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What is the double copy?

gravity = gauge ® gauge

® The original double copy relation was discovered by
Kawai-Lewellen-Tye (KLT) in 1986, relating closed and open string
amplitudes

® Taking the field theory limit this amounts
Mizee(L,...n) = Ale(a) S[alB] Alec(8)
O‘?B &

e Exists in many guises: colour-kinematics duality (BCJ), CHY,
classical (Kerr-Schild), etc.



Tree-level amplitudes: maximally helicity violating (MHV)

® Surprisingly beautiful structures in tree-level amplitudes were first
seen with the Parke-Taylor (PT) [¢6] formula, at all multiplicity
(12)*
(12)(23) - - - (n1)’

A (172787 0t = 6% ) P = [l

MHV

® In gravity, there is a corresponding expression (Hodges formula) ['12]

MER (17273 . nt) = 6%(---)(12)8det’ (H)

tree



Tree-level amplitudes: N9"'MHV from twistor space

e At N9"IMHYV level (with d 4 1 negative helicity particles), we have
[ ]
A6 = [ dualgit 1l [ ]
icg JjEg

and An,d = Ep Tr[Tp]-An,d[p]

_ 1
where PTa[0] = Gy Gomem)

e And for gravity the CS formula | ]

M5 = [ dpa P et (1) der () [T [T

ich  jch



MHV — N9~IMHV

a2t &l
(12)(23) --- (n1) (12)(23) - - - (n1)

(12)8det’(H) —  |h|® det/(H) det’(H")

and then integrate these over

e I @ I &@

i€pos.helicity Jj€neg.helicity
g/h g/h



Tree-level amplitudes: CHY | ]

® This formulation rests on evaluating integrands on the support of

solutions 071, ...,0, € CP! to the scattering equations for
ok ki - ki
P(o) = d ki- P(oj) = —L =9
)= =0  kPlO)=)
i=1 JFEi

® A generic scattering amplitude is

1
At,;)ree — Z _— In(o-i;kisel.)

solutions
ki-P(o;)=0



The CHY double copy
® The theory is captured in the form of the integrand

Gravity: Z9R = Pf/(®0) Pf/(d),
Yang-Mills:  ZYM[a] = PT,(a) Pf'(®),

(Bi-adjoint scalar:  ZPAS[a|8] = PT () PT,(8))

e Equivalently

20" = 2Mlo) g 0
<

®



helicity grading

CHY PT formulae
integrandsl lintegrands?
IGR = 7YM @ 7YM det!(H)det/(H") £ PT[] ® PT[A]
Double copy manifested 7777
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New amplitudes relations?

Double copy on curved spacetimes?
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CHY helicity grading //]P)

/ T formulae
integrandsl f lintegrands?
IR =M o M det/ (H)det/(H") £ PT[a] @ PT[]

Double copy manifested 7777

New amplitudes relations?

Double copy on curved spacetimes?



This talk

® Tree-level amplitude formulae
e Applications of graph theory
® Double copy in twistor space

e Conclusion and outlook



Tree-level amplitude formulae

Mg = /d/LdIn,d(Z) H&Hfj



Map moduli integrals

Mond = /‘dﬂdznd HE, I1&

= th

® For N9"IMHV we consider maps of degree d

Z.CP' > PT, PT ¢ CP?

with coordinates on CP?! given by o = ~r , and
Z(ro)=r?Z(0), Z((u,1)) = Ugu? + Ug_1u¥ 1+ ...+ Up

® Each map has 4(d + 1) degrees of freedom up to proj. scalings
® The integration measure of the moduli space of these maps and n

marked points on CP*

d (d+1)U
= /d i
W= e sie. o) L H o1 de)




