\boldsymbol{Q} \equiv Q_{-}^{1}+\tilde{S}^{2} \dot{-}
$$

- The chiral algebra of $\mathcal{N}=4$ SYM is a $\boldsymbol{u}(\boldsymbol{N})$ gauged $\boldsymbol{\beta} \gamma \boldsymbol{\text { system: }}$

$$
\begin{aligned}
X_{b}^{a}(z) Y_{d}^{c}(0) & \sim \delta_{d}^{a} \delta_{b}^{c} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \oint \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

Twisted Holography

Protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$:
[Costello, Gaiotto '18]

$\mathcal{N}=4$ SYM with $U(N)$	\approx	type IIB on $\mathrm{AdS}_{5} \times S^{5}$
" $Q+S^{\prime}$ " twist		
[Beem et al. '13]		

Twisted Holography

Protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$:
[Costello, Gaiotto '18]

Simplifications:

- Dependence on t'Hooft coupling drops out

Twisted Holography

Protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$:
[Costello, Gaiotto '18]

Simplifications:

- Dependence on t'Hooft coupling drops out
- Free field theory computations in the chiral algebra \mathcal{A}_{N}

Twisted Holography

Protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$:
[Costello, Gaiotto '18]

Simplifications:

- Dependence on t'Hooft coupling drops out
- Free field theory computations in the chiral algebra \mathcal{A}_{N}
- SFT of B-model is the Kodaira-Spencer/BCOV theory

Twisted Holography

Protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$:
[Costello, Gaiotto '18]

$\mathcal{N}=4$ SYM with $U(N)$	\approx	type IIB on $\mathrm{AdS}_{5} \times S^{5}$
" $Q+S$ " twist		
[Beem et al. '13]		

Simplifications:

- Dependence on t'Hooft coupling drops out
- Free field theory computations in the chiral algebra \mathcal{A}_{N}
- SFT of B-model is the Kodaira-Spencer/BCOV theory
- D1-branes are holomorphic curves in $S L(2, \mathbb{C})$

Backreaction

- The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$

Backreaction

- The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$
- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

Backreaction

- The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$
- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]

```
B-model on }\mp@subsup{\mathbb{C}}{}{3}+N\mathrm{ D1-branes }\longrightarrow\mathrm{ B-model on SL(2, C})\approx\mp@subsup{AdS}{3}{}\times\mp@subsup{S}{}{3
    \uparrow
    chiral algebra }\mp@subsup{\mathcal{A}}{N}{
```


Backreaction

- The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$
- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]

B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$ \uparrow chiral algebra \mathcal{A}_{N}

Holographic dictionary:
[Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $S L(2, \mathbb{C})$

Backreaction

- The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$
- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$ \uparrow chiral algebra \mathcal{A}_{N}

Holographic dictionary:
[Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $S L(2, \mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $S L(2, \mathbb{C})$

Backreaction

- The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$
- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$ \uparrow
chiral algebra \mathcal{A}_{N}

Holographic dictionary:
[Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $S L(2, \mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $S L(2, \mathbb{C})$
- Non-conformal \longleftrightarrow "Multicenter" asymptotically $S L(2, \mathbb{C})$ geometries vacua

Giant Gravitons

Determinant operator in the chiral algebra

$$
\operatorname{det}(m+Z(u ; z)), \quad Z(u ; z)=X(z)+u Y(z), \quad m \in \mathbb{C}
$$

is dual to a D1-brane wrapping $\mathbb{C}^{*} \cong \mathbb{R}_{+} \times S^{1}$ in $S L(2, \mathbb{C}) \cong \mathrm{EAdS}_{3} \times S^{3}$

- $z=$ position at the boundary of AdS_{3}
- u controls orientation of $S^{1} \subset S^{3}$
- m controls size of $S^{1} \subset S^{3}$

Giant Gravitons

Many possible brane configurations with the same boundary behaviour

We will match saddles ρ^{*} of correlation functions of determinants with brane configurations

- m_{i}, u_{i}, z_{i} control boundary behaviour
- Saddles ρ will control the shape in the bulk

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

- Fermionize determinants

$$
\operatorname{det}(m+Z(u ; z))=\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi}(m+Z(u, z)) \psi}, \quad \bar{\psi}_{I}, \psi^{I}, \quad I=1, \ldots, N
$$

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

- Fermionize determinants

$$
\operatorname{det}(m+Z(u ; z))=\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi}(m+Z(u, z)) \psi}, \quad \bar{\psi}_{I}, \psi^{I}, \quad I=1, \ldots, N
$$

- Rewrite correlators using auxiliary bosonic variables ρ_{j}^{i} for $i \neq j, \rho_{i}^{i} \equiv m_{i}$

$$
\left\langle\prod_{i}^{k} \operatorname{det}\left(m_{i}+Z\left(u_{i} ; z_{i}\right)\right)\right\rangle \sim \int \mathrm{d} \rho e^{N S[\rho]}
$$

with action

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

- Fermionize determinants

$$
\operatorname{det}(m+Z(u ; z))=\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi}(m+Z(u, z)) \psi}, \quad \bar{\psi}_{I}, \psi^{I}, \quad I=1, \ldots, N
$$