External states - twistor representatives

Mpg = /(l/’dzn.d(z) 1B
' ich  jch
® The . equates solutions of the zero-rest-mass
equations on spacetime to cohomology classes on twistor space

o"(Z) € H*Y(PT,0(2h—2)),  h = helicity

® The twistor wavefunctions for momentum eigenstates take the form

D) = [y P - ) el

1

where Z = (u%, \y) and k&% = F2k%

® For our theories of interest



Integrands in twistor space

Mpd = / draTna(2) [ [ 114

ich  jeh

Vandermonde: |A| = H (1)), (ij)= eabaf’o’}’
tijreA

i N
Yang-Mills: &l* ’ 7 pLa)
- (e(1)p(2)) - (pln = Dp(n))(p(n)p(1)) -+ ‘/

Gravity: || det’(H) det’(H")



Integrands in twistor space
Gravity:  |h|® det’(H) det’(H")

¢ Hodges matrix has entries for i,j € h (+ hel.)

o) o) .
b _ Bate) o) H..:_ZH..H@
TG 2Bl
j#i

* Dual Hodges matrix has entries for i, j € h (- hel.)

v (Aai) A(Uj» v v (ki)
Hy =" Hi=-> Hy |[ 3
(/) j'iﬁ' ke i) (ki)

JFi

® The reduced determinants are

H H\/a
’ | et/(H\/)_ ‘ a ’

det’(H) = , d = —2
=R p (3}



Example: MHV n =4

Here h = {3,4} and h = {1,2}

_ t1[12] (23)(24) t1t2[12]
H = (11.?1)152[512?)(14) t t2[1(21]2213)(14)

(12) (12) (23)(24)



Example: MHV n =4

Here h = {3,4} and h = {1,2}

_ t1[12] (23)(24) t1t2[12]
H = (11.?1)152[512?)(14) t t2[1(21]2213)(14)
(12) T (12) (23)(24)

Choosing b =2 in [HE|

. t11.'2[12] (23)(24) —t1t2[12]

= det/(H) = /1{2,3,4}% =

(12) (13)(14) (12)(13)(14)(23)(24)(34)?



Example: MHV n =4

Here h = {3,4} and h = {1,2}

_ t1[12] (23)(24) t1t2[12]
H = ( (12) (13)(14) (122 )

t1 t2[12] t1t2[12] 13)(14)

(12) (12) (23)(24)

Choosing b =2 in [HE|

—t t2[12]

t11,[12] (23)(24)
B (12)(13)(14)(23)(24)(34)2

(12) (13)(14)

= det'(H) = /1{2,3,4}> =

And for dual Hodges

_ </\g;1\4> <>\§;\4> (s )
H' = < </\3(/\4)> <()\3)/\4>> = det'(HY) = G
(34) e




Integrands:
8l

(p(1)p(2)) - -~ (p(n = 1)p(n))(p(n)p(1)) f}
&

Gravity: || det(H) det’(H")

Yang-Mills:



Applications of graph theory



Tree graphs

Def: A tree graph is a set of edges E over
vertices V/, that is connected and has no loops.

® |t's possible to associate a weight w;; with
each possible edge (i — j)

Weighted Matrix-Tree Theorem

> (H w) = [W(V)j|

tree graphs \ (i—j)
onV

where the weighted Laplacian matrix is

W(V); = Dk—iy Wik ifi=]
’ — ifi #j




Can rewrite the Hodges' reduced determinants in this language! For the
positive helicity piece:

det!/(H) = — H

A2

Cx I h

/gﬁ spannlngh

where

and similarly for the negative helicity piece

det/(HY) = [h|"< > [ By

7o)
spanning h

5¢



Orderings and tree graphs

® |t's possible to direct a tree graph by giving it a root.
The edges now obtain a direction (i — j)

® Taking b as the root, we can associate a set of

orderings to each tree graph
| \/1

2
I
b b
(210) (12b), (21b)

Proposition (Frost '21)

For a directed tree T on vertices V and generic x € CP!

Il o= 2

(i—=))eT (J) ) compatible
ords. pTbhof T

PT(bpx)(bx)?