- Rewrite correlators using auxiliary bosonic variables ρ_{j}^{i} for $i \neq j, \rho_{i}^{i} \equiv m_{i}$

$$
\left\langle\prod_{i}^{k} \operatorname{det}\left(m_{i}+Z\left(u_{i} ; z_{i}\right)\right)\right\rangle \sim \int \mathrm{d} \rho e^{N S[\rho]}
$$

with action

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

- Saddle point equations in the matrix form:

$$
[\zeta, \rho]+\left[\mu, \rho^{-1}\right]=0
$$

where

$$
\zeta=\operatorname{diag}\left(z_{i}\right), \quad \mu=\operatorname{diag}\left(u_{i}\right), \quad \rho_{i}^{i}=m_{i}
$$

Spectral curve

For each saddle ρ we define a spectral curve S_{ρ} in $S L(2, \mathbb{C})$:

Spectral curve

For each saddle ρ we define a spectral curve S_{ρ} in $S L(2, \mathbb{C})$:

- Define commuting matrices:

$$
\begin{aligned}
& B(a)=a \mu-\rho \\
& C(a)=a \zeta+\rho^{-1} \\
& D(a)=a \zeta \mu+\rho^{-1} \mu-\zeta \rho
\end{aligned}
$$

- Define spectral curve:

$$
\begin{aligned}
\mathcal{S}_{\rho}=\{ & (a, b, c, d) \\
& \text { s.t. } b, c, d \text { are simultaneous eigenvalues of } B(a), C(a), D(a)\}
\end{aligned}
$$

Spectral curve

For each saddle ρ we define a spectral curve S_{ρ} in $S L(2, \mathbb{C})$:

- Define commuting matrices:

$$
\begin{aligned}
& B(a)=a \mu-\rho \\
& C(a)=a \zeta+\rho^{-1} \\
& D(a)=a \zeta \mu+\rho^{-1} \mu-\zeta \rho
\end{aligned}
$$

- Define spectral curve:

$$
\begin{aligned}
\mathcal{S}_{\rho}=\{ & (a, b, c, d) \\
& \text { s.t. } b, c, d \text { are simultaneous eigenvalues of } B(a), C(a), D(a)\}
\end{aligned}
$$

- The matrices are defined so that:
- They commute when ρ satisfies the saddle point equations
- They satisfy

$$
a D(a)-B(a) C(a)=1
$$

- S_{ρ} has expected boundary behavior

Holographic checks

- Correlation functions of determinants with a single trace operator [Jiang, Komatsu, Vescovi '19]

Holographic checks

- Correlation functions of determinants with a single trace operator [Jiang, Komatsu, Vescovi '19]
- OSFT action on Giant Graviton D1-brane

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

Holographic checks

- Correlation functions of determinants with a single trace operator [Jiang, Komatsu, Vescovi '19]
- OSFT action on Giant Graviton D1-brane

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

- BRST-closed modifications of determinants \longleftrightarrow excitations of the brane

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}
- Twisted analog of

Coulomb branch of $\mathcal{N}=4 \mathrm{SYM} \longleftrightarrow$ multi-center solutions

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}
- Twisted analog of

Coulomb branch of $\mathcal{N}=4 \mathrm{SYM} \longleftrightarrow$ multi-center solutions

- Backreact stack of non-coincident branes

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}
- Twisted analog of

$$
\text { Coulomb branch of } \mathcal{N}=4 \mathrm{SYM} \longleftrightarrow \text { multi-center solutions }
$$

- Backreact stack of non-coincident branes
- Dual Calabi-Yau geometries are deformations of $S L(2, \mathbb{C})$

$$
z_{I}-z_{I^{\prime}}=+\frac{N_{i} / N}{\left(x-x_{i}\right)\left(y-y_{i}\right)}
$$

For standard $S L(2, \mathbb{C})$ geometry:

$$
z_{0}-z_{\infty}=\frac{1}{x y}
$$

Future directions

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles

Future directions

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries

Future directions

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography

Future directions

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Future directions

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Non-perturbative effects in non-commutative BCOV:

- Holomorphic twist of $4 \mathrm{~d} \mathcal{N}=1$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^{3}
[KB, Gaiotto, Kulp, Williams, Wu, Yu '23]

Future directions

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Non-perturbative effects in non-commutative BCOV:

- Holomorphic twist of $4 \mathrm{~d} \mathcal{N}=1$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^{3} [KB, Gaiotto, Kulp, Williams, Wu, Yu '23]
- Holomorphic twist of $4 \mathrm{~d} \mathcal{N}=4$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^{5}
[Costello, Li '16]
- 1/16 BPS subsector

Future directions

Studying saddles in twisted holography:

- Stokes phenomena for brane saddles
- Large powers of determinants \longrightarrow backreacted geometries
- Lift to SUSY configurations in untwisted holography
- Project D1-branes in twistor space to 4d

Non-perturbative effects in non-commutative BCOV:

- Holomorphic twist of $4 \mathrm{~d} \mathcal{N}=1$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^{3} [KB, Gaiotto, Kulp, Williams, Wu, Yu '23]
- Holomorphic twist of $4 \mathrm{~d} \mathcal{N}=4$ SYM \leftrightarrow non-commutative BCOV on \mathbb{C}^{5}
[Costello, Li '16]
- 1/16 BPS subsector

Thank you!