Y

A

\e

oot




det/(H) = !:PH < > ] Bi

spanztl)ng h (=9
For each specific tree Tp
I &= 11 ™G L G
(i—J) (i—J)
PT(bpx)(bx) A @
- Z pX) X H [ M U’ )] H (I/)
(i—J) Ieh\{x}

= Z PT(bpx)PT(boy)(bx)*(by) 1. 0,(e1) (o)) T i ) )
bp,bo



det/(H) = — < > ] Bi
[h| T
/eh b (i)
spanningh
For each specific tree Tp
I &= 11 ™G L G
(i—J) (i—J)
Ul
= ZPT bpx)(bx)? H 0,(01) 0u(o)] 1 0l
(i—J) leh\{x}
= Z PT(bpx)PT(boy)(6x)*(by)? [T (1.0, (1) 9 (o)1) Ty (1)
bp,bo

Weighted tree — (Parke-Taylor)? x something




Weighted tree — (Parke-Taylor)? x something

Doing the sum over the weighted trees

' I1 8i= Z > PT(bpx)PT(boy) x

Ty (i—)) bp,ba
spanning h spannlngh comp. Tp
= > PT(bpx)PT(boy) > %
bp,bo

So we've found that

det’(H Z PT(bpx)PT(boy) x something[p|o]
bp,bo

Repeat the same for det’(H")



KLT kernel in twistor space | ]

e Combining the contributions from trees over h and h (gluing
together the PT factors) the gravity integrand can be rewritten as

> [h[BPT([a/bp] Spalp. flw, @] PT@ abw]

&7 abuw in vab;gtéfrsr‘;a!ce
where
5ol \w,m:mw,a][ 3 m][ 5 m,-,-]
TeT?, (i=)) TeTh, (i)

® The weights on each of the sets of trees are

o5 = [0u(00) (o)) T] (NG, ijeh,
leh\{a,y}

@) X)) S

(i) I G eh

by =
ke(hu{b,t})\{i.j}



Snud[p’ ﬁ|W,(Z)] = D[W,LD] [
TeTz, (i)

> TLa| |

> I ¢

TETwa (i—J)

|

h h
£
- D) 2 | s \& |
TT |
R
¢ = [0u(01) 0, (o)) ] (NG, i,jeh,
Ieh\{a,y}
7 (Mai) Agy)) 1 e
%= ) Il ww  eh

) i
ke(hu{b,t)\{i.j}




MG = [aus Y |B[BPT(apbp] Snalp, plw, @] PT[@ T abw]T, wt(2)
N————

_2pbp KLT kernel
@' abw in twistor space

PT formulae

lintegrands!

det/(H)det/(H") = ZPT[a] ® PT[A] ,«
o, kernel \»,,jf

Helicity graded double copy kernel!




Double copy in twistor space



Interpretation of KLT kernel

nd—/dﬂd Z \h\SPT[ | Snalp. plw, @] PT[@ abw]l_[hjE

KLT kernel

&7 abw in twistor space

* A matrix on orderings of h and h: basis has (n — d — 2)! x (d)!
elements

® Graded by helicity, where # negative gravitons = d + 1

® Contrast with CHY kernel: 1 basis element
Spacetime KLT kernel: (n — 3)! basis elements



Inverse of the KLT kernel in twistor space

® |t has been proven | ]
that the matrix inverse of the usual field theory kernel is equal to
the scattering amplitudes of bi-adjoint scalar theory (BAS)

® We prove in | ] (using amplitude recursion relations in
twistor space) a new representation of BAS amplitudes in twistor
space:

ma(apbplaTabw) = [ dna S, o e8] [L0n(2)




Summary and outlook

® We found a new double copy structure between gravity and YM tree
amplitudes labelled by helicity

® This is naturally manifested in twistor space as a KLT kernel
integrand, whose integrated inverse is the colour-ordered BAS
amplitude
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